
Mathematics 110 – Calculus of one variable
Trent University 2003-2004

Solution to Assignment #5

Suppose the ends of a string are attached to two fixed points and it hangs under
its own weight. (To keep things relatively simple, we’ll assume the string is completely
flexible, of uniform composition and density, arbitrarily strong, and undisturbed by any
forces aside from gravity and the attachment at those two fixed points.) It turns out that
the curve y = f(x) formed by such a string must satisfy a differential equation of the form

d2y

dx2
= k

√
1 +

(
dy

dx

)2

where k > 0 is a constant. (See Chapter 9 of the text for basic information about differential
equations. For the reasons why the curve must satisfy such a differential equation, take
some physics . . . )

1. Solve the differential equation for y = f(x) if the two fixed points between which the
string is suspended are at (−2, 2) and (2, 2) and the lowest point of the string is at
(0, 1). [10]

Hint: Let z = dy
dx

. Rewrite the differential equation in terms of z. Solve the new equation for z. Integrate

z to get y. Finally, use the points that you know y = f(x) passes through to solve for the constants that

appear in y. You may wish to check out §3.9 in the text for information about the hyperbolic functions,

which may play a role in this problem.

Solution. Following the hint, we plug z =
dy

dx
into the equation

d2y

dx2
= k

√
1 +

(
dy

dx

)2

to get
dz

dx
= k

√
1 + z2 .

Note that
d2y

dx2
=

d

dx

(
dy

dx

)
=
dz

dx
.

The equation in z is a separable differential equation (see §9.3 of the text for more
information about these), which are so-called because they can be rearranged to put ev-
erything involving each of the two variables on different sides of the equation:

dz

dx
= k

√
1 + z2

⇒ dz = k
√

1 + z2 dx

⇒ 1√
1 + z2

dz = kdx
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We can now integrate both sides of the last equation, each with respect to the variable
involved: ∫

1√
1 + z2

dz =
∫
k dx

The right-hand side is very easy to do:∫
k dx = kx+ a constant

The left-hand side you can do with a trig substitution or just look it up in the tables in
the back of the text:∫

1√
1 + z2

dz = ln
(
z +

√
1 + z2

)
+ another constant

It follows that

ln
(
z +

√
1 + z2

)
+ another constant = kx+ a constant,

so
ln
(
z +

√
1 + z2

)
= kx+C ,

where C = a constant− another constant.
We next have to solve the equation above for z as a function of x. The first step,

getting rid of the logarithm by throwing the exponential function at both sides, is quick:

z +
√

1 + z2 = ekx+C

Isolating z now requires some algebra. Here are the highlights:

z +
√

1 + z2 = ekx+C

⇒
√

1 + z2 = ekx+C − z
⇒ 1 + z2 =

(
ekx+C − z

)2
= e2(kx+C) − 2ekx+Cz + z2

⇒ 1 = e2(kx+C) − 2ekx+Cz

⇒ z =
e2(kx+C) − 1

2ekx+C

A little rearranging puts this in a more convenient form:

z =
ekx+C − e−(kx+C)

2
= sinh(kx+ C)

For more about sinh and the other hyperbolic functions, see §3.9 of the text.
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Recall that z =
dy

dx
. We can now get y as a function of x by integrating z =

dy

dx
:

y =
∫

dy

dx
dx =

∫
ekx+C − e−(kx+C)

2
dx

=
1
k
· e

kx+C + e−(kx+C)

2
+B =

1
k

cosh(kx+ C) +B

The details of the integration we leave to you. Note that another constant, namely B,
turns up at this stage.

One task remains: to determine the unknown constants k, C , and B. Note that k 6= 0.
(If it were otherwise, then d2y

dx2 = 0, so the graph of y would be a straight line, which is
impossible because the three points it is supposed to pass through form a triangle.) What
we have going for us is the fact that the function passes through the points (−2, 2), (2, 2),
and (0, 1). This boils down to:

1
k

cosh(−2k + C) +B = 2

1
k

cosh(2k + C) +B = 2

1
k

cosh(C) +B = 1

It follows from the first two of these equations that cosh(−2k + C) = cosh(2k + C), so:

e−2k+C + e−(−2k+C)

2
=
e2k+C + e−(2k+C)

2
⇒ e−2k+C + e2k−C = e2k+C + e−2k−C

⇒ eCe−2k + e−Ce2k = eCe2k + e−Ce−2k

⇒ e−Ce2k − e−Ce−2k = eCe2k − eCe−2k

⇒ e−C
(
e2k − e−2k

)
= eC

(
e2k − e−2k

)
⇒ e−C = eC or e2k − e−2k = 0
⇒ − C = C or e2k = e−2k

⇒ C = 0 or 2k = −2k
⇒ C = 0 or k = 0

We have already noted that k 6= 0, so it must be the case that C = 0.
Because cosh(t) = cosh(−t) for any t and C = 0,

cosh(−2k + C) = cosh(−2k) = cosh(2k) = cosh(2k + C) .

The three equations obtained by plugging in the three points now boil down to two equa-
tions involving the constants k and B:

1
k

cosh(2k) +B = 2

1
k

+B = 1
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(Note that cosh(0) =
e0 + e−0

2
=

1 + 1
2

= 1.) The second of these equations implies that

B = 1− 1
k

=
k − 1
k

and k =
1

1−B . Plugging B = 1− 1
k

into the first equation gives:

1
k

cosh(2k) + 1− 1
k

= 2

⇒ 1
k

(cosh(2k)− 1) = 1

⇒ cosh(2k)− 1 = k

⇒ cosh(2k) = k + 1

k = 0 would be one solution to this equation, but we already know that k 6= 0. To see
that there must be another solution, consider the graph below, generated in Maple with
the command:

plot( [cosh(2*x), x+1], x=-1..1, color=[black,black] );

From the graph, it would appear that the other point of intersection of the graphs of
y = cosh(2x) and y = x+ 1 is at approximately x = 0.5. The Maple command

fsolve( cosh(2*x) = x+1, x, 0.25..0.75 );

tells us that the point is approximately (still!) 0.4654105968. Thus

k ≈ 0.4654105968 ,
1
k
≈ 2.148640377 , and B = 1− 1

k
≈ −1.148640377 ,

so the equation of the curve formed by the string is approximately:

y ≈ 2.148640377 · cosh(0.4654105968 · x)− 1.148640377

Just for mathochistic fun, try to work out algebraically exactly what k is from
cosh(2k) = k + 1. �
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