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Trent University

MATH 1101Y Test #2
Tuesday, 29 Wednesday, 30 January, 2013

Time: 50 minutes

Name:

Student Number:

?

1
2
3
4

Total /40

Instructions
• Show all your work. Legibly, please!
• If you have a question, ask it!
• Use the back sides of the test sheets for rough work or extra space.
• You may use a calculator and an aid sheet.
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1. Do any three (3) of a–f. [12 = 3 × 4 each]

a.
∫

1√
4− x2

dx b.
∫ 1

−1

(y + 1)2 dy c.
∫

sec2(w)
√

tan(w) dw

d.
∫ 1

0

tet dt e.
∫

cos3(x) dx f.
∫ 1

0

4
1 + x2

dx

a. We will use the trig substitution x = 2 sin(θ), so dx = 2 cos(θ) dθ and θ = arcsin
(
x
2

)
.∫

1√
4− x2

dx =
∫

1√
4− 22 sin2(θ)

2 cos(θ) dθ =
∫

2 cos(θ)√
4
(
1− sin2(θ)

) dθ
=
∫

2 cos(θ)√
4 cos2(θ)

dθ =
∫

2 cos(θ)
2 cos(θ)

dθ

=
∫

1 θ = θ + C = arcsin
(x

2

)
+ C �

b. One could just expand the square and integrate away, but we’ll do it using the substi-

tution u = y + 1, so du = dy and y −1 1
u 0 2 . Easier arithmetic this way . . .

∫ 1

−1

(y + 1)2 dy =
∫ 2

0

u2 du =
u3

3

∣∣∣∣2
0

=
8
3
− 0

3
=

8
3

�

c. We’ll use the substitution s = tan(w), so ds = sec2(w) dw.∫
sec2(w)

√
tan(w) dw =

∫ √
s ds =

∫
s1/2 ds =

s3/2

3/2
+ C

=
2
3
s3/2 + C =

2
3

tan3/2(w) + C �

d. We will ise integration by parts, with u = t and v′ = et, so u′ = 1 and v = et.∫ 1

0

tet dt =
∫ 1

0

uv′ dt = uv|10 −
∫ 1

0

u′v dt = tet
∣∣1
0
−
∫ 1

0

1et dt

=
(
1e1 − 0e0

)
− et

∣∣1
0

= e−
(
e1 − e0

)
= e− e+ 1 = 1 �

e. This can be done with the help of the reduction formula for
∫

cosk(x) dx or by using
integration by parts, but the cheapest way is probably to use the trigonometric identity
cos2(x) = 1− sin2(x) and the substitution u = sin(x), so du = cos(x) dx.∫

cos3(x) dx =
∫

cos2(x) cos(x) dx =
∫ (

1− sin2(x)
)

cos(x) dx

=
∫ (

1− u2
)
du = u− u3

3
+ C = sin(x)− 1

3
sin3(x) + C �



f. We’ll use the fact that
d

dx
arctan(x) =

1
1 + x2

in reverse.

∫ 1

0

4
1 + x2

dx = 4 arctan(x)|10 = 4 arctan(1)− 4 arctan(0) = 4 · π
4
− 4 · 0 = π �
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2. Do any two (2) of a–c. [10 = 2 × 5 each]

a. Sketch the region whose area is computed by the integral
∫ 4

2

(x
2
− 1
)
dx. Without

evaluating the integral, what is its area?

b. Sketch the solid obtained by revolving the region below y = 2 and above y = 1, for
0 ≤ x ≤ 1, about the x-axis, and find its volume.

c. Compute
∫ 41π

−41π

arctan(θ) dθ.

a. Here’s a sketch of the region:

Note that the line y = x
2 − 1 has x-intercept x = 2 and has y = 1 at x = 4, so it is

above the x-axis for 2 < x ≤ 4.
∫ 4

2

(x
2
− 1
)
dx represents the area beneath this line and

above the x-axis for 2 ≤ x ≤ 4, but this region is just a triangle with base 2 and height 1.
Thus ∫ 4

2

(x
2
− 1
)
dx =

1
2
· 2 · 1 = 1 . �

b. Here’s a sketch of the solid:

The volume is pretty easy to compute using either the washer or the shell method,
but it’s even faster if you remember that the volume of a cylinder of radius r and height
h is πr2h, and notice that this solid is a cylinder of radius 2 and height 1 with a cylinder
of radius 1 and height 1 removed from it. It follows that the volume of the solid is
V = π22 · 1− π12 · 1 = 4π − π = 3π. �



c. arctan(θ) is an odd function, that is, arctan(−θ) = − arctan(θ). It follows that∫ 0

−41π

arctan(θ) dθ = −
∫ 41π

0

arctan(θ) dθ ,

so ∫ 41π

−41π

arctan(θ) dθ =
∫ 0

−41π

arctan(θ) dθ +
∫ 41π

0

arctan(θ) dθ = 0 . �
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3. Do one (1) of a or b. [8]

a. Sketch the region between the curves y = x3 − x and y = sin(πx), where −1 ≤ x ≤ 1,
and find its area.

b. Sketch the solid obtained by revolving the region between y =
1
x

and y = 1, where
1 ≤ x ≤ 3, about the line x = −1, and find its volume.

a. Cheating slightly, I used Maple to plot the curves:
> plot([[t,t^3-t,t=-1..1],[t,sin(Pi*t),t=-1..1]])

It’s pretty clear from the plot that the curves intersect at x = −1, x = 0, and x = 1;
for −1 < x < 0, y = x3 − x is above y = sin(πx), and for 0 < x < 1, y = sin(πx) is above
y = x3 − x. (You will find all this out pretty quickly if you try to graph the curves by
hand – it’s not an accident the two curves intersect at their x-intercepts . . . :-) It follows
that the area of the region is:

A =
∫ 0

−1

[(
x3 − x

)
− sin(πx)

]
dx+

∫ 1

0

[
sin(πx)−

(
x3 − x

)]
dx

=
∫ 0

−1

(
x3 − x

)
dx−

∫ 0

−1

sin(πx) dx+
∫ 1

0

sin(πx) dx−
∫ 1

0

(
x3 − x

)
dx

We’ll substitute u = πx, so du = π dx and
1
π
du = dx, in the middle integrals.

=
(
x4

4
− x2

2

)∣∣∣∣0
−1

−
∫ 0

−π
sin(u)

1
π
du+

∫ π

0

sin(u)
1
π
du−

(
x4

4
− x2

2

)∣∣∣∣1
0

= 0−
(
−1

4

)
− 1
π

(− cos(u))
∣∣∣∣0
−π

+
1
π

(− cos(u))
∣∣∣∣π
0

−
(
−1

4

)
+ 0

=
1
4

+
1
π

(cos(0)− cos(−π))− 1
π

(cos(π)− cos(0)) +
1
4

=
1
2

+
1
π

(1− (−1))− 1
π

((−1)− 1) =
1
2

+
4
π

�



b. Here’s a sketch of the solid obtained if one revolves the region about the line x = −1:

The volume of this solid is pretty easy to compute using either the washer or the
cylindrical shell method. We’ll use washers:

Since we revolved about a horizontal line and intend to use washers, we will use x as
the basic variable. Observe that the washer at x has outer radius R = 1 − (−1) = 2 and
inner radius r = 1

x − (−1) = 1
x + 1, so its area is

A(x) = πR2−πr2 = π

(
22 −

(
1
x

+ 1
)2
)

= π

(
4−

(
1
x2
− 2
x

+ 1
))

= π

(
3 +

2
x
− 1
x2

)
.

The volume of the solid is therefore

V =
∫ 3

1

A(x) dx =
∫ 3

1

π

(
3 +

2
x
− 1
x2

)
dx = π

∫ 3

1

(
3 + 2x−1 − x−2

)
dx

= π

(
3x+ 2ln(x)− x−1

−1

)∣∣∣∣3
1

= π

(
3x+ 2ln(x) +

1
x

)∣∣∣∣3
1

= π

(
3 · 3 + 2ln(3) +

1
3

)
− π

(
3 · 1 + 2ln(1) +

1
1

)
= π

(
9 + 2ln(3) +

1
3

)
− π (4 + 2 · 0)

= π

(
5 +

1
3

+ 2ln(3)
)

= π

(
16
3

+ 2ln(3)
)

�
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4. Do one (1) of a or b. [10]

a. Find the domain and any and all intercepts, horizontal and vertical asymptotes, local
maxima and minima, and inflection points of f(x) = e−x

2
, and sketch its graph.

b. Max moves at 1 km/hr along the positive x-axis towards the origin while aiming a
laser pointer at the (0, 2) on the y-axis. How is the (smaller!) angle between the laser
beam and the the x-axis changing at the instant that Max is at the point (1, 0) on the
x-axis? (All distances along the axes are in kilometres. You may assume Max and
the laser pointer occupy a single point at any given instant . . . :-)

a. We run through the usual checklist:
i. Domain. f(x) = e−x

2
makes sense for all x, so the domain is the entire real line. Note

that since f(x) is a composition of functions which are everywhere continuous, it is also
continuous everywhere. �

ii. Intercepts. f(0) = e−02
= e0 = 1 so f(x) = e−x

2
has y-intercept 1. On the other hand,

et > 0 for every t ∈ R, so f(x) = e−x
2
> 0 for all x, and so there are no x-intercepts. �

iii. Vertical asymptotes. Since f(x) = e−x
2

is defined and continuous for all x, it has no
vertical asymptotes. �

iv. Horizontal asymptotes. We compute the limits in both directions:

lim
x→−∞

e−x
2

= 0 since −x2 → −∞ as x→ −∞ and et → 0 as t→ −∞, and

lim
x→+∞

e−x
2

= 0 since −x2 → −∞ as x→ +∞ and et → 0 as t→ −∞.

Thus f(x) = e−x
2

has the horizontal asymptote y = 0 in both directions. �

v. Maxima, minima, etc. First, f ′(x) = d
dxe
−x2

= e−x
2 d
dx

(
−x2

)
= −2xe−x

2
. Since, as

observed in ii above, e−x
2
> 0 for all x, f ′(x) = −2xe−x

2
= 0 exactly when x = 0. Note

that it also follows that if x < 0, f ′(x) > 0, and that if x > 0, f ′(x) < 0. The usual table
then amounts to:

x (−∞, 0) 0 (0,∞)
f ′(x) + 0 −
f(x) ↑ max ↓

Thus f(x) has a local maximum (of f(0) = 1) at x = 0 and has no local minimum. (A
little reflection about the table above should convince you that this local maximum is also
an absolute maximum of f(x).) �

vi. Curvature and inflection points. First,

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
−2xe−x

2
)

= −2
(
d

dx
x

)
e−x

2
+ (−2x)

(
d

dx
e−x

2
)

= −2e−x
2

+ (−2x)
(
−2xe−x

2
)

=
(
4x2 − 2

)
e−x

2
.

Since, as observed in ii above, e−x
2
> 0 for all x, f ′′(x) =

(
4x2 − 2

)
e−x

2
= 0 exactly

when 4x2 − 2 = 0, i.e. when x = ± 1√
2
. Note that it also follows that if x2 < 1

2 , i.e.



− 1√
2
< x < 1√

2
, then f ′′(x) < 0, and that if x2 > 1

2 , i.e.
∣∣∣ 1√

2

∣∣∣ > 0, then f ′′(x) > 0. The
usual table then amounts to:

x
(
−∞,− 1√

2

)
− 1√

2

(
− 1√

2
, 1√

2

)
1√
2

(
1√
2
,∞
)

f ′′(x) + 0 − 0 +
f(x) ^ inflection _ inflection ^

point point

Thus f(x) = e−x
2

has two inflection points, at x = − 1√
2

and x = 1√
2
. It is concave down

between them and concave up to either side. �

vii. The graph. Cheating slightly, here is what Maple gives:
> plot(exp(-x^2),x=-5..5,y=-0.5..1.5)

�

All done! �

b. A crude sketch of the set-up is on the right.

If x is Max’s position on the x-axis at some instant, then
dx

dt
= −1 km/hr because Max is moving towards the origin from

the right. The corresponding θ satisfies tan(θ) =
opposite
adjacent

=
2
x

,

so θ = arctan
(

2
x

)
. It follows that at every instant

dθ

dt
=

d

dt
arctan

(
2
x

)
=
[
d

dx
arctan

(
2
x

)]
· dx
dt

=

[
1

1 +
(

2
x

)2 · ddx
(

2
x

)]
· (−1)

= −
[

1
1 + 4

x2

·
(
− 2
x2

)]
=

2
x2 + 4

.

Thus, when x = 1,
dθ

dt
=

2
12 + 4

=
2
5

= 0.4 rad/hr, that is, the angle between the laser

beam and the the x-axis is increasing at the rate of 0.4 radians per hour at the instant
that Max is at (0, 1) on the x-axis. [Why radians per hour?] �

[Total = 40]


