
Math 1100 — Calculus, HW #3 — Due Friday, March 5, 2012

L2 space and Fourier theory

Solutions

‘Common mistakes’ are indicated in your marked assignment with circled numbers, e.g.
1©, 2©, 3©, etc. These labels are explained in the remarks following the solutions to each
question.

1. Let f : [0, π]−→R and g : [0, π]−→R be two integrable functions. The inner product1 of
f and g is defined:

〈f, g〉 :=

∫

π

0

f(x) g(x) dx. (1)

We say that f is orthogonal to g if 〈f, g〉 = 0. The L2-norm of f is defined:2

‖f‖2 :=
√

〈f, f〉 =

√

∫

π

0

f(x)2 dx. (2)

The set of all functions with finite L2-norm is called L2 space. It is very important in
quantum mechanics, and in the study of random processes.

(a) For all n ∈ N, define Sn(x) := sin(nx) for all x ∈ [0, π]. Thus, 〈Sn,Sm〉 =( 25
200

)
∫

π

0

sin(nx) sin(m x) dx. Show that Sn is orthogonal to Sm whenever n 6= m.

(Hint: Use the identity: sin(a) · sin(b) = −
1
2

“

cos(a + b) − cos(a − b)
”

. )

Solution:

〈Sn,Sm〉 =

∫

X

Sn(x) · Sm(x) dx =

∫

π

0
sin(nx) · sin(mx) dx

= −
1

2

∫

π

0
cos(nx + mx) − cos(nx − mx) dx

= −
1

2

(
∫

π

0
cos [(n + m)x] dx −

∫

π

0
cos [(n − m)x] dx

)

= −
1

2

(

1

n + m
sin [(n + m)x]

∣

∣

∣

x=π

x=0
−

1

n − m
sin [(n − m)x]

∣

∣

∣

x=π

x=0

)

= −
1

2

(

1

n + m
(0 − 0) −

1

n − m
(0 − 0)

)

= 0.

2

(b) Compute ‖Sn‖2 using formula (2). (Your answer should be independent of the( 25
200

)
value of n).

1Compare this to the inner product of two 3-dimensional vectors: 〈x,y〉 = x1y1 + x2y2 + x3y3.
2Compare this to the norm of a 3-dimensional vector: ‖x‖

2
=

√

x2

1
+ x2

2
+ x2

3

1



Solution:

‖Sn‖2
2 =

∫

X

Sn(x)2 dx =

∫

π

0
sin(nx) · sin(nx) dx

= −
1

2

∫

π

0
cos(nx + nx) − cos(nx − nx) dx

= −
1

2

(
∫

π

0
cos(2nx) dx −

∫

π

0
cos(0) dx

)

= −
1

2

(

1

2n
sin(2nx)

∣

∣

∣

x=π

x=0
−

∫

π

0
1 dx

)

= −
1

2

(

1

2n
(0 − 0) − π

)

= −
1

2
(−π) =

π

2
.

Thus, ‖Sn‖2 =

√

π

2
. 2

(c) For any two functions f, g : [0, π]−→R, show that 〈f, g〉 = 〈g, f〉. (This is called( 10
200

)
symmetry).

Solution: 〈f, g〉 =

∫

π

0
f(x)g(x) dx =

∫

π

0
g(x)f(x) dx = 〈g, f〉. 2

(d) For any four functions e, f, g, h : [0, π]−→R, show that 〈e + f, g + h〉 = 〈e, g〉 +( 10
200

)
〈e, h〉 + 〈f, g〉 + 〈f, h〉. (This is called bilinearity).

Solution:

〈e + f, g + h〉 =

∫

π

0

(

e(x) + f(x)
)

·
(

g(x) + h(x)
)

dx

=

∫

π

0
e(x)g(x) + e(x)h(x) + f(x)g(x) + f(x)h(x) dx

=

∫

π

0
e(x)g(x) dx +

∫

π

0
e(x)h(x) dx +

∫

π

0
f(x)g(x) dx +

∫

π

0
f(x)h(x) dx

= 〈e, g〉 + 〈e, h〉 + 〈f, g〉 + 〈f, h〉.

2

(e) Deduce: if f and g are orthogonal, then ‖f + g‖2
2 = ‖f‖2

2 +‖g‖2
2. (This is called( 10

200
)

the Pythagorean identity).

Solution: We have

‖f + g‖2
2

(†)
〈f + g, f + g〉

(∗)
〈f, f〉 + 〈f, g〉 + 〈g, f〉 + 〈g, g〉

(⋄)
‖f‖2

2 + 2〈f, g〉 + ‖g‖2
2

(‡)
‖f‖2

2 + ‖g‖2
2
.

Here, (†) is by defining equation (2), (∗) is by part (d), (⋄) is by part (c) and defining

equation (2), and (‡) is because 〈f, g〉 = 0 because f is orthogonal to g. 2

(f) The Cauchy-Bunyakowski-Schwarz inequality states that |〈f, g〉| ≤ ‖f‖2 · ‖g‖2( 20
200

)
for all functions f and g. The CBS inequality is easy to prove, but we will
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just assume it here. Using the CBS inequality, prove the Triangle Inequality:3

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.

Solution: We have

‖f + g‖2
2

(†)
〈f + g, f + g〉

(∗)
〈f, f〉 + 〈f, g〉 + 〈g, f〉 + 〈g, g〉

(⋄)
‖f‖2

2 + 2〈f, g〉 + ‖g‖2
2 ≤ ‖f‖2

2 + 2|〈f, g〉| + ‖g‖2
2

≤
(‡)

‖f‖2
2 + 2‖f‖2 · ‖g‖2 + ‖g‖2

2 = (‖f‖2 + ‖g‖2)
2.

Here, (†) is by defining equation (2), (∗) is by part (d), (⋄) is by part (c) and defining
equation (2), and (‡) is by the CBS inequality.

Thus, ‖f + g‖2
2 ≤ (‖f‖2 + ‖g‖2)

2. Taking the square root of both sides of this inequality,

we get ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2. 2

2. For any f : [0, π]−→R and any n ∈ N, the nth Fourier coefficient of f is defined:

Bn :=
2

π
〈f,Sn〉 =

2

π

∫

π

0

f(x) sin(nx) dx. (3)

The Fourier series4 for f is then the function defined by the infinite summation:5

∞
∑

n=1

Bn sin(nx). (4)

If f is continuously differentiable on [0, π], then the Fourier series (4) converges to f(x)
for all x ∈ (0, π). 6 Fourier series are enormously important in probability theory,
signal processing, and the study of partial differential equations.

(a) Suppose f(x) = 1 for all x ∈ [0, π]. Show that, in this case, the nth Fourier( 25
200

)
coefficient Bn in equation (3) is given by

Bn =

{

4/nπ if n is odd;
0 if n is even.

Conclude that, for this function, the Fourier series (4) is:

4

π

(

sin(x) +
1

3
sin(3x) +

1

5
sin(5x) +

1

7
sin(7x) + · · ·

)

(5)

3The Triangle Inequality and Symmetry properties together mean that the L2 norm defines a concept of
‘distance’ in L2-space. Thus, L2-space has a ‘geometry’, closely analogous to three-dimensional Euclidean
space, except that it is infinite-dimensional.

4Strictly speaking, this is the Fourier sine series for f . One can also define Fourier series using the functions
cos(nx) or exp(inx).

5Compare this to expressing a vector in R
3 in terms of an orthogonal coordinate system.

6In fact, if we are willing to consider more exotic forms of convergence, then the Fourier series (4) converges
to f even if f is an extremely pathological function with many discontinuities.
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Solution: We have

Bn =
2

π

∫

π

0
sin(nx) dx =

−2

nπ
cos(nx)

∣

∣

∣

x=π

x=0
=

2

nπ

[

1 − (−1)n

]

=

{

4
nπ

if n is odd
0 if n is even

.

Thus, the Fourier sine series is:

4

π

∞
∑

n=1
n odd

1

n
sin(nx) =

4

π

(

sin(x) +
sin(3x)

3
+

sin(5x)

5
+ · · ·

)

2

(b) Suppose f(x) = x2 for all x ∈ [0, π]. Find a formula for nth Fourier coefficient Bn,( 25
200

)
as defined by equation (3).

Solution: We will apply integration by parts twice.
∫

π

0
x2 · sin(nx) dx

(∗)

−1

n

(

x2 · cos(nx)
∣

∣

∣

x=π

x=0
− 2

∫

π

0
x cos(nx) dx

)

(†)

−1

n

[

π2 · cos(nπ) −
2

n

(

x · sin(nx)
∣

∣

∣

x=π

x=0
−

∫

π

0
sin(nx) dx

)]

=
−1

n

[

π2 · (−1)n +
2

n

(

−1

n
cos(nx)

∣

∣

∣

x=π

x=0

)]

=
−1

n

[

π2 · (−1)n −
2

n2

(

(−1)n − 1
)

]

=
2

n3

(

(−1)n − 1
)

+
(−1)n+1π2

n
.

Here (∗) is integration by parts with u := x2 and dv := sin(nx) dx, so that du = 2x dx

and v = − 1
n

cos(nx). Next, (†) is integration by parts with u := x and dv := cos(nx) dx,
so that du = dx and v = 1

n
sin(nx).

Thus,

Bn =
2

π

∫

π

0
x2 · sin(nx) dx

=















−2π

n
if n is even;

−4

πn3
+

2π

n
if n is odd.

2

3. Let f : R−→R and g : R−→R be two integrable functions. The convolution of f and g
is the function (f ∗ g) : R−→R defined as follows: for every x ∈ R,

(f ∗ g)(x) :=

∫

∞

−∞

f(y) g(x − y) dy.

(We will assume this integral converges). Convolutions arise frequently in probability
theory, signal processing, partial differential equations, and Fourier theory.
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(a) Suppose f(x) =

{

(1/2) if −1 ≤ x ≤ 1;
0 otherwise.

Let g : R−→R be any function. For all x ∈ R, show that( 25
200

)

(f ∗ g)(x) =
1

2

∫

x+1

x−1

g(z) dz

That is, (f ∗ g)(x) is simply the average value7 of g over the interval [x − 1, x + 1].

Solution: We have

f ∗ g(x) =

∫

∞

−∞

f(y)g(x − y) dy =
1

2

∫ 1

−1
g(x − y) dy

(∗)
−

1

2

∫

x−1

x+1
g(z) dz

(†)

1

2

∫

x+1

x−1
g(z) dz,

as desired. Here, (∗) is the change of variables z := x − y, so that dz = −dy. Next, in (†)

we reverse the bounds of integration and multiply by (−1). 2

(b) For any functions f and g, show that f ∗ g = g ∗ f . (Technically: the convolution( 25
200

)
operator is commutative).

Solution:

(g ∗ f)(x) =

∫

∞

−∞

g(y) · f(x − y) dy
(s)

∫

−∞

∞

g(x − z) · f(z) · (−1) dz

=

∫

∞

−∞

f(z) · g(x − z) dz = (f ∗ g)(x).

Here, step (s) was the substitution z = x − y, so that y = x − z and dy = −dz. 2

Bonus problem: For any three functions f , g, and h, show that (f ∗ g) ∗ h = f ∗ (g ∗ h).
(Technically: the convolution operator is associative).
Solution: Fix x ∈ R. Then

f ∗ (g ∗ h)(x) =

∫

∞

−∞

f(y)(g ∗ h)(x − y) dy

=

∫

∞

−∞

f(y)

(
∫

∞

−∞

g(z)h [(x − y) − z] dz

)

dy

=

∫

∞

−∞

∫

∞

−∞

f(y)g(z)h [x − (y + z)] dz dy

(∗)

∫

∞

−∞

∫

∞

−∞

f(y)g(w − y)h(x − w) dw dy

=

∫

∞

−∞

(
∫

∞

−∞

f(y)g(w − y) dy

)

h(x − w) dw

=

∫

∞

−∞

(f ∗ g)(w) · h(x − w) dw

= (f ∗ g) ∗ h(x).

7This example is typical: the convolution f∗g can often be interpreted as a sort of ‘local weighted averaging’
of the function g, with f playing the role of the ‘weight function’. For example, in image processing, (two-
dimensional) convolutions are used to create ‘blurring’ and ‘smudging’ effects in images. Conversely, we can
‘sharpen’ or ‘enhance’ an image by applying a ‘reverse convolution’ —but we need advanced Fourier analysis
to explain how to do this.
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Here, (∗) is the change of variables z := w − y; hence w = z + y and dw = dz. 2

6


