
Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Solutions to Test 1

1. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Find the slope of the tangent line to y = tan(x) at x = 0.

Solution. The slope of the tangent line at a given point is given by evaluating the

derivative at the given point. In this case,
dy

dx
=

d

dx
tan(x) = sec2(x). At x = 0 this gives

sec2(0) =
1

cos2(0)
=

1

1
= 1, so the tangent line to y = tan(x) at x = 0 has slope 1. �

b. Use the limit definition of the derivative to compute f ′(1) for f(x) = x2.

Solution. Here goes:

f ′(1) = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)2 − 11

h

= lim
h→0

11 + 2 · 1 · h+ h2 − 12

h

= lim
h→0

2h+ h2

h

= lim
h→0

(2 + h) = 2 + 0 = 2 �

c. Use the ε− δ definition of limits to verify that lim
x→1

(2x− 1) = 1.

Solution. We need to show that for any ε > 0 there is a δ > 0 such that if |x − 1| < δ,
then |(2x− 1)− 1| < ε. Given a ε > 0, we reverse-engineer the δ > 0 we need:

|(2x− 1)− 1| < ε⇐⇒ |2x− 2| < ε

⇐⇒ |2(x− 1)| < ε

⇐⇒ 2 |x− 1| < ε

⇐⇒ |x− 1| < ε

2

Since each step above is reversible, it follows that that if δ = ε
2 , then |(2x− 1)− 1| < ε

whenever |x− 1| < δ = ε
2 . Thus lim

x→1
(2x− 1) = 1 by the ε− δ definition of limits. �
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2. Find dy
dx in any three (3) of a–d. [9 = 3 × 3 each]

a. y =
x

x+ 1

Solution. Apply the Quotient Rule:

dy

dx
=

d

dx

(
x

x+ 1

)
=

[
d
dxx
]

(x+ 1)− x
[

d
dx (x+ 1)

]
(x+)2

=
1(x+ 1)− x1

(x+)2
=

1

(x+)2
�

b. x2 + y2 = 4

Solution i. Use implicit differentiation and the Chain Rule:

d

dx

(
x2 + y2

)
=

d

dx
4 =⇒ d

dx
x2 +

d

dx
t2 = 0 =⇒ 2x+

(
d

dy
y2
)
dy

dx
= 0

=⇒ 2x+ 2y
dy

dx
= 0 =⇒ 2y

dy

dx
= −2x =⇒ dy

dx
=
−2x

2y
= −x

y
�

Solution ii. Solve for y and then differentiate using the Chain Rule. First,

x2 + y2 = 4 =⇒ y2 = 4− x2 =⇒ y = ±
√

(4− x2) .

Second,

dy

dx
=

d

dx
±
√

(4− x2) =
1

±2
√

(4− x2)
· d
dx

(
4− x2

)
=

1

±2
√

(4− x2)
· (0− 2x)

=
−2x

±2
√

(4− x2)
=

−x
±
√

(4− x2)
= −x

y
. �

c. y =

∫ x

0

t cos(3t) dt

Solution. By the Fundamental Theorem of Calculus:

dy

dx
=

d

dx

∫ x

0

t cos(3t) dt = x cos(3t) �

d. y = ln
(
x3
)

Solution i. Simplify, then differentiate. First, y = ln
(
x3
)

= 3ln(x). Second,

dy

dx
=

d

dx
3ln(x) = 3 · 1

x
=

3

x
. �
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Solution ii. Differentiate using the Chain Rule, then simplify:

dy

dx
=

d

dx
ln
(
x3
)

=
1

x3
· d
dx
x3 =

1

x3
· 3x2 =

3

x
�

3. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Explain why lim
x→0

x

|x|
doesn’t exist.

Solution. Note that when x > 0, |x| = x, so
x

|x|
= 1, and when x < 0, x = −|x|,

so
x

|x|
= −1. It follows that lim

x→0−

x

|x|
= lim

x→0−
−1 = −1 and lim

x→0+

x

|x|
= lim

x→0+
1 = 1, so

lim
x→0

x

|x|
can’t exist since −1 6= 1. �

b. A spherical balloon is being inflated at a rate of 1 m3/s. How is its radius changing at
the instant that it is equal to 2 m? [The volume of a sphere of radius r is V = 4

3πr
3.]

Solution. On the one hand, we are given that
dV

dt
= 1; on the other hand, using the

Chain Rule,
dV

dt
=

d

dt

4

3
πr3 =

4

3
π

(
d

dr
r3
)
dr

dt
=

4

3
π3r2

dr

dt
= 4πr2

dr

dt
.

It follows that 1 =
dV

dt
= 4πr2

dr

dt
, so

dr

dt
=

1

4πr2
. Thus, at the instant that r = 2 m, we

have
dr

dt
=

1

4π22
=

1

16π
m/s. �

c. Use the Left-Hand Rule to find

∫ 3

1

x dx.

[
n−1∑
i=0

i = 0 + 1 + · · ·+ (n− 1) = n(n−1)
2

]
Solution. Not letting the right hand know what the left hand is doing:

∫ 3

1

x dx = lim
n→∞

n−1∑
i=0

3− 1

n
·
(

1 + i
3− 1

n

)
[Since our function is just f(x) = x.]

= lim
n→∞

n−1∑
i=0

2

n

(
1 + i

2

n

)
= lim

n→∞

2

n

n−1∑
i=0

(
1 + i

2

n

)

= lim
n→∞

2

n

([
n−1∑
i=0

1

]
+

[
n−1∑
i=0

i
2

n

])
= lim

n→∞

2

n

(
n+

[
2

n

n−1∑
i=0

i

])

= lim
n→∞

2

n

(
n+

2

n
· n(n− 1)

2
i

)
= lim

n→∞

2

n
(n+ (n− 1))

= lim
n→∞

2

n
(2n− 1) = lim

n→∞

(
4− 2

n

)
= 4− 0 = 4 �
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4. Let f(x) =
x2

x2 + 1
. Find the domain and all the intercepts, vertical and horizon-

tal asymptotes, and maxima and minima of f(x), and sketch its graph using this
information. [11]

Solution. We run through the checklist:

i. Domain. f(x) =
x2

x2 + 1
always makes sense because the denominator x2 + 1 ≥ 1 > 0

for all x. Thus the domain of f(x) is all of R; note that f(x) must also be continuous
everywhere. �

ii. Intercepts. f(0) = 0, so (0, 0) is the y-intercept. Since f(x) =
x2

x2 + 1
= 0 is only

possible when the numerator is 0, any x-intercepts occur when x2 = 0, i.e. when
x = 0. Thus (0, 0) is the only x-intercept, as well as the y-intercept. �

iii. Vertical asymptotes. Since f(x) is defined and continuous on all of R it has no vertical
asymptotes. (As noted in i above, this is because the denominator is never 0.) �

iv. Horizontal asymptotes. We check how f(x) behaves as x→ ±∞:

lim
x→∞

x2

x2 + 1
= lim

x→∞

x2

x2 + 1
· 1/x2

1/x2
= lim

x→∞

1

1 + 1
x2

=
1

1 + 0+
= 1−

lim
x→−∞

x2

x2 + 1
= lim

x→−∞

x2

x2 + 1
· 1/x2

1/x2
= lim

x→−∞

1

1 + 1
x2

=
1

1 + 0+)
= 1−

Thus f(x) has x = 1 as a horizontal asymptote in both directions. Note that because
x2

x2+1 = 1
1+1/x2 < 1 for all x, f(x) approaches this asymptote from below in both

directions. �

v. Maxima and minima. Since f(x) is defined and continuous on all of R, we only have
to check any critical points to find any local maxima and minima. We first compute
the derivative:

f ′(x) =
d

dx

(
x2

x2 + 1

)
=

[
d
dxx

2
] (
x2 + 1

)
− x2

[
d
dx

(
x2 + 1

)]
(x2 + 1)

2

=
2x
(
x2 + 1

)
− x2 (2x+ 0)

(x2 + 1)
2

=
2x3 + 2x− 2x3

(x2 + 1)
2 =

2x

(x2 + 1)
2

Since the denominator is never 0, f ′(x) is defined for all x and f ′(x) = 0 only when
the numerator, 2x, is 0, i.e. when x = 0. Thus x = 0 is the only critical point. From
the behaviour around the critical point,

x (−∞, 0) 0 (0,∞)
f ′(x) < 0 0 > 0
f(x) ↓ 0 ↑

,

f(0) = 0 is a local (and absolute!) minimum. Note that f(x) has no local maxima. �
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vi. Graph.

X: 4.860 Y: -2.860

This graph was drawn using a program called EdenGraph. �

Whew! �

Bonus. Find any inflection points of f(x) =
x2

x2 + 1
as well. [3]

Solution. We add one more item to the checklist above:

vii. Inflection points. Note that f ′(x) is defined and differentiable for all x. We first
compute the second derivative:

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
2x

(x2 + 1)
2

)
=

[
d
dx2x

] (
x2 + 1

)2 − 2x
[

d
dx

(
x2 + 1

)2](
(x2 + 1)

2
)2

=
2
(
x2 + 1

)2 − 2x
[
2
(
x2 + 1

)
· d
dx

(
x2 + 1

)]
(x2 + 1)

4

=
2
(
x2 + 1

)2 − 2x
[
2
(
x2 + 1

)
· (2x+ 0)

]
(x2 + 1)

4 =
2
(
x2 + 1

)2 − 2x
[
4x
(
x2 + 1

)]
(x2 + 1)

4

=
2
(
x2 + 1

)2 − 8x2
(
x2 + 1

)
(x2 + 1)

4 =
2
(
x2 + 1

)
− 8x2

(x2 + 1)
3 =

2− 6x2

(x2 + 1)
3

Since the denominator is never 0, f ′′(x) is defined for all x and f ′′(x) = 0 only when

the numerator, 2−6x2, is 0, i.e. when x = ± 1√
3

. Thus the potential inflection points

of f(x) are x = − 1√
3

and x =
1√
3

. From the behaviour around these points,

x
(
−∞,− 1√

3

)
− 1√

3

(
− 1√

3
, 1√

3

)
1√
3

(
1√
3
,∞
)

f ′′(x) < 0 0 > 0 0 < 0
f ′(x) ↓ ↑ ↓
f(x) concave down 1

4 concave up 1
4 concave down

,

it follows that f(x) has two inflection points, at x = − 1√
3

and x =
1√
3

. �

Bonus whew! �
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