Math 1100 — Calculus, Quiz #18B — 2010-04-8

Are the following series absolutely convergent, conditionally convergent, or divergent? Jus-
tify your answer in each case.
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Solution: This series is ’ absolutely convergent. ‘ The Integral Test says that the series converges if and
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Thus, the integral is convergent, and thus, so is the series. Here (x) is the change of variables
u:=In(z) so that du =1 dz. O
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Solution: This series is ’absolutely convergent ‘ To see this, we use the Ratio Test. Let a,, := %
Then
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where (x) is by I'Hospital’s rule. Thus, the Ratio Test says the series converges absolutely. O

(25) 3.) (1;2;

n=1

Solution: This series is ’conditionally convergent‘ but not absolutely convergent. To see this, first
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observe that the sequence { } is decreasing (because the function In(x) is increasing).
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Thus, the Alternating Series Test says that the series converges. However, the series does not
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converge absolutely. To see this, we use the Comparison Test to compare the series E 7( ] to
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the divergent series E —. For all n > 2, we have In(n) < n; thus, —— > —. Thus, as E -
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diverges, we conclude that Z —— also diverges. O
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(Hint. Use the Ratio Test to solve for the largest |z| such that the series is absolutely
convergent. )

Solution: The radius of convergence is . To see this, we use the Ratio Test. Let x € R and

define a,, := n;gfn Then
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Thus,

(]m\ < 3) — <lim M < 1) — <Series converges absolutely), and
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Thus, the radius of convergence is R = 3. O



