Mathematics 1101Y — Calculus I: functions and calculus of one variable
TRENT UNIVERSITY, 2010-2011

Solutions to the Quizzes

Quiz #1. Friday, 24 Monday, 27 September, 2010. (10 minutes)

1. Find the location of the tip of the parabola y = 222 + 2z — 12, as well as its z- and
y-intercepts. [5]

SoLUTION. Note that since 22 has a positive coefficient, this parabola opens upwards.
To find the location of the tip of the parabola, we complete the square in the quadratic
expression defining the parabola:

y =22+ 2z — 12
=2(2® +2) — 12

2 2
=2 1:2—1—21304— LD I N P
2 2 2

=2 x2+21x+ 1 2 _of1L 2—12
N 2 2 2

1\? 1
—9 —) —Z_-12
(x+2> 5

1\N? 25
=9 —) ==
<x+2) 5

It follows that the tip of the parabola occurs when x + % =0, 7.e. when z = —%, at which
point y = —%. Thus thus the tip of the parabola is at the point (—%, —%)

To find the y-intercept of the parabola, we simply plug x = 0 into the quadratic
expression defining the parabola:

y=2-0242.-0—12=04+0—-12=12

Thus the y-intercept of the parabola is the point (0, —12).
To find the z-intercept(s) of the parabola, we apply the quadratic formula to find the
roots of the quadratic expression defining the parabola: 222 + 2z — 12 = 0 exactly when

. —2+/22-4-2-(-12) _ 24+ /4 (=96)

2-2 4
 —24++/100  -24+10 —1+£5
B 4 42
i.e. exactly when x = % =2o0rx = —g = —3. It follows that the parabola has its

x-intercepts at x = 2 and z = —3, i.e. at the points (—3,0) and (2,0). H

1



Quiz #2. Friday, 1 October, 2010. (6 minutes)
1. Solve the equation €?* — 2e* + 1 = 0 for z.
Hint: Solve for e® first ...

SOLUTION. Recall that e2* = (e%)?, so we can rewrite the given equation as (e%)”—2e®+1 =
0. Following the hint, we solve for e” using the quadratic equation:

o (D EVE2P-4 T T 24 VE-4 240
B 2-1 -2 T 2 ¢

Thus z =In(e®”) =In(1) =0. A

Quiz #3. Friday, 8 October, 2010. (10 minutes)

2
—2
1. Evaluate the limit lim %, if it exists. [5]
z—1 x—1

SOLUTION. We factor the numerator and simplify:
?>+zx-2 . (x—-1)(z+2)

lim ———— = lim =lim(zx+2)=14+2=3
rx—1 aj—l r—1 ,’1;‘—1 r—1

In case of problems factoring this by sight, one could always apply the quadratic
formula. The roots of 2 + z — 2 are:

—1+£/12-4-1-(-2)  -1+V9 -1+3
2-1 2 2

=41 or -2

It follows that 2> + x —2=(z — 1) (x — (=2)) = (z — 1)(z +2). A

Quiz #4. Friday, 15 October, 2010. (10 minutes)
1. Use the limit definition of the derivative to compute f’(2) if f(z) = 2% + 3z + 1. [§]

SOLUTION. Here goes!

f2+h) - f(2)

/ R E
J12) = fim h
. [(2+h)>+32+h)+1] - [22+3-2+1]
h—0 h
o [4+4h+h?+6+3h+1] — [4+6+1]
= A0 h
. h*+7Th
= lim
h—0 h
= lim (h+7)=0+7=7 N
h—0



Quiz #5. Friday,22-October Monday, 1 November, 2010. (10 minutes)

1. Find f'(z) if f(z) = % Simplify your answer as much as you reasonably can.
[5]

SOLUTION. The Quotient Rule followed by algebra:

f,(x):%(x2+2x)-(x2+2x+l) (x —}—2x) (x +2a:—|—1)
(22 + 2z + 1)°
(20 +2) (2® + 20 +1) — (2% 4 22) (22 +2)
N (22 + 2z + 1)°
2+ 1)(z+1)? — (2% 4 22) 2(z + 1)
((z+1)?)°
2(z 4+ 1)* — (2% + 22) 2(z + 1)
(x+1)4
2(z +1)% — 2 (2? + 22)
- (z+1)°
2 (2?2 + 2z + 1) — 2 (22 + 2x)
(z 4+ 1)

2
(z +1)?

Quiz #6. Friday, 5 November, 2010. (10 minutes)

d
1. Find d_y if y = \/x + arctan(z). [5]
T

SOLUTION. This is a job for the Chain Rule. Note first that, using the Power Rule,
% t = %tl/Q = %t‘l/Q = L. Letting t = x + arctan(z) and applying the Chain Rule

2Vt
gives:
dy dy di (d t) di. 1 di

de  dt dz  \dt dr ~ 2vi dx
1

d
2\/x + arctan dx

1 dx d

= : arctan(x)
2/ + arctan(zx) dﬂ? dx
1

1
. (14 23)
2\/x + arctan(z) I+

(z + arctan(z))

There’s not much one can to do to meaningfully simplify this. A little algebra could give
dy o 2412
2(1+x2)\/x+arctan(x)

you something like , but it’s not clear that’s an improvement. W



Quiz #7. Friday, 12 November, 2010. (10 minutes)

1. Find the maximum and minimum of f(z) = on the interval [—2,2]. [5]

T
1+ a2
SOLUTION. We compute f’(z) using the Quotient Rule:

(d%x)(l—i—ﬁ)—x%(l—f—xz) 1(1—|—£C2)—$'2$ 1 — 22

!/
T) = — _
e (+ a7 e Qe
Note that the denominator of f’(z) is never 0 because 1 + z? > 1 for all z, so f/(x) is
1— 2
defined for all x in the interval [—2,2]. f'(z) = (1—:1:2)2 = 0 exactly when 1 — 22 = 0. It
+x

follows that the critical points of f(x) are = %1, both of which in the interval [—2,2].
We compare the values of f(z) at the critical points and the endpoints of the interval:

x
. -2 2
1+ (—2)2 5
. -1 1
L+ (=12 2
1 1
1 ==
1512 !
2 =Z
1+22 5
Si Lo 22 02 0 1 follows that th i f fz) = — the interval
ce —— — = = - OlIOWS a € a. (6] = (6] € erva
11 9 5 ) 5 2, 1 Wi m XlI;lum xr 1—|—;L‘2 1 1mterv.
[—2,2]is f(1) = 3 and the minimum is f(—1) = —5 |

Quiz #8. Friday, 26 November, 2010. (10 minutes)
1
1. Find an antiderivative of f(x) = 4z® — 3cos(x) + —. [5]
T

SOLUTION. This is mainly an exercise in memorizing basic rules about antiderivatives
and the antiderivatives of standard functions. Using the indefinite integral notation for
antiderivatives we get:

1 1
/(41‘3—3(:08(:13)—1—;) dx:4/x?’dx—3/cos(x)dx+/5dx

1.3—1—1

3+1
= 2% — 3sin(z) + In(z) + C

—4.

— 3sin(z) + In(z) + C

Since we just asked for an antiderivative, any value of C' — including 0 — is fine here. H
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Quiz #9. Friday, 3 December, 2010. (10 minutes)
1
1. Compute the definite integral / (2z + 1) dx using the Right-hand Rule. [5/
0

n(n+1)'

n
Hint: YoumayassumethatZk:1+2—|—3+---+n: 5

k=1
SOLUTION. Recall that the Right-hand Rule formula is:

b %)
b—a b—a
dr = 1i k
/af(x) x nl_)ﬂgOkZ - f(a—i— - )
We plug a =0, b= 1, and f(z) =2z + 1 into this formula and grind away:
1 00 o)
1-0 1-0 1 k
20 +1) do = i oo+ k——) = 1 —f(=
/O<x+ ydo = lim ) = f( th— ) ngﬁo;nf(n)

oo

1 k 1 [k
= lim — — ] = lim — 2—+1
E;Oan() nzr;on;(m)

1 [ (& 2k o
= lim = -
(224 (X))
L \k=1 k=1
1 2 (o] >0
= lim = || 2
(23004 (2]
L k=1 k=1
— lim * E-L“Hn]
n—oomn | n 2

— lim > [(n+1)+n]

n—oo n

1 2 1
= lim —[2n+ 1] = lim [—n—i——}

n—oo N n—oo n n

n—oo

1
= lim {2—}-—}:2-{—0:2 |
n



Quiz #10. Friday, 10 December, 2010. (10 minutes)
2
1. Find the area between the graphs of f(x) = sin(z) and g(z) = =T for 0 <z < g [5]
s

SoLUTION. Note that f(0) = 0 = g(0) and f (%) = g (%) = 1. Between these points
f(z) > g(x) — sketch the graphs to convince yourself, if necessary — so the area between

them is:
/ " Fa) - g(@)) da = / " (sin<x> S 2 g

T T
T
:—0——)——1—0
(-0-F)-(-1-0)
T
— T 41=1-=
i 1

Quick sanity check: m < 4,s0 7 <1,s01— 7 is positive, as an area should be. B

Quiz #11. Friday, 14 January, 2011. (10 minutes)
/2
1. Compute/ cos®(x) dx. [5]
0

SOLUTION. This can be done pretty quickly using the appropriate reduction formula
or integration by parts, but it’s also easy to do by a combination of the trig identity
cos?(z) = 1 — sin?(z) and substitution:

cos® (x) dx = cos?(x) cos(z) dx
/071'/2 /O7r/2
= /OW/Q (1 — sin®(z)) cos(z) dz

Substitute u = sin(x), so du = cos(z) dz, and
0 m/2

change the limits: T 0 1

:/01(1—u2) du




Quiz #12. Friday, 21 January, 2011. (10 minutes)
1. Compute /tan3(x) sec(x) dx. [5]

SOLUTION. There are other ways to pull this off, but the following use of the identity
tan?(x) = sec?(z) — 1 and substitution is pretty quick:

/tan3(x) sec(z) dx = /tanz(a:) tan(x) sec(x) dx
= / (sec®(z) — 1) sec(z) tan(z) dz

Substitute u = sec(z), so du = sec(z) tan(x) dx.

=/(u2—1)d:)3

1
=P —u+C

Quiz #13. Friday, 28 January, 2011. (10 minutes)
dx. [5]

1. Compute

1
V4 + x?
SoLUTION. We'll use the trigonometric substitution z = 2tan(f), so dz = 2sec?(0) d,

and also tan(f) = £ and sec(0) = /sec?(0) = /1 + tan*(0) = /1 + %2. (We'll need these

last when substituting back.)

dr = 2sec?(0) d

| =

/ 1
\/4—|— 2tan(6)) 2

2 sec? 2 sec?
/ / d0
\/4—|—4tan \/4 —|—tan
sec2(9) sec2(9)
vl—f—tan \/sec?(0
d9 = /sec(@) do
+ tan(0)) + C

IR

dG

/

22
=1 14—
n( +4+

()
ec(6)

LIRS



Quiz #14. Friday, 4 February, 2011. (15 minutes)

422 + 3z
1. Com ute/
PR @)

SOLUTION. This is a job for partial fractions. Note that the denominator of the integrand,
(x 4+ 2) (302 + 1), come pre-factored into linear factor and irreducible quadratic factors.
(22 + 1 doesn’t factor any further because it has no roots, since > +1 > 1 > 0 for all z.)
It follows that

dz. [5]

472 + 3z A Bx +C

@+2) (2 +1) 42 211

for some constants A, B, and C. To determine these constants we put the right-hand side
of the above equation over the common denominator

A +Bm+C_A(ac2+1)+(B:Jc—|—C’)(x+2)
r+2 2241 (x+2)(z2+1)
_ Aa?+ A4 Ba®+ 2Bz + Cax +2C
a (z+2) (22 +1)
(A+ B)z? + (2B + C)z + (A +20)

a (x+2)(z2+1) ’

and then equate numerators
47° + 3z = (A + B)z® + (2B + O)x + (A + 20)

to obtain a set of three linear equations in A, B, and C"

A + B = 4
2B + C = 3
A + 2C =0

These equations can be solved in a variety of ways; we will do so using substitution.
Solving the third equation for A gives A = —2C. Substituting this into the first equation
gives B — 2C = 4; solving this for B now gives B = 4 + 2(C'. Substituting the last into the
second equation now gives 2(4 4+ 2C) + C = 3, i.e. 8 +5C = 3, s0 5C' =3 — 8 = —5, so
C =-5/5=—1. It follows that B =4+2C =4+2(—1) =2and A = -2C' = —2(—1) = 2.

Thus
2% + 3z 2 20 —1
dr = d
/(33—1—2)(:1:2—1—1) v /(x+2+x2+1) v
2 20 — 1
- d d
/ac+2 x+/$2+1 v
2 2z 1
/:1:—|—2 x+/:p2+1 v /a:2—|—1 o

8




We handle the three parts separately. In the first, we use the substitution v = =z + 2, so
du = dz. In the second, we use the substitution w = 22 + 1, so dw = 2z dx. In the third,

we recollect that . is the derivative of arctan(z). Now

2+

422 + 3z 2 2z 1
dr = d dx — d
/(a:+2)(332+1) v /x—|—2 x+/x2+1 x /sc2—|—1 v

1 1

= 2/ —du + / — dw + arctan(x)
u w

= 2In(u) + In(w) + arctan(z) + C

Since the last integral sign has disappeared, the generic

constant must now show up. Substituting back gives:
=2In(z + 2) 4+ In (2* 4+ 1) + arctan(z) + C

Whew! R

1. Sketch the surface obtained by revolving the curve y = In(z), 1 < z < e, about the
y-axis, and find its area. [5]

Hint: You may find it convenient to just use the fact that

/8603(9) do = %tan(Q) sec(0) + %ln (tan(f) +sec(0)) + C',

instead of having to work it out from scratch.

SOLUTION. Here’s a sketch of the surface, albeit I cheated a little by starting with a graph
of y = In(z) drawn by a computer.

/TN
/
\
N\

Note that we only want the part that come from revolving the part of y = In(x) for
1<z <e.



To find the area of this surface, we use the usual formula for the area of a surface of
revolution obtained by revolving a curve about the y-axis:

e d 2 e d 2 e 1 2
/ 21w 1—|—<_y> dx:27r/ T 1+(—ln(aj)) dg;:27r/ T 1_|_<_> dx
1 dx 1 dx 1 x
e 1 e 1
:27r/ x\/1+—2dx:27r/ N/m2<1—|——2>dw
1 x 1 x

:27r/ V2 4+ 1dx
1

Substitute = = tan(f), so dx = sec*(f) db,
keep the old limits and substitute back.

= 27r/ \/tan?(0) + 1 sec?(0) db
L
=27 \/sec2 ) sec? =27 / sec®(0) db

r=

Use the hint! Note that sec(f) = y/tan?(0) + 1 = /22 + 1.

— o B tan () sec(f) 4+ %111 (tan(0) + sec(@))] wj
= [V T (e Vi)

=7 [e\/62+1+ln<e—|— e2—|—1> —\/§—ln(1+\/§>]
This doesn’t seem to simplify nicely ... B

Quiz #15. Some time or other, 2011. (15 minutes)
1. Find the area of the surface obtained by revolving the curve y = /1 — 22, where
0 <z <1, about the y-axis. [5]

SOLUTION. In this case

dy _ d 2 1 d x2 _ 1 -z

dz _ dr oWl—22 d (1 WI—22 T V122

/ d
We plug this into the surface area formula 27790 1+ (d_y dx, giving:
x
1
T 1+ 1_322) :/0 2mxq /1 1_:1:2
\/1
LY

Area =

2
—x2

2 de = [ 2 —d

0 —x? 1—3:2 . 0 e 1— 2?2 o

1 1
/ 1
= 2mx dx = / 2y ———— dx
/0 1= $2 0 V1—2x?

l
y




We will compute the last integral using the substitution u = 1 — 22, so du = —2z dx and

(1) Then:

(—1) du = 2x dx, changing the limits as we go along: m (1)

1 0 1
1 1
Area:/ 27rm—da::/ T—=(—1 duzw/ u'? du
0 V1— a2 1 \/E( ) 0

w32 L9 2 2
ur" LT Vo B Vo -
"3/2 "3 "3 3"

_ 2 5
—7r3u

0 0

Quiz #16. Some time or other, 2011. (12 minutes)
1. Sketch the region bounded by r = tan(f), 6 = 0, and 0 = % in polar coordinates and
find its area. [5]
SOLUTION. Note that when # = 0, r = tan(0) = 0, and when 6 = %, r = tan(w/4) =
sin(r/4)  1/V2
cos(m/4)  1/4/2
increasing, so r = tan(f) =

this:

= 1. In between, sin(f) is increasing and cos(f) is decreasing as 6 is

sin(0)
cos(0)

is increasing. The region therefore looks something like

\J

To find its area, we need to plug r = tan(f) into the polar area formula for 0 < 6 < %
and integrate away:
B 1 7T/4 1 1 7T/4 71'/4
Area = / —r?df = / —tan?(0)df = = / (sec®(0) — 1) d = = (tan(0) —0)
a 2 o 2 2 Jo 0

™ s

=5 (e (9 -] -gmo-0=3(1-7)-0=5-§ =

11



Quiz #17. Friday, 11 March, 2011. (12 minutes)
1. Find the arc-length of the parametric curve = = sec(t), y = In (sec(t) + tan(t)), where

0<t<T.
SOLUTION. We're going to need to know ‘fl—f and %, so we’ll compute them first:
dx d
priin sec(t) = sec(t) tan(t)
dy

d
= aln (sec(t) + tan(t))
1

- sec(t) + tan(t) % (sec(t) + tan(t))

~ sec(t) %1— tan(t) (sec(t) tan(t) + sec?(t))

= - —|1— () sec(t) (tan(t) + sec(t)) = sec(t)

We can now compute the arc-length of the given curve:

arc-length = /C ds = /OW/4 \/<Z—f>2 + (%)2 dt
_ /O " \/ (sec(t) tan(t))? + (sec(t))” dt
- /O o \/sec2(t) [tan?(t) + 1] dt = /0 " V/sec?(t) sec2(t) dt
- /O o \/ (sec2(t))? dt = / " sec?(t) dt = tan(t)|7/*

0

:tan<£>—tan(0):1—():1 |
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Quiz #18. Friday, 18 March, 2011. (10 minutes)
2
1. Compute lim —. [5]
n—oo e
2
SOLUTION. Observe that f(z) = — is defined and differentiable (and hence continuous)

e
2
n
on [0,00), and such that f(n) = —. It follows that:
e
. n? . x? Since 22 — oo and e* — 0o as T — 00,
lim — = lim — 1A et 15
n—oo e"  x—oo €T we apply L’Hopital’s Rule.
d .2
=
= lim
r—o0 =~ et
dx
_th_:E Since 2z — oo and e* — 00 as x — 00,
a0 €7 we apply L’Hoépital’s Rule again.
d
=2
= lim dg
r—00 —eZ
dx
= lim —
r—o00 e*

= ... because 2 is constant and € — oo as x — oco. B

Quiz #19. Friday, 25 March, 2011. (10 minutes)

o
1
1. Determine whether the series 7;) T on converges or diverges. [5]
1 1 1\" .
SOLUTION. Note that 0 < ——+ < — = | = for all n > 0, and that the series
nZ 4+ 2n AL 2

o0

N

1
Z on converges, because it is a geometric series with common ratio £ < 1. It follows

n=0 -
that Z ; converges by the Comparison Test. H
2y ges by p :

oo

NoOTE: One could also compare the given series to the series Z —, which converges by
n

2 )
n=0
the p-Test.
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Quiz #20. Friday, 1 April, 2011. (15 minutes)

1)"In(n)

oo
1. Determine whether the series Z ( converges absolutely, converges condi-

n
n=1

tionally, or diverges.

SOLUTION. This series converges conditionally.
First, we check if the given series converges absolutely. The corresponding series of

ot , i (—1)"In(n) i In(n) Since f(z) In(z) . defined. cont;
ositive terms is —| = ——=. Since f(xr) = ——— is defined, continuous,
b n=1 " n=2 n v

and positive for z > 2, we can use the Integral Test. Since the improper integral

> In(z) dr — 1i “In(z) d (Substitute v = In(z), so du = X dz,
9 r T A% 5 T . and change limits accordingly.)

In(t) In(t) . )
= lim udu = lim u2’/ = lim [(ln(t)) — (In(2)) ]
1

= 00 (Since In(t) — oo as t — 00.)
) _ =, In(n)
does not converge, it follows by the Integral Test that neither does Z . (One could
n

n=2

o0
1
also do this part very quickly by comparison with the series g —.) Thus the given series
n

n=2
does not converge absolutely.

Second, to check that the given series converges, we will apply the Alternating Series
Test.

e The series is indeed alternating: once n > 1, "

is always positive, so the (—1)

forces successive terms to switch sign.

. ‘ (—=1)"In(n) In(n) 1/

= lim; 0o =3~ = 0, as required.

In(x)

o lim,, = lim, oo = lim,

(Note the use of ’'Hopital’s Rule at the key step.)

e Successive terms decrease in absolute value once n > 1 since the function f(z) = @
lo_ _
is decreasing for > e because (Quotient Rule!) f/(z) = == ;‘;(‘”1 =1 ig(x) < 0 as

soon as In(x) > 1.

It follows that 3 (=1)"In(n)

n

converges by the Alternating Series Test. Since it does
n=1
converge, but not absolutely, the series converges conditionally. H
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