
Mathematics 110 – Calculus of one variable
Trent University 2003-2004

Solutions to Assignment #1

Fractal nonsense or nonsense fractal?

Start with an equilateral triangle of area one, set up so its base is horizontal. At step one, divide it
up into nine equal equilateral subtriangles and remove the (insides of) three that point downwards. At
step two, do the same to each of the six surviving subtriangles. At step three, do the same to each of the
thirty six surviving subsubtriangles. Here’s a picture:

Now just keep on going! The basic problem is to figure out what the shape that is left after infinitely many
steps is like. (Something is left over. For example, the corners of the original triangle, of the subtriangles,
of the subsubtriangles, etc., never get removed.) What one has to work with is understanding the process
and the fact that the process generates ever closer approximations of the “final” shape.

1. What is the area of the final shape? [2]
Solution. At first, call it step 0, we have an equilateral triangle of area a0 = 1; at step
1, we remove 3 of 9 equal subtriangles, leaving an area of a1 = 2

3 ; at step 2, we remove
3 of 9 equal subsubtriangles from each of the remaining subtriangles, leaving an area of
a2 = 2

3 ·
2
3 =

(
2
3

)2; . . . ; at step n, we remove 3 of 9 equal subntriangles from each of the
remaining subn−1triangles, leaving an area of an =

(
2
3

)n; and so on.
The area of the final shape is then

lim
n→∞

an = lim
n→∞

(
2
3

)n
= 0 .

(If it’s not obvious, check §11.1 to see why this limit is 0.) �
2. What is the length of the border of the final shape? [2]

[The borders inside the shape do count!]
Solution. At first, call it step 0, we have an equilateral triangle of some border length
p0
†; at step 1, we remove 3 of 9 equal subtriangles, leaving a combined border length of

p1 = 6 · 1
3
· p0 = 2p0 for the remaining subtriangles; at step 2, we remove 3 of 9 equal

subsubtriangles from each of the remaining subtriangles, leaving a combined border length
of p2 = 6· 13 ·p1 = 22p0; . . . ; at step n, we remove 3 of 9 equal subntriangles from each of the
remaining subn−1triangles, leaving a combined border length of pn = 6 · 1

3 · pn−1 = 2np0;
and so on.

The border length of the final shape is then

lim
n→∞

pn = lim
n→∞

2np0 =∞ .

† It doesn’t really matter what p0 is, so long as it’s positive. If you’re curious, p0 = 2
31/4 .
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(If it’s not obvious, check §11.1 to see why this limit is ∞.) �

3. Considering your answers to 1 and 2, can the shape in question be real? Why or why
not? [1]

Solution. This is a really a problem in philosophy. Depending on the assumptions and
reasoning one brings to the question, the answer could legitimately be argued to be “yes,”
“no,” “maybe,” “I don’t know,” . . .

For one of your instructors’ two cents worth: If you accept the set of all real numbers
as being “real,” you’re probably going to be stuck with accepting the shape in question
is being real. (Why?) As soon as one accepts the completed infinities and/or infinite
processess necessary to assemble infinite sets [which said instructor does], it’s hard to
escape having some paradoxical objects in one’s mathematical reality. �

Limitations

It’s pretty obvious that lim
t→+∞

1
t

= 0 and that lim
u→0+

1
u

= +∞. This relationship, together with the

following fact,

4. Suppose f is some function whose domain includes the interval (0, c), where c is some
constant greater than 0. Use the ε − δ and ε − N definitions of limits to show that
lim

t→+∞
f(t) = lim

u→0+
f
(

1
u

)
. [3]

Solution. We may as well assume that both limits exist, because the question is a little
fishy if they don’t. Suppose, that L is the number for which lim

t→+∞
f(t) = L, i.e.

(*) for any ε > 0, there is an N , such that if t > N , then −ε < f(t)− L < ε.

We will try to show that lim
u→0+

f
(

1
u

)
is also equal to L. That is, we’ll try to show that

for any ε > 0, there is an δ > 0, such that if 0 < u− 0 < δ, then −ε < f
(

1
u

)
− L < ε.

As usual, we’ll start by trying to reverse-engineer δ from the ε. Given an ε > 0, we
need to get:

−ε < f

(
1
u

)
− L < ε

The problem is that we don’t know anything about the function f , except that the other
limit exists and equals L; in other words, that (*) is true of f . Plugging in 1

u for t in (*), and
using the given ε, tells us that there is an N such that if 1

u > N , then −ε < f
(

1
u

)
−L < ε.

We actually need a δ so that we can get f
(

1
u

)
within ε of L whenever 0 < u < δ.

This δ can be deduced from the N :

1
u
> N ⇐⇒ 1 > uN ⇐⇒ 1

N
> u

Hence δ = 1
N should do.

To check that δ = 1
N works, suppose we have an ε > 0. Then 0 < u − 0 < δ = 1

N
implies that u < 1

N , so 1
u > N . By (*), it follows that that −ε < f

(
1
u

)
−L < ε, as desired.

Hence lim
u→0+

f
(

1
u

)
= L too, so lim

t→+∞
f(t) = lim

u→0+
f
(

1
u

)
. �
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Note: The argument given above actually guarantees that if lim
t→+∞

f(t) exists, then so

does lim
u→0+

f
(

1
u

)
. A similar argument would show that if lim

u→0+
f
(

1
u

)
exists, then so does

lim
t→+∞

f(t).

. . . can come in handy occasionally when faced with some otherwise messy limits.

5. Use 4 to explain why lim
x→0+

sin
(

1
x

)
does not exist. [2]

Solution. It does not exist because lim
t→∞

sin(t) doesn’t exist. As noted above, arguments
like those in the solution to 4 guarantee that if one limit exists, so does the other. It
follows that if one does not exists, the other can’t exist either.

Of course, the assertion that lim
t→∞

sin(t) doesn’t exist needs a little justification. It is

enought to observe that sin(t) continues to oscillate between −1 and 1 as t→∞:

This graph was generated by Maple using the command plot(sin(t),t=0..50); .

Since sin(t) continues to oscillate without diminishing the scale of the oscillation, or chang-
ing its frequency, sin(t) can’t approach any single value as t goes off to ∞. �

Bonus!

2π. Suppose h is a function such that for every sequence an with lim
n→∞

an = a, it is true

that lim
n→∞

h(an) = h(a). Does h have to be continuous at a? Prove it does or find a

counterexample. [2]
Just a hint! h does have to be continuous at a under the given assumption. It’s sufficient
to show – and easier than trying a direct argument – that if h is not continuous at a, there
is a sequence an with limit a for which h(an) does not have limit h(a). Think it over! �

3


