
Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
Trent University, Fall 2021

Take-Home Final Examination

Available on Blackboard from 12:00 a.m. on Monday, 13 December.
Due on Blackboard by 11:59 p.m. on Wednesday, 15 December.

Submission: Scans or photos of handwritten work are entirely acceptable so long as they
are legible and in some common format; solutions submitted as a single pdf are strongly
preferred. If submission via Blackboard’s Assignments module fails repeatedly, then, as a
last resort, email them to the instructor at: sbilaniuk@trentu.ca

Allowed aids: For this exam, you are permitted to use your textbook and all other
course material, including that on Blackboard and the archive page, from this and any
other mathematics course(s) you have taken or are taking now, but you may not use any
other sources or aids, nor give or receive any help, except to ask the instructor to clarify
questions and to use a calculator (any that you like).

Instructions: Do parts A and B, and, if you wish, part C. Please show all your work
and justify all your answers. If in doubt about something, ask!

Part A. Do all four (4) of 1–4. [Subtotal = 72]

1. Compute
dy

dx
as best you can in any five (5) of a–f. [20 = 5 × 4 each]

a. cos(x+ y) = 0 b. y =
(
x2 + 1

)13
c. y =

∫ 0

− sin(x)

arcsin(t) dt

d. y = ex(x−1) e. y =
x+ 1

x2 − 1
f. y =

(
x2 + 1

)
arctan(x)

Solutions. a. A little trigonometry before differentiating. cos(x + y) = 0 exactly when

x+ y =
π

2
+ nπ for some integer n, so y = −x+ kπ and

dy

dx
=

d

dx
(−x+ kπ) = −1. �

a. Implicit differentiation.
d

dx
cos(x+y) = − sin(x+y)

d

dx
(x+y) = − sin(x+y)

(
1 +

dy

dx

)
and

d

dx
0 = 0, so − sin(x + y)

(
1 +

dy

dx

)
= 0. It follows that either sin(x + y) = 0 or

1 +
dy

dx
= 0. In the latter case, we can solve the equation to get

dy

dx
= −1, while in

the former case we must have x + y = kπ for some integer k, so y = −x + kπ and
dy

dx
=

d

dx
(−x+ kπ) = −1. Either way,

dy

dx
= −1. �

b. Power Rule & Chain Rule. Here we go:

dy

dx
=

d

dx

(
x2 + 1

)13
= 13

(
x2 + 1

)12 · d
dx

(
x2 + 1

)
= 13

(
x2 + 1

)12 ·2x = 26x
(
x2 + 1

)12
�

c. The Fundamental Theorem of Calculus and the Chain Rule. Recall that one version of
the Fundamental Theorem of Calculus tells us that d

dx

∫ x
c
f(t) dt = f(x). We will also use
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the Chain Rule and the facts that
∫ b
a
f(t) dt = (−1)

∫ a
b
f(t) dt and that arcsin is an odd

function, i.e. arcsin(−t) = (−1) arcsin(t), and is the inverse function to sin(x) for values
of x near 0.

dy

dx
=

d

dx

∫ 0

− sin(x)

arcsin(t) dt =
d

dx
(−1)

∫ − sin(x)

0

arcsin(t) dt

= (−1) arcsin (− sin(x)) · d
dx

(− sin(x))

= (−1)(−1) arcsin(sin(x)) · (− cos(x)) = −x cos(x) �

d. Chain Rule and Power Rule. Here we go:

dy

dx
=

d

dx
ex(x−1) = ex

2−x · d
dx
x(x− 1) = ex(x−1) · d

dx

(
x2 − x

)
= ex(x−1)(2x− 1) �

e. Quotient Rule. Here we go:

dy

dx
=

d

dx

(
x+ 1

x2 − 1

)
=

[
d
dx (x+ 1)

] (
x2 − 1

)
− (x+ 1)

[
d
dx

(
x2 − 1

)]
(x2 − 1)

2

=
1 ·
(
x2 − 1

)
− (x+ 1) · 2x

(x2 − 1)
2 =

x2 − 1−
(
2x2 − 2x

)
(x2 − 1)

2 =
−x2 − 2x− 1

(x2 − 1)
2

=
−(x+ 1)2

(x2 − 1)
2 = −

(
x+ 1

x2 − 1

)2

= −
(

x+ 1

(x− 1)(x+ 1)

)2

= −
(

1

x− 1

)2

=
−1

(x− 1)2
�

e. Simplification, Power Rule, and Chain Rule. Here we go:

dy

dx
=

d

dx

(
x+ 1

x2 − 1

)
=

d

dx

(
x+ 1

(x− 1)(x+ 1)

)
=

d

dx

(
1

x− 1

)
=

d

dx
(x− 1)−1

= (−1)(x− 1)−2 · d
dx

(x− 1) = −(x− 1)−2 · 1 =
−1

(x− 1)2
�

f. Product Rule and Power Rule. Here we go:

dy

dx
=

d

dx

(
x2 + 1

)
arctan(x) =

[
d

dx

(
x2 + 1

)]
· arctan(x) +

(
x2 + 1

)
·
[
d

dx
arctan(x)

]
= 2x · arctan(x) +

(
x2 + 1

)
· 1

x2 + 1
= 2x arctan(x) + 1 �
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2. Evaluate any five (5) of the integrals a–f. [20 = 5 × 4 each]

a.

∫ e

1

ln
(
x17
)
dx b.

∫ π/8

0

sec3(2x) dx c.

∫ 1

−1

x2 − 1

x4 − 1
dx

d.

∫
(ln(x) + 1)

2

2x
dx e.

∫
x sec2 x dx f.

∫
xx · (ln(x) + 1) dx

Solutions. a. Integration by parts. After a small application of the properties of loga-

rithms, we will integration by parts with u = ln(x) and v′ = 17, so u′ =
1

x
and v = 17x.

∫ e

1

ln
(
x17
)
dx =

∫ e

1

17ln (x) dx = ln(x) · 17x|e1 −
∫ e

1

1

x
· 17x dx

= 17 · e · ln(e)− 17 · 1 · ln(1)−
∫ e

1

17 dx

= 17e · 1− 17 · 0− 17x|e1 = 17e− 0− (17 · e− 17 · 1)

= 17e− 17e+ 17 = 17 �

b. Substitution and a trigonometric integral reduction formula. We will use the subsitution

w = 2x, so dw = 2 dx and dx = 1
2 dw, changing the limits as we go along:

x 0 π/8
w 0 π/4

After this, we will apply the integral reduction formula for powers of sec.

∫ π/8

0

sec3(2x) dx =

∫ π/4

0

sec3(w)
1

2
dw =

1

2

∫ π/4

0

sec3(w) dw

=
1

2

[
1

3− 1
tan(w) sec3−2(w)

∣∣∣∣π/4
0

+
3− 2

3− 1

∫ π/4

0

sec3−2(w) dw

]

=
1

2

[
1

2
tan(w) sec(w)

∣∣∣∣π/4
0

+
1

2

∫ π/4

0

sec(w) dw

]

=
1

4
tan(w) sec(w)

∣∣∣∣π/4
0

+
1

4
ln (sec(w) + tan(w))

∣∣∣∣π/4
0

=
1

4
tan

(π
4

)
sec
(π

4

)
− 1

4
tan(0) sec(0)

+
1

4
ln
(

tan
(π

4

)
+ sec

(π
4

))
− 1

4
ln (tan(0) + sec(0))

=
1

4
· 1 ·
√

2− 1

4
· 0 · 1 +

1

4
ln
(

1 +
√

2
)
− 1

4
ln (0 + 1)

=

√
2

4
− 0 +

1

4
ln
(

1 +
√

2
)
− 1

4
ln(1)

=

√
2

4
+

1

4
ln
(

1 +
√

2
)
− 0 =

√
2 + ln

(
1 +
√

2
)

4
�
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c. Simplify the integrand. Here we go:∫ 1

−1

x2 − 1

x4 − 1
dx =

∫ 1

−1

x2 − 1

(x2 − 1) (x2 + 1)
dx =

∫ 1

−1

1

x2 + 1
dx

= arctan(x)|1−1 = arctan(1)− arctan(−1) =
π

4
−
(
−π

4

)
=
π

2
�

d. Substitution and Power Rule. We will use the substitution u = ln(x)+ 1, so du =
1

x
dx.

∫
(ln(x) + 1)

2

2x
dx =

∫
u2

2
du =

1

2
· u

3

3
+ C =

u3

6
+ C =

(ln(x) + 1)
3

6
+ C �

e. Integration by parts and Substitution. We will use integration by parts with u = x
and v′ = sec2(x), so u′ = 1 and v = tan(x). Afterwards, we will use the substitution
w = cos(x), so dw = − sin(x) dx and sin(x) dx = (−1) dw.∫

x sec2 x dx = x tan(x)−
∫

1 · tan(x) dx = x tan(x)−
∫

sin(x)

cos(x)
dx

= x tan(x)−
∫

1

w
(−1) dw = x tan(x) +

∫
1

w
dw

= x tan(x) + ln(w) + C = x tan(x) + ln (cos(x)) + C �

f. A little algebra and Substitution. We will use the fact that xx =
(
eln(x)

)x
= exln(x),

and then substitute w = xln(x), so dw =
(
d
dxxln(x)

)
dx =

(
1 · ln(x) + x · 1x

)
dx =

(ln(x) + 1) dx.∫
xx · (ln(x) + 1) dx =

∫
exln(x) · (ln(x) + 1) dx =

∫
ew dw

= ew + C = exln(x) + C = xx + C �
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3. Do any five (5) of a–i. [20 = 5 × 4 each]

a. Find all the local maxima and minima, if any, of y = x4 − 18x2.

b. Sketch the region whose border consists of the curves y = x2 for 0 ≤ x ≤ 1,
y = 2 − x for 1 ≤ x ≤ 2, and y = −

√
1− (x− 1)2 for 0 ≤ x ≤ 2, and find its

area.

c. Use the ε–δ definition of limits to verify that lim
x→1

√
|x− 1| = 0.

d. Sketch the solid obtained by revolving the region between y = ln(x) and y = 0,
for 1 ≤ x ≤ e, about the x-axis, and find the volume of this solid.

e. Find any and all vertical and horizontal asymptotes of y =
1

x+ 1
+

1

x− 1
.

f. Compute lim
x→∞

x3e−x.

g. Use the limit definition of the derivative to show that
d

dx

(
1

x2

)
= − 2

x3
.

h. A rectangular box is 1 m wide, x m long, and y m high. What is the minimum
possible surface area of such a box if has a volume of 4 m3?

i. Show that ln (sec(x)− tan(x)) = −ln (sec(x) + tan(x)).

Solutions. a. Note that y = x4 − 18x2 is a ploynomial, so it is defined, as well as
continuous and differentiable, for all x. To find all of its local maxima and minima, we
need to find all of its critical points and intervals of increase and decrease. This will require
the first derivative:

dy

dx
=

d

dx

(
x4 − 18x2

)
= 4x3 − 36x = 4x

(
x2 − 9

)
= 4x(x+ 3)(x− 3)

Obviously,
dy

dx
= 4x(x+3)(x−3) = 0 exactly when x = 0 or x = ±3. To see whether these

critical points are local maxima or minima, or perhaps neither, we check to see whether
dy

dx
is positive or negative to either side of each critical point:

• For x < −3 we have x < 0, x+ 3 < 0, and x− 3 < 0, so
dy

dx
= 4x(x+ 3)(x− 3) < 0,

and so the graph is decreasing.

• For −3 < x < 0, we have x < 0, x+3 > 0, and x−3 < 0, so
dy

dx
= 4x(x+3)(x−3) > 0,

and so the graph is increasing.

• For 0 < x < 3 we have x > 0, x+ 3 > 0, and x− 3 < 0, so
dy

dx
= 4x(x+ 3)(x− 3) < 0,

and so the graph is decreasing.

• For x > 3, we have x > 0, x + 3 > 0, and x − 3 > 0, so
dy

dx
= 4x(x + 3)(x − 3) > 0,

and so the graph is increasing.

It follows that x = −3 is a local minimum, x = 0 is a local maximum, and x = 3 is another
local minimum of y = x4 − 18x2. �
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b. Here is a sketch of the region:

The area of the region can be most easily computed by breaking the region down into
three parts:

• the subregion between y = x2 and the x-axis for 0 ≤ x ≤ 1,
• the subregion between y = 2 − x and the x-axis for 1 ≤ x ≤ 2 , which is a triangle

with height and base 1, and
• the subregion between y = −

√
1− (x− 1)2 and the x-axis for 0 ≤ x ≤ 2, which is the

lower half of the unit circle centred at (1, 0).

The last two subregions have easily computed areas: the area of the triangle is
1

2
· base ·

height =
1

2
· 1 · 1 =

1

2
, and the area of half of a unit circle is

1

2
· πr2 =

1

2
· π12 =

π

2
. To

compute the area of the first subregion, we – finally! :-) – resort to calculus and compute
the area integral: ∫ 1

0

x2 dx =
x3

3

∣∣∣∣1
0

=
13

3
− 03

3
=

1

3

Thus the area of the given region is
1

3
+

1

2
+
π

2
=

5

6
+
π

2
. �

c. To verify that lim
x→1

√
|x− 1| = 0 using the ε–δ definition of limits, we need to show that

given any ε > 0, there is a δ > 0 such that if |x − 1| < δ, then
∣∣∣√|x− 1| − 0

∣∣∣ < ε. We

will attempt to work backward from the last condition to determine what δ should be in
terms of ε. Suppose that ε > 0 is given. Then:∣∣∣√|x− 1| − 0

∣∣∣ < ε

⇐⇒
∣∣∣√|x− 1|

∣∣∣ < ε

⇐⇒
√
|x− 1| < ε (Since we’re taking the positive root.)

⇐⇒ |x− 1| < ε2 (Since x2 is an increasing function for x > 0.)

Since every step above is reversible, if we let δ = ε2, it will follow that if |x− 1| < δ = ε2,

then
∣∣∣√|x− 1| − 0

∣∣∣ < ε, as required. Thus, by the ε–δ definition of limits, lim
x→1

√
|x− 1| =

0. �
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d. Here is a sketch of the solid, with a cross-section at x drawn in for good measure:

We will use the disk/washer method to fint the volume of this solid. Since we revolved
the given region about the x-axis, the disk cross-sections are perpendicular to the axis, and
so we use x as our variable. Note that the disk at x has radius r = y = ln(x) and hence

has area A(x) = πr2 = πln2(x). This gives us the volume integral V =

∫ e

1

A(x) dx =∫ e

1

πln2(x) dx = π

∫ e

1

ln2(x) dx, which we will compute in two stages. In the first stage,

we will use integration by parts with u = ln2(x) and v′ = 1, so u′ = 2ln(x) · 1

x
and v = x.

This gives:

V = π

∫ e

1

ln2(x) dx = π

[
ln2(x) · x

∣∣e
1
−
∫ e

1

2ln(x) · 1

x
· x dx

]
= π

[
eln2(e)− 1ln2(1)−

∫ e

1

2ln(x) dx

]
= π

[
e · 12 − 1 · 02 − 2

∫ e

1

ln(x) dx

]
= π

[
e− 2

∫ e

1

ln(x) dx

]
= πe− 2π

∫ e

1

ln(x) dx

We will use parts again to deal with the remaining integral, with s = ln(x) and t′ = 1, so

s′ =
1

x
and t = x. This, in turn, gives:

V = π

∫ e

1

ln2(x) dx = πe− 2π

∫ e

1

ln(x) dx = πe− 2π

[
ln(x) · x|e1 −

∫ e

1

1

x
· x dx

]
= πe− 2π

[
eln(e)− 1ln(1)−

∫ e

1

1 dx

]
= πe− 2π [e · 1− 1 · 0− x|e1]

= πe− 2π [e− 0− (e− 1)] = πe− 2π [e− e+ 1] = πe− 2π · 1 = (e− 2)π �

e. Observe that y =
1

x+ 1
+

1

x− 1
is defined and continuous for all x for which it is

defined, that is, for all x except for x = ±1. We take the limits from each side at the
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exceptional points to check for vertical asymptotes:

lim
x→−1−

(
1

x+ 1
+

1

x− 1

)
= lim
x→−1−

1

x+ 1

→ 1
→ 0−

+ lim
x→−1−

1

x− 1

→ 1
→ −2

= −∞− 1

2
= −∞

lim
x→−1+

(
1

x+ 1
+

1

x− 1

)
= lim
x→−1+

1

x+ 1

→ 1
→ 0+

+ lim
x→−1+

1

x− 1

→ 1
→ −2

= +∞− 1

2
= +∞

lim
x→+1−

(
1

x+ 1
+

1

x− 1

)
= lim
x→+1−

1

x+ 1

→ 1
→ 2

+ lim
x→+1−

1

x− 1

→ 1
→ 0−

=
1

2
−∞ = −∞

lim
x→−1+

(
1

x+ 1
+

1

x− 1

)
= lim
x→+1+

1

x+ 1

→ 1
→ 2

+ lim
x→+1+

1

x− 1

→ 1
→ 0+

=
1

2
+∞ = +∞

Thus y =
1

x+ 1
+

1

x− 1
has vertical asymptotes at x = ±1; at each point it approaches

−∞ from the left and +∞ from the right.
To check for horizontal asymptotes we take the limits in each direction:

lim
x→−∞

(
1

x+ 1
+

1

x− 1

)
= lim
x→−∞

1

x+ 1

→ 1
→ −∞ + lim

x→−∞

1

x− 1

→ 1
→ −∞ = 0− + 0− = 0−

lim
x→+∞

(
1

x+ 1
+

1

x− 1

)
= lim
x→+∞

1

x+ 1

→ 1
→ +∞ + lim

x→+∞

1

x− 1

→ 1
→ +∞ = 0+ + 0+ = 0+

Thus y =
1

x+ 1
+

1

x− 1
has y = 0 as a horizontal asymptote in both directions, which it

approaches from below as x→ −∞ and from above as x→ +∞. �

f. We will apply l’Hôpital’s Rule three times:

lim
x→∞

x3e−x = lim
x→∞

x3

ex
→∞
→∞ = lim

x→∞

d
dxx

3

d
dxe

x
= lim
x→∞

3x2

ex
→∞
→∞ = lim

x→∞

d
dx3x2

d
dxe

x

= lim
x→∞

6x

ex
→∞
→∞ = lim

x→∞

d
dx6x
d
dxe

x
= lim
x→∞

6

ex
→ 6
→∞ = 0 �

g. We will plug
1

x2
into the limit definition of the derivative and see what happens:

d

dx

(
1

x2

)
= lim
h→0

1
(x+h)2 −

1
x2

h
= lim
h→0

x2−(x+h)2
(x+h)2x2

h
= lim
h→0

x2 −
(
x2 + 2hx+ h2

)
h(x+ h)2x2

= lim
h→0

−2hx− h2

h(x+ h)2x2
= lim
h→0

−2x− h
(x+ h)2x2

=
−2x− 0

(x+ 0)2x2
=
−2x

x4
= − 2

x3
�

h. The volume of a box that is 1 m wide, x m long, and y m high is V = 1·x·y = xy, and its
surface area is the sum of the areas of its six faces, A = 2·1·x+2·1·y+2·x·y = 2x+2y+2xy.

Since we are told that the volume of the box is V = 4 m3, we have V = xy = 4, so y =
4

x
.
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As a function of x, the surface area is then A(x) = 2x + 2 · 4

x
+ 2x · 4

x
= 2x +

8

x
+ 8.

Note that we must have x > 0 for the problem to make sense, but that there are no other
restrictions, i.e. we have 0 < x < ∞. We need to find the minimum of A(x) for x in this
range. Now

A′(x) =
d

dx

(
2x+

8

x
+ 8

)
= 2 +

−8

x2
+ 0 = 2− 8

x2
,

so

A′(x) = 0⇐⇒ 2− 8

x2
= 0⇐⇒ 2x2 = 8⇐⇒ x2 = 4⇐⇒ x = ±2,

and since we must have x > 0, the only critical point we need to consider is x = 2. Note

that when 0 < x < 2,
8

x2
>

8

22
=

8

4
= 2, so A′(x) = 2 − 8

x2
< 0, and when x > 0,

8

x2
<

8

22
=

8

4
= 2, so A′(x) = 2 − 8

x2
> 0. This means that A(x) is decreasing for

0 < x < 2 and increasing for x > 2, so A(2) = 2 ·2+
8

2
+8 = 4+4+8 = 16 is the minimum

value of A(x). Thus the minimum possible surface area of a box that is 1 m wide, x m
long, and y m high and has volume 4 m3 is 16 m2. �

i. This is a cute exercise in algebra, using a trigonometric identity – sec2(x) = 1 + tan2(x)
– and a property of logarithms – ln

(
ab
)

= b ln(a) – along the way:

ln (sec(x)− tan(x)) = ln

(
(sec(x)− tan(x)) · sec(x) + tan(x)

sec(x) + tan(x)

)
= ln

(
sec2(x)− tan2(x)

sec(x) + tan(x)

)
= ln

(
1

sec(x) + tan(x)

)
= ln

(
(sec(x) + tan(x))

−1
)

= (−1) ln (sec(x) + tan(x)) = −ln (sec(x) + tan(x)) �

4. Find the domain as well as any (and all) intercepts, vertical and horizontal asymptotes,
intervals of increase, decrease and concavity, and maximum, minimum, and inflection
points of f(x) = e−1/x, and sketch its graph based on this information. [12]

Solution. We run through the given checklist:

i. (Domain) Since −1/x is defined (and continuous and differentiable) for all x 6= 0 and
et is defined (and continuous and differentiable) for all t, f(x) = e−1/x is defined (and
continuous and differentiable) for all x 6= 0.

ii. (Intercepts) f(x) = e−1/x is not defined at x = 0, so there is no y-intercept. Since
et > 0 for all t, f(x) = e−1/x > 0 for all x 6= 0, so there is no x-intercept either.

iii. (Vertical asymptotes) Since f(x) = e−1/x is defined and continuous for all x 6= 0, the
only place there might be a vertical asymptote is at x = 0. Let’s check:

lim
x→0+

e−1/x = 0 since − 1

x
→ −∞ as x→ 0+ and et → 0 as t = − 1

x
→ −∞

lim
x→0−

e−1/x = +∞ since − 1

x
→ +∞ as x→ 0− and et → +∞ as t = − 1

x
→ +∞

9



It follows that f(x) = e1/x has a vertical asymptote on the negative side of x = 0, but
no vertical asymptote on the positive side.

iv. (Horizontal asymptotes) Let’s check:

lim
x→+∞

e−1/x = 1− since − 1

x
→ 0− as x→ +∞ and et → 1− as t = − 1

x
→ 0−

lim
x→−∞

e−1/x = 1+ since − 1

x
→ 0+ as x→ −∞ and et → 1 as t = − 1

x
→ 0+

Thus f(x) = e−1/x has a horizontal asymptote of y = 1 in both directions, approaching
it from below in the positive direction and from above in the negative direction.

v. (Maxima and minima) f ′(x) =
d

dx
e−1/x = e−1/x · d

dx

(
− 1

x

)
= e−1/x

(
−−1

x2

)
=

e−1/x

x2
is, like f(x) = e−1/x, defined and continuous for all x 6= 0. Note that since

e−1/x > 0 and x2 > 0 for all x 6= 0, f ′(x) > 0 for all x 6= 0. It follows that f(x) is
increasing for all x for which it is defined; in particular, it has no critical points and
no local maxima or minima.

vi. (Curvature and inflection) First,

f ′′(x) =
d

dx

(
e−1/x

x2

)
=

(
d
dxe
−1/x)x2 − e−1/x ( ddxx2)

(x2)
2 =

e−1/x

x2 x2 − 2xe1/x

x4

=
e−1/x − 2xe−1/x

x4
=

(1− 2x)e−1/x

x4
,

which is defined, just as f(x) and f ′(x) are, for all x 6= 0. Note that since e−1/x > 0
whenever it is defined, f ′′(x) = 0 exactly when 1 − 2x = 0, i.e. when x = 1

2 . Since

x4 > 0 for all x, we also have that f ′′(x) = (1−2x)e1/x
x4

>

<
0 exactly when 1− 2x

>

<
0, i.e.

exactly when x
<

>

1

2
. Putting this information in the usual table gives us:

x (−∞, 0) 0
(
0, 12
)

1
2

(
1
2 ,+∞

)
f ′′(x) − undef. + 0 −
f(x) ^ undef. ^ infl. pt. _

Thus f(x) has one inflection point, at x = 1
2 .

vii. (Graph) Using SageMath, typing in plot(e^(-1/x),-4,4,ymin=0,ymax=4) gets:

�
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Part B. Do any two (2) of 5–8. [Subtotal = 28 = 2 × 14 each]

5. A pie slice with angle θ rad at the tip is cut out of a circle
of radius r. What is the minimum possible perimeter of
such a slice if it has an area of 16 cm2?

Solution. The perimeter of a circle of radius r is its circumference 2πr, and the area of
this circle is given by πr2. The length of the circular arc subtended by the angle θ has the
same proportion of the circumference that θ has of the total angle required to go around
the entire circle, namely 2π. Thus the length of the circular arc subtended by the angle θ is

2πr · θ
2π

= θr. It follows that the perimeter of the pie slice is given by r+r+rθ = (2+θ)r.

Similarly, the area of the pie slice has the same proportion of the area of the circle that θ
has of the total angle required to go around the entire circle, namely 2π. Thus the area of

the pie slice is given by πr2 · θ
2π

=
θr2

2
.

If the pie slice has area 16 cm2, we have
θr2

2
= 16, so θr2 = 32, and hence θ =

32

r2
.

This means that we can write the perimeter of the pie slice as a function of r, P (r) =

(2 + θ)r =

(
2 +

32

r2

)
r = 2r +

32

r
. In principle, r could have any value between 0 and ∞,

so we need to find the minimum of P (r) for 0 < r <∞. Since

P ′(r) =
d

dr

(
2r +

32

r

)
= 2− 32

r2
,

we have P ′(r) = 0 ⇐⇒ 2 − 32

r2
= 0 ⇐⇒ r2 =

32

2
= 16 ⇐⇒ r = ±4. Since we are only

interested in positive perimeters, we can ignore the critical point r = −4. Note that when

0 < r < 4, r2 < 16 and
32

r2
>

32

16
= 2, so P ′(r) = 2 − 32

r2
< 0. Similarly, when r > 4,

r2 > 16 and
32

r2
<

32

16
= 2, so P ′(r) = 2 − 32

r2
> 0. It follows that P (r) is decreasing for

0 < r < 4 and increasing for r > 4. It follows that P (4) = 2 · 4 +
32

4
= 8 + 8 = 16 is the

minimum value of the perimeter function.
Thus the minimum possible perimeter of a pie slice with area of 16 cm2 is 16 cm. �

6. A small stone is dropped into a still pool, creating a circular ripple that moves outward
from the point of impact at a constant rate. How is the area enclosed by the ripple
changing after 2 s if the circumference of the ripple is changing at a rate of 2π m/s
at this instant?

Solution. Here is a crude sketch of the given situation:

11



The circumference of the circular ripple when it has radius r is c = 2πr and we are

told that
dc

dt

∣∣∣∣
t=2

= 2π m/s. On the other hand, we must have
dc

dt
=

d

dt
2πr = 2π

dr

dt
, so

dr

dt
=

1

2π
· dc
dt

, and we are told that
dr

dt
, the rate at which the circular ripple moves outward

from its centre, is constant. It follows that

dr

dt
=
dr

dt

∣∣∣∣
t=2

=
1

2π
· dc
dt

∣∣∣∣
t=2

=
1

2π
· 2π = 1 m/s.

Since the radius of the circular ripple is 0 at time t = 0 s, it then follows that r =
(2 m)(1 m/s) = 2 m at time t = 2 s.

The area enclosed by the circular ripple when it has radius r is A = πr2, so at any
given instant, with some help from the Chain Rule,

dA

dt
=

d

dt
πr2 =

(
d

dr
πr2
)
· dr
dt

= 2πr
dr

dt
.

Since
dr

dt
= 1 m/s and r = 2 m when t = 2 s, we can conclude that:

dA

dt

∣∣∣∣
t=2

= 2π(2 m)(1 m/s) = 4π m2/s �

7. Sketch the solid obtained by revolving the region between y = cos(x) and y = sin(x),

for
π

4
≤ x ≤ 5π

4
, about the y-axis and find its volume.

Solution. Here is a crude sketch of the solid.

Since we revolved the given region about the y-axis and are using cylindrical shells, we
need to integrate with respect to x. The cylindrical shell at x will have radius r = x−0 = x

and height h = sin(x) − cos(x). (Notice that for
π

4
≤ x ≤ 5π

4
, we have sin(x) ≥ cos(x)
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and that sin(x) = cos(x) at the endpoints.) It follows that its volume is:

V =

∫ 5π/4

π/4

2πrh dx = 2π

∫ 5π/4

π/4

x (sin(x)− cos(x)) dx
Use parts with u = x and
v′ = sin(x)− cos(x), so u′ = 1
and v = − cos(x)− sin(x).

= 2πx (− cos(x)− sin(x))|5π/4π/4 − 2π

∫ 5π/4

π/4

1 (− cos(x)− sin(x)) dx

= 2π
5π

4
(−1)

(
cos

(
5π

4

)
+ sin

(
5π

4

))
− 2π

π

4
(−1)

(
cos
(π

4

)
+ sin

(π
4

))
+ 2π

∫ 5π/4

π/4

(cos(x) + sin(x)) dx

= −5π2

2

(
− 1√

2
− 1√

2

)
+
π2

2

(
1√
2

+
1√
2

)
+ 2π (sin(x)− cos(x))|5π/4π/4

=
6π2

2
· 2√

2
+ 2π

(
cos

(
5π

4

)
− sin

(
5π

4

))
− 2π

(
cos
(π

4

)
− sin

(π
4

))
=

6π2

√
2

+ 2π0− 2π0 = 3
√

2π2 �

8. Suppose we start with a unit square. In step 1 we divide it into
3× 3 = 9 subsquares and then remove the middle one. In step
2 we divide each of the eight remaining subsquares into 3× 3 =
9 smaller subsquares and remove the middle one in each case.
(The picture at right is what you have after step 2.) At each
step n ≥ 3, we subdivide the remaining subsquares into 3× 3
= 9 even smaller subsquares and remove the middle one in each
case. What is the area of the object remaining after infinitely
many steps?

Solution. In the beginning, let’s call it step 0, we have a unit square, which has area 1.

In step 1 we remove
1

9
of this square, leaving us with an area of

8

9
. In step 2, we remove

1

9

of each of the remaining subsquares, leaving us with
8

9
of the area of 8

9 we were left with

from the step before. Thus we have an area of

(
8

9

)2

remaining after step 2. In general,

given that we have an area of

(
8

9

)n
remaining after step n, we remove

1

9
of that area in

step n+ 1, leaving us with an area of

(
8

9

)n(
8

9

)
=

(
8

9

)n+1

.

The area A of the shape remaining after infinitely many steps is the limit as n→∞

of the area of the shape after n steps. Since
8

9
< 1, we have that A = lim

n→∞

(
8

9

)n
= 0.
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How can we be sure the limit is correct? Suppose we are given an ε > 0; we may
assume that ε < 1 as well. (Why?) Then:∣∣∣∣(8

9

)n
− 0

∣∣∣∣ < ε⇐⇒
(

8

9

)n
< ε⇐⇒ nln

(
8

9

)
= ln

((
8

9

)n)
< ln(ε)⇐⇒ n >

ln(ε)

ln
(
8
9

)
Note that since

8

9
< 1 and ε < 1, both ln

(
8

9

)
and ln(ε) are negative. Multiplying by the

negative quantity ln

(
8

9

)
at the last step above reversed the inequality; also, since it is

a quotient of negative numbers, the quantity
ln(ε)

ln
(
8
9

) is positive. In any case, since every

step is reversible, if we let N be any integer larger than
ln(ε)

ln
(
8
9

) , then whenever n ≥ N , we

will have

∣∣∣∣(8

9

)n
− 0

∣∣∣∣ < ε. Thus by the ε–N definition of limits at infinity, it follows that

lim
n→∞

(
8

9

)n
= 0. �

[Total = 100]

Part C. Bonus problems! If you feel like it, do one or both of these.

9. Recall that an integer greater than 1 is a prime number if it is not the product of two
smaller positive integers. Determine whether or not the polynomial p(x) = x2 +x+41
always gives you prime numbers when x ≥ 0 is an integer. [1]

Solution. Amazingly, p(n) is a prime number for each integer n from 0 through 40.
However, p(41) = 412 + 41 + 41 = 41(41 + 1 + 1) = 41 · 43 is not a prime number, so the
polynomial does not always output prime numbers for non-negative integer inputs. �

10. Write an original poem touching on calculus or mathematics in general. [1]

Solution. You’re on your own on this one! :-) �

I hope that you enjoyed the course. Have a good break!
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