
Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals
Trent University, Fall 2020

Quiz #3
Tuesday, 6 October .

Do both of the following problems:

1. A curve is defined by the equation x = arctan(1− y) +
√
y(2− y). Find the slope of

the tangent line to this curve at the point (1, 1). [2.5]

Solution. One could try to solve for y in terms of x and then differentiate, but good luck
with that . . . That leaves implicit differentiation as the only reasonable option to find dy

dx .
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It follows that the slope of the tangent line at the point (x, y) = (1, 1) on the curve is:
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2. Compute lim
x→−∞

x3ex. [2.5]

Solution. Note that as x→ −∞, x3 → −∞ too, but ex → 0. We will rewrite the given

limit so that we can apply l’Hôpital’s Rule using the fact that e−x =
1

ex
→∞ if e−x → 0.
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(Recall that et > 0 for all t.) We will use the fact that d
dte
−t = e−t · d

dt (−t) = −e−t several
times over.
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