
Mathematics 1101Y – Calculus I: functions and calculus of one variable
Trent University, 2010–2011

Solutions to the Quizzes

Quiz #1. Friday, 24 Monday, 27 September, 2010. (10 minutes)

1. Find the location of the tip of the parabola y = 2x2 + 2x − 12, as well as its x- and
y-intercepts. [5]

Solution. Note that since x2 has a positive coefficient, this parabola opens upwards.
To find the location of the tip of the parabola, we complete the square in the quadratic

expression defining the parabola:

y = 2x2 + 2x− 12

= 2
(
x2 + x

)
− 12

= 2

[
x2 + 2

1

2
x+

(
1

2

)2

−
(

1

2

)2
]
− 12

= 2

[
x2 + 2

1

2
x+

(
1

2

)2
]
− 2

(
1

2

)2

− 12

= 2

(
x+

1

2

)2

− 1

2
− 12

= 2

(
x+

1

2

)2

− 25

2

It follows that the tip of the parabola occurs when x+ 1
2 = 0, i.e. when x = − 1

2 , at which
point y = − 25

2 . Thus thus the tip of the parabola is at the point
(
− 1

2 ,−
25
2

)
.

To find the y-intercept of the parabola, we simply plug x = 0 into the quadratic
expression defining the parabola:

y = 2 · 02 + 2 · 0− 12 = 0 + 0− 12 = 12

Thus the y-intercept of the parabola is the point (0,−12).
To find the x-intercept(s) of the parabola, we apply the quadratic formula to find the

roots of the quadratic expression defining the parabola: 2x2 + 2x− 12 = 0 exactly when

x =
−2±

√
22 − 4 · 2 · (−12)

2 · 2
=
−2±

√
4− (−96)

4

=
−2±

√
100

4
=
−2± 10

4
=
−1± 5

2
,

i.e. exactly when x = 4
2 = 2 or x = − 6

2 = −3. It follows that the parabola has its
x-intercepts at x = 2 and x = −3, i.e. at the points (−3, 0) and (2, 0). �
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Quiz #2. Friday, 1 October, 2010. (6 minutes)

1. Solve the equation e2x − 2ex + 1 = 0 for x.

Hint: Solve for ex first . . .

Solution. Recall that e2x = (ex)
2
, so we can rewrite the given equation as (ex)

2−2ex+1 =
0. Following the hint, we solve for ex using the quadratic equation:

ex =
−(−2)±

√
(−2)2 − 4 · 1 · 1
2 · 1

=
2±
√

4− 4

2
=

2± 0

2
= 1

Thus x = ln (ex) = ln(1) = 0. �

Quiz #3. Friday, 8 October, 2010. (10 minutes)

1. Evaluate the limit lim
x→1

x2 + x− 2

x− 1
, if it exists. [5]

Solution. We factor the numerator and simplify:

lim
x→1

x2 + x− 2

x− 1
= lim
x→1

(x− 1)(x+ 2)

x− 1
= lim
x→1

(x+ 2) = 1 + 2 = 3

In case of problems factoring this by sight, one could always apply the quadratic
formula. The roots of x2 + x− 2 are:

−1±
√

12 − 4 · 1 · (−2)

2 · 1
=
−1±

√
9

2
=
−1± 3

2
= +1 or −2

It follows that x2 + x− 2 = (x− 1) (x− (−2)) = (x− 1)(x+ 2). �

Quiz #4. Friday, 15 October, 2010. (10 minutes)

1. Use the limit definition of the derivative to compute f ′(2) if f(x) = x2 + 3x+ 1. [5]

Solution. Here goes!

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

[
(2 + h)2 + 3(2 + h) + 1

]
−
[
22 + 3 · 2 + 1

]
h

= lim
h→0

[
4 + 4h+ h2 + 6 + 3h+ 1

]
− [4 + 6 + 1]

h

= lim
h→0

h2 + 7h

h

= lim
h→0

(h+ 7) = 0 + 7 = 7 �
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Quiz #5. Friday, 22 October Monday, 1 November, 2010. (10 minutes)

1. Find f ′(x) if f(x) = x2+2x
x2+2x+1 . Simplify your answer as much as you reasonably can.

[5]

Solution. The Quotient Rule followed by algebra:

f ′(x) =
d
dx

(
x2 + 2x

)
·
(
x2 + 2x+ 1

)
−
(
x2 + 2x

)
· ddx

(
x2 + 2x+ 1

)
(x2 + 2x+ 1)

2

=
(2x+ 2)

(
x2 + 2x+ 1

)
−
(
x2 + 2x

)
(2x+ 2)

(x2 + 2x+ 1)
2

=
2(x+ 1)(x+ 1)2 −

(
x2 + 2x

)
2(x+ 1)

((x+ 1)2)
2

=
2(x+ 1)3 −

(
x2 + 2x

)
2(x+ 1)

(x+ 1)4

=
2(x+ 1)2 − 2

(
x2 + 2x

)
(x+ 1)3

=
2
(
x2 + 2x+ 1

)
− 2

(
x2 + 2x

)
(x+ 1)3

=
2

(x+ 1)3
�

Quiz #6. Friday, 5 November, 2010. (10 minutes)

1. Find
dy

dx
if y =

√
x+ arctan(x). [5]

Solution. This is a job for the Chain Rule. Note first that, using the Power Rule,
d
dt

√
t = d

dt t
1/2 = 1

2 t
−1/2 = 1

2
√
t
. Letting t = x + arctan(x) and applying the Chain Rule

gives:

dy

dx
=
dy

dt
· dt
dx

=

(
d

dt

√
t

)
· dt
dx

=
1

2
√
t
· dt
dx

=
1

2
√
x+ arctan(x)

· d
dx

(x+ arctan(x))

=
1

2
√
x+ arctan(x)

·
(
dx

dx
+

d

dx
arctan(x)

)
=

1

2
√
x+ arctan(x)

·
(

1 +
1

1 + x2

)
There’s not much one can to do to meaningfully simplify this. A little algebra could give

you something like dy
dx = 2+x2

2(1+x2)
√
x+arctan(x)

, but it’s not clear that’s an improvement. �
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Quiz #7. Friday, 12 November, 2010. (10 minutes)

1. Find the maximum and minimum of f(x) =
x

1 + x2
on the interval [−2, 2]. [5]

Solution. We compute f ′(x) using the Quotient Rule:

f ′(x) =

(
d
dxx
) (

1 + x2
)
− x d

dx

(
1 + x2

)
(1 + x2)

2 =
1
(
1 + x2

)
− x · 2x

(1 + x2)
2 =

1− x2

(1 + x2)
2

Note that the denominator of f ′(x) is never 0 because 1 + x2 ≥ 1 for all x, so f ′(x) is

defined for all x in the interval [−2, 2]. f ′(x) =
1− x2

(1 + x2)
2 = 0 exactly when 1− x2 = 0. It

follows that the critical points of f(x) are x = ±1, both of which in the interval [−2, 2].
We compare the values of f(x) at the critical points and the endpoints of the interval:

x f(x) =
x

1 + x2

−2
−2

1 + (−2)2
= −2

5

−1
−1

1 + (−1)2
= −1

2

1
1

1 + 12
=

1

2

2
2

1 + 22
=

2

5

Since −1

2
< −2

5
<

2

5
<

1

2
, it follows that the maximum of f(x) =

x

1 + x2
on the interval

[−2, 2] is f(1) =
1

2
and the minimum is f(−1) = −1

2
. �

Quiz #8. Friday, 26 November, 2010. (10 minutes)

1. Find an antiderivative of f(x) = 4x3 − 3 cos(x) +
1

x
. [5]

Solution. This is mainly an exercise in memorizing basic rules about antiderivatives
and the antiderivatives of standard functions. Using the indefinite integral notation for
antiderivatives we get:∫ (

4x3 − 3 cos(x) +
1

x

)
dx = 4

∫
x3 dx− 3

∫
cos(x) dx+

∫
1

x
dx

= 4 · x
3+1

3 + 1
− 3 sin(x) + ln(x) + C

= x4 − 3 sin(x) + ln(x) + C

Since we just asked for an antiderivative, any value of C – including 0 – is fine here. �
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Quiz #9. Friday, 3 December, 2010. (10 minutes)

1. Compute the definite integral

∫ 1

0

(2x+ 1) dx using the Right-hand Rule. [5]

Hint: You may assume that
n∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Solution. Recall that the Right-hand Rule formula is:∫ b

a

f(x) dx = lim
n→∞

∞∑
k=1

b− a
n

f

(
a+ k

b− a
n

)

We plug a = 0, b = 1, and f(x) = 2x+ 1 into this formula and grind away:∫ 1

0

(2x+ 1) dx = lim
n→∞

∞∑
k=1

1− 0

n
f

(
0 + k

1− 0

n

)
= lim
n→∞

∞∑
k=1

1

n
f

(
k

n

)

= lim
n→∞

1

n

∞∑
k=1

f

(
k

n

)
= lim
n→∞

1

n

∞∑
k=1

(
2
k

n
+ 1

)

= lim
n→∞

1

n

[( ∞∑
k=1

2k

n

)
+

( ∞∑
k=1

1

)]

= lim
n→∞

1

n

[(
2

n

∞∑
k=1

k

)
+

( ∞∑
k=1

1

)]

= lim
n→∞

1

n

[
2

n
· n(n+ 1)

2
+ n

]
= lim
n→∞

1

n
[(n+ 1) + n]

= lim
n→∞

1

n
[2n+ 1] = lim

n→∞

[
2n

n
+

1

n

]
= lim
n→∞

[
2 +

1

n

]
= 2 + 0 = 2 �
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Quiz #10. Friday, 10 December, 2010. (10 minutes)

1. Find the area between the graphs of f(x) = sin(x) and g(x) =
2x

π
for 0 ≤ x ≤ π

2
. [5]

Solution. Note that f(0) = 0 = g(0) and f
(
π
2

)
= g

(
π
2

)
= 1. Between these points

f(x) ≥ g(x) – sketch the graphs to convince yourself, if necessary – so the area between
them is: ∫ π/2

0

(f(x)− g(x)) dx =

∫ π/2

0

(
sin(x)− 2x

π

)
dx

=

(
− cos(x)− 2

π
· x

2

2

)∣∣∣∣π/2
0

=

(
− cos(π/2)− (π/2)2

π

)
−
(
− cos(0)− 02

π

)
=
(
−0− π

4

)
− (−1− 0)

= −π
4

+ 1 = 1− π

4

Quick sanity check: π < 4, so π
4 < 1, so 1− π

4 is positive, as an area should be. �

Quiz #11. Friday, 14 January, 2011. (10 minutes)

1. Compute

∫ π/2

0

cos3(x) dx. [5]

Solution. This can be done pretty quickly using the appropriate reduction formula
or integration by parts, but it’s also easy to do by a combination of the trig identity
cos2(x) = 1− sin2(x) and substitution:∫ π/2

0

cos3(x) dx =

∫ π/2

0

cos2(x) cos(x) dx

=

∫ π/2

0

(
1− sin2(x)

)
cos(x) dx

Substitute u = sin(x), so du = cos(x) dx, and

change the limits:
x 0 π/2
u 0 1

.

=

∫ 1

0

(
1− u2

)
du

=

(
u− u3

3

)∣∣∣∣1
0

=

(
1− 13

3

)
−
(

0− 03

3

)
=

2

3
− 0 =

2

3
�
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Quiz #12. Friday, 21 January, 2011. (10 minutes)

1. Compute

∫
tan3(x) sec(x) dx. [5]

Solution. There are other ways to pull this off, but the following use of the identity
tan2(x) = sec2(x)− 1 and substitution is pretty quick:∫

tan3(x) sec(x) dx =

∫
tan2(x) tan(x) sec(x) dx

=

∫ (
sec2(x)− 1

)
sec(x) tan(x) dx

Substitute u = sec(x), so du = sec(x) tan(x) dx.

=

∫ (
u2 − 1

)
dx

=
1

3
u3 − u+ C

=
1

3
sec3(x)− sec(x) + C �

Quiz #13. Friday, 28 January, 2011. (10 minutes)

1. Compute

∫
1√

4 + x2
dx. [5]

Solution. We’ll use the trigonometric substitution x = 2 tan(θ), so dx = 2 sec2(θ) dθ,

and also tan(θ) = x
2 and sec(θ) =

√
sec2(θ) =

√
1 + tan2(θ) =

√
1 + x2

4 . (We’ll need these

last when substituting back.)∫
1√

4 + x2
dx =

∫
1√

4 + (2 tan(θ))
2

2 sec2(θ) dθ

=

∫
2 sec2(θ)√

4 + 4 tan2(θ)
dθ =

∫
2 sec2(θ)√

4
(
1 + tan2(θ)

) dθ
=

2√
4

∫
sec2(θ)√

1 + tan2(θ)
dθ =

2

2

∫
sec2(θ)√
sec2(θ)

dθ

=

∫
sec2(θ)

sec(θ)
dθ =

∫
sec(θ) dθ

= ln (sec(θ) + tan(θ)) + C

= ln

(√
1 +

x2

4
+
x

2

)
+ C �
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Quiz #14. Friday, 4 February, 2011. (15 minutes)

1. Compute

∫
4x2 + 3x

(x+ 2) (x2 + 1)
dx. [5]

Solution. This is a job for partial fractions. Note that the denominator of the integrand,
(x + 2)

(
x2 + 1

)
, come pre-factored into linear factor and irreducible quadratic factors.

(x2 + 1 doesn’t factor any further because it has no roots, since x2 + 1 ≥ 1 > 0 for all x.)
It follows that

4x2 + 3x

(x+ 2) (x2 + 1)
=

A

x+ 2
+
Bx+ C

x2 + 1

for some constants A, B, and C. To determine these constants we put the right-hand side
of the above equation over the common denominator

A

x+ 2
+
Bx+ C

x2 + 1
=
A
(
x2 + 1

)
+ (Bx+ C)(x+ 2)

(x+ 2) (x2 + 1)

=
Ax2 +A+Bx2 + 2Bx+ Cx+ 2C

(x+ 2) (x2 + 1)

=
(A+B)x2 + (2B + C)x+ (A+ 2C)

(x+ 2) (x2 + 1)
,

and then equate numerators

4x2 + 3x = (A+B)x2 + (2B + C)x+ (A+ 2C)

to obtain a set of three linear equations in A, B, and C:

A + B = 4
2B + C = 3

A + 2C = 0

These equations can be solved in a variety of ways; we will do so using substitution.
Solving the third equation for A gives A = −2C. Substituting this into the first equation
gives B − 2C = 4; solving this for B now gives B = 4 + 2C. Substituting the last into the
second equation now gives 2(4 + 2C) + C = 3, i.e. 8 + 5C = 3, so 5C = 3 − 8 = −5, so
C = −5/5 = −1. It follows that B = 4+2C = 4+2(−1) = 2 and A = −2C = −2(−1) = 2.

Thus ∫
4x2 + 3x

(x+ 2) (x2 + 1)
dx =

∫ (
2

x+ 2
+

2x− 1

x2 + 1

)
dx

=

∫
2

x+ 2
dx+

∫
2x− 1

x2 + 1
dx

=

∫
2

x+ 2
dx+

∫
2x

x2 + 1
dx−

∫
1

x2 + 1
dx

8



We handle the three parts separately. In the first, we use the substitution u = x + 2, so
du = dx. In the second, we use the substitution w = x2 + 1, so dw = 2x dx. In the third,

we recollect that
1

x2 + 1
is the derivative of arctan(x). Now

∫
4x2 + 3x

(x+ 2) (x2 + 1)
dx =

∫
2

x+ 2
dx+

∫
2x

x2 + 1
dx−

∫
1

x2 + 1
dx

= 2

∫
1

u
du+

∫
1

w
dw + arctan(x)

= 2ln(u) + ln(w) + arctan(x) + C

Since the last integral sign has disappeared, the generic

constant must now show up. Substituting back gives:

= 2ln(x+ 2) + ln
(
x2 + 1

)
+ arctan(x) + C

Whew! �

Quiz #15. Friday, 18 February, 2011. (15 minutes)

1. Sketch the surface obtained by revolving the curve y = ln(x), 1 ≤ x ≤ e, about the
y-axis, and find its area. [5]

Hint: You may find it convenient to just use the fact that∫
sec3(θ) dθ =

1

2
tan(θ) sec(θ) +

1

2
ln (tan(θ) + sec(θ)) + C ,

instead of having to work it out from scratch.

Solution. Here’s a sketch of the surface, albeit I cheated a little by starting with a graph
of y = ln(x) drawn by a computer.

-3 -2 -1 0 1 2 3 4 5 6

-2

-1

1

2

3

4

Note that we only want the part that come from revolving the part of y = ln(x) for
1 ≤ x ≤ e.
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To find the area of this surface, we use the usual formula for the area of a surface of
revolution obtained by revolving a curve about the y-axis:∫ e

1

2πx

√
1 +

(
dy

dx

)2

dx = 2π

∫ e

1

x

√
1 +

(
d

dx
ln(x)

)2

dx = 2π

∫ e

1

x

√
1 +

(
1

x

)2

dx

= 2π

∫ e

1

x

√
1 +

1

x2
dx = 2π

∫ e

1

√
x2
(

1 +
1

x2

)
dx

= 2π

∫ e

1

√
x2 + 1 dx

Substitute x = tan(θ), so dx = sec2(θ) dθ,

keep the old limits and substitute back.

= 2π

∫ x=e

x=1

√
tan2(θ) + 1 sec2(θ) dθ

= 2π

∫ x=e

x=1

√
sec2(θ) sec2(θ) dθ = 2π

∫ x=e

x=1

sec3(θ) dθ

Use the hint! Note that sec(θ) =
√

tan2(θ) + 1 =
√
x2 + 1.

= 2π

[
1

2
tan(θ) sec(θ) +

1

2
ln (tan(θ) + sec(θ))

]∣∣∣∣x=e
x=1

= π
[
x
√
x2 + 1 + ln

(
x+

√
x2 + 1

)]∣∣∣x=e
x=1

= π
[
e
√
e2 + 1 + ln

(
e+

√
e2 + 1

)
−
√

2− ln
(

1 +
√

2
)]

This doesn’t seem to simplify nicely . . . �

Quiz #15. Some time or other, 2011. (15 minutes)

1. Find the area of the surface obtained by revolving the curve y =
√

1− x2, where
0 ≤ x ≤ 1, about the y-axis. [5]

Solution. In this case

dy

dx
=

d

dx

√
1− x2 =

1

2
√

1− x2
· d
dx

(
1− x2

)
=

1

2
√

1− x2
· (−2x) =

−x√
1− x2

.

We plug this into the surface area formula

∫ b

a

2πx

√
1 +

(
dy

dx

)2

dx, giving:

Area =

∫ 1

0

2πx

√
1 +

(
−x√

1− x2

)2

dx =

∫ 1

0

2πx

√
1 +

x2

1− x2
dx

=

∫ 1

0

2πx

√
1− x2
1− x2

+
x2

1− x2
dx =

∫ 1

0

2πx

√
1− x2 + x2

1− x2
dx

=

∫ 1

0

2πx

√
1

1− x2
dx =

∫ 1

0

2πx
1√

1− x2
dx
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We will compute the last integral using the substitution u = 1− x2, so du = −2x dx and

(−1) du = 2x dx, changing the limits as we go along:
x 0 1
u 1 0

. Then:

Area =

∫ 1

0

2πx
1√

1− x2
dx =

∫ 0

1

π
1√
u

(−1) du = π

∫ 1

0

u1/2 du

= π
u3/2

3/2

∣∣∣∣1
0

= π
2

3
u3/2

∣∣∣∣1
0

= π
2

3
13/2 − π 2

3
03/2 =

2

3
π �

Quiz #16. Some time or other, 2011. (12 minutes)

1. Sketch the region bounded by r = tan(θ), θ = 0, and θ =
π

4
in polar coordinates and

find its area. [5]

Solution. Note that when θ = 0, r = tan(0) = 0, and when θ =
π

4
, r = tan(π/4) =

sin(π/4)

cos(π/4)
=

1/
√

2

1/
√

2
= 1. In between, sin(θ) is increasing and cos(θ) is decreasing as θ is

increasing, so r = tan(θ) =
sin(θ)

cos(θ)
is increasing. The region therefore looks something like

this:

To find its area, we need to plug r = tan(θ) into the polar area formula for 0 ≤ θ ≤ π

4
and integrate away:

Area =

∫ β

α

1

2
r2 dθ =

∫ π/4

0

1

2
tan2(θ) dθ =

1

2

∫ π/4

0

(
sec2(θ)− 1

)
dθ =

1

2
(tan(θ)− θ)

∣∣∣∣π/4
0

=
1

2

(
tan

(π
4

)
− π

4

)
− 1

2
(tan (0)− 0) =

1

2

(
1− π

4

)
− 1

2
0 =

1

2
− π

8
�
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Quiz #17. Friday, 11 March, 2011. (12 minutes)

1. Find the arc-length of the parametric curve x = sec(t), y = ln (sec(t) + tan(t)), where
0 ≤ t ≤ π

4 .

Solution. We’re going to need to know dx
dt and dy

dt , so we’ll compute them first:

dx

dt
=

d

dt
sec(t) = sec(t) tan(t)

dy

dt
=

d

dt
ln (sec(t) + tan(t))

=
1

sec(t) + tan(t)
· d
dt

(sec(t) + tan(t))

=
1

sec(t) + tan(t)
·
(
sec(t) tan(t) + sec2(t)

)
=

1

sec(t) + tan(t)
· sec(t) (tan(t) + sec(t)) = sec(t)

We can now compute the arc-length of the given curve:

arc-length =

∫
C

ds =

∫ π/4

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ π/4

0

√
(sec(t) tan(t))

2
+ (sec(t))

2
dt

=

∫ π/4

0

√
sec2(t)

[
tan2(t) + 1

]
dt =

∫ π/4

0

√
sec2(t) sec2(t) dt

=

∫ π/4

0

√
(sec2(t))

2
dt =

∫ π/4

0

sec2(t) dt = tan(t)|π/40

= tan
(π

4

)
− tan(0) = 1− 0 = 1 �
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Quiz #18. Friday, 18 March, 2011. (10 minutes)

1. Compute lim
n→∞

n2

en
. [5]

Solution. Observe that f(x) =
x2

ex
is defined and differentiable (and hence continuous)

on [0,∞), and such that f(n) =
n2

en
. It follows that:

lim
n→∞

n2

en
= lim
x→∞

x2

ex
Since x2 →∞ and ex →∞ as x→∞,
we apply L’Hôpital’s Rule.

= lim
x→∞

d
dxx

2

d
dxe

x

= lim
x→∞

2x

ex
Since 2x→∞ and ex →∞ as x→∞,
we apply L’Hôpital’s Rule again.

= lim
x→∞

d
dx2x
d
dxe

x

= lim
x→∞

2

ex

= 0 . . . because 2 is constant and ex →∞ as x→∞. �

Quiz #19. Friday, 25 March, 2011. (10 minutes)

1. Determine whether the series
∞∑
n=0

1

n2 + 2n
converges or diverges. [5]

Solution. Note that 0 <
1

n2 + 2n
≤ 1

2n
=

(
1

2

)n
for all n ≥ 0, and that the series

∞∑
n=0

1

2n
converges, because it is a geometric series with common ratio 1

2 < 1. It follows

that
∞∑
n=0

1

n2 + 2n
converges by the Comparison Test. �

Note: One could also compare the given series to the series

∞∑
n=0

1

n2
, which converges by

the p-Test.
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Quiz #20. Friday, 1 April, 2011. (15 minutes)

1. Determine whether the series
∞∑
n=1

(−1)nln(n)

n
converges absolutely, converges condi-

tionally, or diverges.

Solution. This series converges conditionally.
First, we check if the given series converges absolutely. The corresponding series of

positive terms is

∞∑
n=1

∣∣∣∣ (−1)nln(n)

n

∣∣∣∣ =

∞∑
n=2

ln(n)

n
. Since f(x) =

ln(x)

x
is defined, continuous,

and positive for x ≥ 2, we can use the Integral Test. Since the improper integral∫ ∞
2

ln(x)

x
dx = lim

t→∞

∫ t

2

ln(x)

x
dx

(Substitute u = ln(x), so du = 1
x dx,

and change limits accordingly.)

= lim
t→∞

∫ ln(t)

ln(2)

u du = lim
t→∞

u2
∣∣ ∫ ln(t)

ln(2)

= lim
t→∞

[
(ln(t))

2 − (ln(2))
2
]

=∞ (Since ln(t)→∞ as t→∞.)

does not converge, it follows by the Integral Test that neither does
∞∑
n=2

ln(n)

n
. (One could

also do this part very quickly by comparison with the series

∞∑
n=2

1

n
.) Thus the given series

does not converge absolutely.
Second, to check that the given series converges, we will apply the Alternating Series

Test.

• The series is indeed alternating: once n > 1,
ln(n)

n
is always positive, so the (−1)n

forces successive terms to switch sign.

• limn→∞

∣∣∣ (−1)nln(n)n

∣∣∣ = limn→∞
ln(n)
n = limx→∞

ln(x)
x = limx→∞

1/x
1 = 0, as required.

(Note the use of l’Hôpital’s Rule at the key step.)

• Successive terms decrease in absolute value once n > 1 since the function f(x) = ln(x)
x

is decreasing for x > e because (Quotient Rule!) f ′(x) =
1
xx−ln(x)1

x2 = 1−ln(x)
x2 < 0 as

soon as ln(x) > 1.

It follows that
∞∑
n=1

(−1)nln(n)

n
converges by the Alternating Series Test. Since it does

converge, but not absolutely, the series converges conditionally. �
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