
Mathematics 110 – Calculus of one variable
Trent University 2002-2003

Quiz Solutions

Quiz #1. (§A) Wednesday, 18 September, 2001. [10 minutes]
12:00 Seminar

1. Compute lim
x→2

x2 − x− 2
x− 2

or show that this limit does not exist. [5]

Solution.

lim
x→2

x2 − x− 2
x− 2

= lim
x→2

(x− 2)(x+ 1)
x− 2

= lim
x→2

(x+ 1) = 2 + 1 = 3 �

2. Sketch the graph of a function f(x) which is defined for all x and for which lim
x→0

f(x) =

1, lim
x→2+

f(x) does not exist, and lim
x→2−

f(x) = 4. [5]

Solution.

�

13:00 Seminar

1. Compute lim
x→2−

x2 − x+ 2
x− 2

or show that this limit does not exist. [5]

Solution. Note that lim
x→2−

x2− x+ 2 = 22− 2 +2 = 4 and lim
x→2−

x− 2 = 0. It follows that

lim
x→2−

x2 − x+ 2
x− 2

fails to exist. (Since when x is a bit less than 2, x2−x+2 is about 4 and

x− 2 is a bit less than 0, it lim
x→2−

x2 − x+ 2
x− 2

= −∞.) �

1



2. Sketch the graph of a function g(x) which is defined for all x, and for which lim
x→0

g(x) =

∞, lim
x→2

g(x) does not exist, and g(x) does not have an asymptote at x = 2. [5]

Solution.

�

Quiz #2. (§A) Wednesday, 25 September, 2001. [10 minutes]
12:00 Seminar

1. Use the ε− δ definition of limits to verify that lim
x→3

(5x− 7) = 8. [10]

Solution. We need to show that given any ε > 0, one can find a δ > 0 such that if
|x− 3| < δ, then |(5x− 7)− 8| < ε. Suppose we are given an ε > 0. Then

|(5x− 7)− 8| < ε

⇐⇒ |5x− 15| < ε

⇐⇒ 5|x− 3| < ε

⇐⇒ |x− 3| < ε

5
,

so δ =
ε

5
will do the job. �

13:00 Seminar
1. Use the ε− δ definition of limits to verify that lim

x→2
(3 − 2x) = −1. [10]

Solution. We need to show that given any ε > 0, one can find a δ > 0 such that if
|x− 2| < δ, then |(3− 2x)− (−1)| < ε. Suppose we are given an ε > 0. Then

|(3− 2x)− (−1)| < ε

⇐⇒ |(3− 2x) + 1| < ε

⇐⇒ |4− 2x| < ε

⇐⇒ 2|x− 2| = 2|2− x| < ε

⇐⇒ |x− 2| < ε

2
,
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so δ =
ε

2
will do the job. �

Quiz #3. Wednesday, 2 October, 2001. [10 minutes]
12:00 Seminar

1. For which values of the constant c is the function

f(x) =
{
ecx x ≥ 0
cx+ 1 x < 0

continuous at x = 0? Why? [10]
Solution. For f(x) to be continuous at x = 0 we need to have f(0), lim

x→0−
f(x), and

lim
x→0+

f(x) all be defined and equal to each other:

f(0) = ec0 = e0 = 1
lim
x→0−

f(x) = lim
x→0−

cx+ 1 = c0 + 1 = 1

lim
x→0+

f(x) = lim
x→0+

ecx = ec0 = e0 = 1

Since all three are defined and equal to 1, no matter what the value of c, f(x) is
continuous at x = 0. �

13:00 Seminar
1. For which values of the constant c is the function

f(x) =
{
ecx x ≥ 0
c(x+ 1) x < 0

continuous at x = 0? Why? [10]
Solution.For f(x) to be continuous at x = 0 we need to have f(0), lim

x→0−
f(x), and

lim
x→0+

f(x) all be defined and equal to each other:

f(0) = ec0 = e0 = 1
lim
x→0−

f(x) = lim
x→0−

c(x+ 1) = c(0 + 1) = c

lim
x→0+

f(x) = lim
x→0+

ecx = ec0 = e0 = 1

All three are defined for all values of c, but are equal to each other only for c = 1.
hence f(x) is continuous at x = 0 exactly when c = 1. �
Quiz #4. Wednesday, 9 October, 2002. [12 minutes]

12:00 Seminar

Suppose

f(x) =


x x < 0
0 x = 0
2x2 + x x > 0

.
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1. Use the definition of the derivative to check whether f ′(0) exists and compute it if it
does. [7]

Solution. By definition, f ′(0) = lim
h→0

f(0 + h)− f(0)
h

. For this limit to exist, both of

lim
h→0−

f(0 + h)− f(0)
h

and lim
h→0+

f(0 + h)− f(0)
h

must be defined and be equal:

i. By the definition of f(x), f(0) = 0 and f(x) = x when x < 0. It follows that:

lim
h→0−

f(0 + h)− f(0)
h

= lim
h→0−

(0 + h)− 0
h

= lim
h→0−

h

h
= lim
h→0−

1 = 1

ii. By the definition of f(x), f(0) = 0 and f(x) = 2x2 + x when x > 0. It follows that:

lim
h→0+

f(0 + h)− f(0)
h

= lim
h→0+

[
2(0 + h)2 + (0 + h)

]
− 0

h

= lim
h→0+

2h2 + h

h
= lim

h→0+
(2h+ 1) = 1

Thus f ′(0) exists and equals 1. �
2. Compute f ′(1) (any way you like). [3]

Solution. By the definition of f(x), f(x) = 2x2 + x when x > 0. Thus, when x > 0,
f ′(x) = 2 · 2x+ 1 = 4x+ 1. Since 1 > 0 . . . ), it follows that f ′(1) = 4 · 1 + 1 = 5. �

13:00 Seminar

Suppose g(x) =
1

x+ 1
. Compute g′(x) using

1. the rules for computing derivatives [3] , and
Solution. Using the Quotient Rule (and some other bits and pieces . . . ):

g′(x) =
d

dx

(
1

x+ 1

)
=

(
d
dx1
)
· (x+ 1)− 1 ·

(
d
dx(x+ 1)

)
(x+ 1)2

=
0 · (x+ 1)− 1 · (1 + 0)

(x+ 1)2
=

−1
(x+ 1)2

�

2. the definition of the derivative. [7]
Solution. Here goes!

g′(x) = lim
h→0

1
(x+h)+1 −

1
x+1

h
= lim
h→0

(x+1)−(x+h+1)
(x+h)+1)(x+1)

h
= lim
h→0

−h
h(x+ h) + 1)(x+ 1)

= lim
h→0

−1
(x+ h) + 1)(x+ 1)

=
−1

(x+ 1)(x+ 1)
=

−1
(x+ 1)2

�
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Quiz #5. Wednesday, 16 October, 2002. [10 minutes]
12:00 Seminar

Compute
d

dx
5√x using

1. the Power Rule [2] , and

Solution.
d

dx
5
√
x =

d

dx
x1/5 =

1
5
x(1/5)−1 =

1
5
x−4/5 =

1
5x4/5

�

2. the fact that f(x) = 5
√
x is the inverse function of g(x) = x5. [8]

Solution. Since f(x) = 5
√
x is the inverse function of g(x) = x5, x = g(f(x)) =

(
5
√
x
)5.

Differentiating both sides gives:

1 =
dx

dx
=

d

dx

(
5
√
x
)5

=
d

dx
u5 (Where u = 5

√
x.)

=
(
d

du
u5

)
· du
dx

(Using the Chain Rule.)

= 5u4 · du
dx

= 5
(

5
√
x
)4 · d

dx
5
√
x

= 5x4/5 · d
dx

5
√
x

Solving this equation for d
dx

(
5
√
x
)

gives
d

dx
5
√
x =

1
5x4/5

. �

13:00 Seminar

1. Compute
d

dx
arccos(x) given that x = cos (arccos(x)) and cos2(x) + sin2(x) = 1. [10]

Solution. Differentiating both sides of x = cos (arccos(x)) gives:

1 =
dx

dx
=

d

dx
cos (arccos(x))

=
d

dx
cos(u) (Where u = arccos(x).)

=
(
d

du
cos(u)

)
· du
dx

(Using the Chain Rule.)

= (− sin(u)) · du
dx

= (− sin (arccos(x))) · d
dx

arccos(x)

Solving this equation for
d

dx
arccos(x) gives

d

dx
arccos(x) =

1
− sin (arccos(x))

=
−1

sin (arccos(x))
,
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which answer can be simplified considerably. Since cos2(x) + sin2(x) = 1, it follows that
sin(x) =

√
1− cos2(x), so

d

dx
arccos(x) =

−1
sin (arccos(x))

=
−1√

1− cos2 (arccos(x))

=
−1√

1− (cos (arccos(x)))2
=

−1√
1− x2

since, once again, x = cos (arccos(x)). �

Quiz #6. Wednesday, 30 October, 2002. [10 minutes]

12:00 Seminar

1. Find the absolute and local maxima and minima of f(x) = x3 +2x2−x−2 on [−2, 2].
[10]

Solution. First, note that f(x) is defined and continuous throughout [−2, 2]. At the
endpoints we get f(−2) = (−2)3 + 2 · (−2)2 − (−2) − 2 = −8 + 8 + 2 − 2 = 0 and
f(2) = 23 + 2 · 22 − 2− 2 = 8 + 8− 2− 2 = 12.

Second, f ′(x) =
d

dx

(
x3 + 2x2 − x− 2

)
= 3x2 +2 ·2x−1 = 3x2 +4x−1, which is also

defined throughout [−2, 2]. To find the critical points we use the quadratic formula:

f ′(x) = 0 ⇐⇒ 3x2 + 4x− 1 = 0

⇐⇒ x =
−4±

√
42 − 4 · 3 · (−1)

2 · 3

⇐⇒ x =
−4±

√
16 + 12)
6

⇐⇒ x =
−4±

√
28

6

⇐⇒ x =
−4± 2

√
7

6

⇐⇒ x =
−2±

√
7

3

The problem here is that −2±
√

7
3 is not a terribly nice pair of numbers to play with. One

could use a calculator to get results which are close enough for our purposes, or one can
use the fact that 2 <

√
7 < 3 to observe that − 5

3 <
−2−

√
7

3 < − 4
3 and 0 < −2+

√
7

3 < 1
3 .

Either way, both −2−
√

7
3

and −2+
√

7
3

are in the interval [−2, 2].
It remains to determine the values of f(x) at the critical points and compare these to

each other and to the values at the endpoints. We leave this to the reader; one can use a
calculator or approximations to figure out what is going on . . . �

13:00 Seminar
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1. Find the absolute and local maxima and minima of f(x) = x3−3x2−x+3 on [−2, 2].
[10]

Solution. First, note that f(x) is defined and continuous throughout [−2, 2]. At the
endpoints we get f(−2) = (−2)3 − 3 · (−2)2 − (−2) + 3 = −8 − 12 + 2 + 3 = −15 and
f(2) = 23 − 3 · 22 − 2 + 3 = 8− 12− 2 + 3 = −3.

Second, f ′(x) =
d

dx

(
x3 − 3x2 − x+ 3

)
= 3x2−3 ·2x−1 = 3x2−6x−1, which is also

defined throughout [−2, 2]. To find the critical points we use the quadratic formula:

f ′(x) = 0 ⇐⇒ 3x2 − 6x− 1 = 0

⇐⇒ x =
−(−6)±

√
(−6)2 − 4 · 3 · (−1)

2 · 3

⇐⇒ x =
6±

√
36 + 12)
6

⇐⇒ x =
6±
√

48
6

⇐⇒ x =
6± 4

√
3

6

⇐⇒ x =
3± 2

√
3

3

The problem here is that 3±2
√

3
3 is not a terribly nice pair of numbers to play with. One

could use a calculator to get results which are close enough for our purposes. Using the
fact that 1 <

√
3 < 2 to observe that − 1

3 <
3−2
√

3
3 < 1

3 and 5
3 <

3+2
√

3
3 < 3 does not even

tell us whether the second root falls in the interval [−2, 2] . . .
It remains to determine the values of f(x) at the critical points and compare these to

each other and to the values at the endpoints. We leave this to the reader; one can use a
calculator or (better) approximations to figure out what is going on . . . �

Quiz #7. Wednesday, 6 November, 2002. [15 minutes]

12:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of f(x) =
(x− 2)ex and sketch its graph. [10]

Solution. Note that f(x) = (x−2)ex is defined and continuous everywhere; in particular,
it has no vertical asymptotes.

i. Intercepts: For the x-intercept, since ex 6= 0 for all x, f(x) = 0 exactly when x−2 = 0,
i.e. when x = 2. For the y-intercept, note that f(0) = (0− 2)e0 = −2 · 1 = −2.

ii. Critical points: First,

f ′(x) =
d

dx
(x− 2)ex =

(
d

dx
(x− 2)

)
· ex + (x− 2)

(
d

dx
ex
)

= ex + (x− 2)ex = (x− 1)ex ,

7



which is defined and continuous for all x. Since ex > 0 for all x, f ′(x) = 0 precisely
when x = 1. Note that because f ′(x) = (x− 1)ex < 0 for all x < 1 and f ′(x) > 0 for
all x > 1, f(x) has a local minimum at the critical point.

iii. Inflection points: First,

f ′′(x) =
d

dx
(x− 1)ex =

(
d

dx
(x− 1)

)
· ex + (x− 1) ·

(
d

dx
ex
)

= ex + (x− 1)ex = xex ,

which is defined and continuous for all x. Since ex > 0 for all x, f ′′(x) = 0 precisely
when x = 0. Because f ′′(x) = xex < 0 for all x < 0 and f ′′(x) > 0 for all x > 0, f(x)
has an inflection point at x = 0.

iv. Horizontal asymptotes: First,

lim
t→−∞

(x− 2)ex = lim
t→∞

x− 2
e−x

= lim
t→−∞

d
dx

(x− 2)
d
dx
e−x

= lim
t→−∞

1
e−x

= 0

using l’Hôpital’s Rule because lim
t→−∞

(x− 2) =∞ and lim
t→−∞

e−x =∞. It follows that

h(x) has a horizontal asymptote of y = 0 in the negative x direction. Second,

lim
t→∞

(x− 2)ex =∞

because lim
t→∞

(x − 2) = ∞ and lim
t→∞

ex = ∞. It follows that h(x) has no horizontal
asymptote in the positive x direction.

v. The graph:

�
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13:00 Seminar

1. Find the intercepts, critical and inflection points, and horizontal asymptotes of h(x) =
(x+ 1)e−x and sketch its graph. [10]

Solution. Note that h(x) = (x+1)e−x is defined and continuous everywhere; in particular,
it has no vertical asymptotes.

i. Intercepts: For the x-intercept, since ex 6= 0 for all x, h(x) = 0 exactly when x+1 = 0,
i.e. when x = −1. For the y-intercept, note that h(0) = (0 − 1)e−0 = −1 · 1 = −1.

ii. Critical points: First,

h′(x) =
d

dx
(x+ 1)e−x =

(
d

dx
(x+ 1)

)
· e−x + (x+ 1)

(
d

dx
e−x

)
= e−x + (x+ 1)

(
−e−x

)
= −xe−x ,

which is defined and continuous for all x. Since ex > 0 for all x, h′(x) = 0 precisely
when x = 0. Note that because h′(x) = −xe−x > 0 for all x < 0 and h′(x) < 0 for all
x > 0, h(x) has a local maximum at the critical point.

iii. Inflection points: First,

h′′(x) =
d

dx

(
−xe−x

)
=
(
d

dx
(−x)

)
· e−x + (−x) ·

(
d

dx
e−x

)
= −e−x − x ·

(
−e−x

)
= (x− 1)e−x ,

which is defined and continuous for all x. Since ex > 0 for all x, h′′(x) = 0 precisely
when x = 1. Because h′′(x) = (x − 1)e−x < 0 for all x < 1 and h′′(x) > 0 for all
x > 1, h(x) has an inflection point at x = 1.

iv. Horizontal asymptotes: First,

lim
t→−∞

(x+ 1)e−x = −∞

since lim
t→−∞

(x+ 1) = −∞ and lim
t→−∞

e−x =∞. It follows that h(x) has no horizontal

asymptote in the negative x direction. Second,

lim
t→∞

(x+ 1)e−x = lim
t→∞

x+ 1
ex

= lim
t→∞

d
dx(x+ 1)

d
dxe

x
= lim

t→∞

1
ex

= 0

using l’Hôpital’s Rule because lim
t→∞

(x+1) =∞ and lim
t→∞

ex =∞. It follows that h(x)
has a horizontal asymptote of y = 0 in the positive x direction.
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v. The graph:

�

Quiz #8. Wednesday, 27 November, 2002. [15 minutes]
12:00 Seminar

1. Compute: ∫ eπ

1

1
x

sin (ln(x)) dx [5]

Solution. We’ll use the substitution u = ln(x) and change the limits when we do.
Note that du = 1

xdx and that when x = 1, u = ln(1) = 0, and that when x = eπ,
u = ln (eπ) = πln(e) = π · 1 = π. Then∫ eπ

1

1
x

sin (ln(x)) dx =
∫ π

0

sin(u)du = cos(u)|π0 = cos(π)− cos(0) = (−1)− 1 = −2

does the job. �
2. What definite integral does the Right-hand Rule limit

lim
n→∞

n∑
i=1

(
1 +

i

n

)
· 1
n

correspond to? [5]
Solution. The general formula for the Right-hand Rule is:∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f

(
a+ i

b − a
n

)
· b − a

n

10



Here b−a
n is the width and f

(
a + i b−an

)
is the height of the ith rectangle in the Riemann

sum using a partition of [a, b] into n equal subintervals and evaluating f(x) at the right
endpoint of each subinterval to find the height of the corresponding rectangle.

We compare the right hand side of the formula to the given limit and try to indentify
a, b, and f . Comparing the given common width 1

n of the rectangles with b−a
n tells us

that b − a = 1; comparing 1 + i
n with f

(
a + i b−an

)
, it is a reasonable guess that a = 1

(so b = 1 + 1 = 2). If so, then f(x) does nothing to x, i.e. f(x) = x. Hence the desired
definite integral could be: ∫ 2

1

xdx

This is not the only solution. For example, if one had instead guessed that a = 0 (so
b = 1), we would get that f(x) = 1 + x and that the integral being sought was∫ 1

0

(1 + x)dx

instead. In general, one could let a be any constant; then b = a + 1 and f(x) = 1− a + x
do the job. �

13:00 Seminar
1. Compute: ∫ π/4

0

tan(x)
cos2(x)

dx [5]

Solution. We’ll use the fact that tan(x) = sin(x)
cos(x) to rewrite the function and then

use the substitution u = cos(x) and change the limits when we do. Note that du =
− sin(x)dx, so sin(x)dx = (−1)du. Also, when x = 0, u = cos(0) = 1, and when
x = π

4 , u = cos(π/4) = 1√
2
. Then

∫ π/4

0

tan(x)
cos2(x)

dx =
∫ π/4

0

sin(x)
cos(x)

· 1
cos2(x)

dx =
∫ π/4

0

sin(x)
cos3(x)

dx

=
∫ 1/

√
2

1

−1
u3

du = −
∫ 1/

√
2

1

u−3 du = − u−2

−2

∣∣∣∣1/
√

2

1

=
1

2u2

∣∣∣∣1/
√

2

1

=
1

2
(

1√
2

)2 −
1

2 (1)2 =
1
2 1

2

− 1
2

=
1
1
− 1

2
= 1− 1

2
=

1
2

does the job. �
2. What definite integral does the Right-hand Rule limit

lim
n→∞

n∑
i=1

(
2i
n
− 1
)
· 1
n

correspond to? [5]
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Solution. The general formula for the Right-hand Rule is:∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f

(
a+ i

b − a
n

)
· b − a

n

Here b−a
n is the width and f

(
a + i b−an

)
is the height of the ith rectangle in the Riemann

sum using a partition of [a, b] into n equal subintervals and evaluating f(x) at the right
endpoint of each subinterval to find the height of the corresponding rectangle.

We compare the right hand side of the formula to the given limit and try to indentify
a, b, and f . Comparing the given common width 1

n of the rectangles with b−a
n tells us that

b−a = 1; comparing 2i
n −1 with f

(
a + i b−an

)
, one could guess that a = 0 (so b = 0+1 = 1).

If so, then f(x) takes x to 2x− 1, i.e. f(x) = 2x− 1. Hence the desired definite integral
could be: ∫ 1

0

(2x− 1)dx

This is not the only solution. For example, if one had instead guessed that a = 1 (so
b = 2), we would get that f(x) = 2x− 3 and that the integral being sought was∫ 2

1

(2x− 3)dx

instead. In general, one could let a be any constant; then b = a+1 and f(x) = 2x−2a−1
do the job. �
Quiz #9. Wednesday, 4 December, 2002. [15 minutes]

12:00 Seminar
1. Find the area of the region enclosed by y = −x2 and y = x2 − 2x. [10]

Solution. First, we need to find the points of intersection of the two curves. We set
−x2 = x2 − 2, rearrange this to give 2x2 = 2, and observe that the solutions are x = −1
and x = 1.

Second, note that if x is between −1 and 1, x2 < 1, so −x2 > −1 and x2−2 < 1−2 =
−1. This tells us that for x between −1 and 1, the curve y = −x2 is above the curve
y = x2 − 2.

Third, the area of the region is thus given by:∫ 1

−1

(
−x2 −

(
x2 − 2

))
dx =

∫ 1

−1

(
−2x2 + 2

)
dx = −2

3
x3 + 2x

∣∣∣∣1
−1

=
(
−2

3
13 + 2(1)

)
−
(
−2

3
(−1)3 + 2(−1)

)
=

4
3
−
(

8
3

)
=

4
3

+
8
3

=
12
3

= 4 �
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13:00 Seminar

1. Find the area of the region enclosed by y = (x− 2)2 + 1 = x2 − 4x+ 5 and y = x+ 1.
[10]

Solution. First, we need to find the points of intersection of the two curves. We set
x2− 4x+5 = x+1, rearrange this to give x2− 5x+4 = 0, and observe that x2− 5x+4 =
(x−4)(x−1). (Worst coming to worst, one could get that by using the quadratic formula.)
It follows that the solutions are x = 1 and x = 4.

Second, note that if x is between 1 and 4, x2 − 5x+ 4 =
(
x2 − 4x+ 5

)
− (x+ 1) < 0,

because the parabola y = x2 − 5x + 4 opens upwards and its tip must be between its
zeros. This tells us that for x between 1 and 4, the line y = x + 1 is above the curve
y = x2 − 4x+ 5.

Third, the area of the region is thus given by:

∫ 4

1

(
(x+ 1)−

(
x2 − 4x+ 5

))
dx =

∫ 4

1

(
−x2 + 5x− 4

)
dx = −1

3
x3 +

5
2
x2 − 4x

∣∣∣∣4
1

=
(
−1

3
43 +

5
2
42 − 4 · 4

)
−
(
−1

3
13 +

5
2
12 − 4 · 1

)
=

44
3
− 11

6
=

77
6

�

Quiz #10. Wednesday, 8 January, 2003. [25 minutes]

12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by y = 0 and y = cos(x) for
π
2 ≤ x ≤ 3π

2 about the y-axis and find its volume. [10]

Solution. Observe that cos(x) ≤ 0 for π
2 ≤ x ≤

3π
2 . The solid in question looks like this:

We will find the volume of this solid using the method of cylindrical shells. Since we
rotated about a vertical line, we will use x as the variable. Note that the cylinder whose
edge passes through x has height h = 0− cos(x) = − cos(x) and radius r = x−0 = x. The

13



volume of the solid is:

V =
∫ 3π/2

π/2

2πrh dx

=
∫ 3π/2

π/2

2πx (− cos(x)) dx

= −2π
∫ 3π/2

π/2

x cos(x)dx

We use integration by parts with u = x and dv = cos(x)dx,
so du = dx and v = sin(x).

= −2π

[
x sin(x)|3π/2π/2 −

∫ 3π/2

π/2

sin(x)dx

]

= −2π
[(

3π
2

sin
(

3π
2

)
− π

2
sin
(π

2

))
− (− cos(x)|3π/2π/2

)]
= −2π

[(
3π
2

(−1)− π

2
1
)

+
(

cos
(

3π
2

)
− cos

(π
2

))]
= −2π

[
−4

2
π − (0 − 0)

]
= 4π2 �

13:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by y = −1 and y = cos(x)
for 0 ≤ x ≤ π about the y-axis and find its volume. [10]

Solution. Observe that cos(x) ≥ −1 for 0 ≤ x ≤ π. The solid in question looks like this:

14



We will find the volume of this solid using the method of cylindrical shells. Since we
rotated about a vertical line, we will use x as the variable. Note that the cylinder whose
edge passes through x has height h = cos(x)− (−1) = cos(x)+1 and radius r = x−0 = x.
The volume of the solid is:

V =
∫ π

0

2πrh dx

=
∫ π

0

2πx (cos(x) + 1) dx

= 2π
∫ π

0

x (cos(x) + 1) dx

We use integration by parts with u = x and dv = (cos(x) + 1) dx,
so du = dx and v = sin(x) + x.

= 2π
[
x (sin(x) + x)|π0 −

∫ π

0

(sin(x) + x) dx
]

= 2π
[
(π (sin(π) + π)− 0 (sin(0) + 0))−

(
− cos(x) +

1
2
x2

∣∣∣∣π
0

)]
= 2π

[
(π(0 + π)− 0)−

((
− cos(π) +

1
2
π2

)
−
(
− cos(0) +

1
2
02

))]
= 2π

[
π2 −

((
−(−1) +

1
2
π2

)
− (−1− 0)

)]
= 2π

[
π2 −

(
2 +

1
2
π2

)]
= 2π

[
1
2
π2 − 2

]
= π3 − 4π �

Quiz #11. Wednesday, 15 January, 2002. [20 minutes]

12:00 Seminar

1. Compute
∫

1
1− x2

dx.

Solution. We’ll use the trigonometric substitution x = sin(t); note that then dx =
cos(t)dt and cos(t) =

√
1− x2.∫

1
1− x2

dx =
∫

1
1− sin2(t)

cos(t)dt =
∫

1
cos2(t)

cos(t)dt

=
∫

1
cos(t)

dt =
∫

sec(t)dt = ln (sec(t) + tan(t)) + C

= ln
(

1
cos(t)

+
sin(t)
cos(t)

)
+ C = ln

(
1√

1− x2
+

x√
1− x2

)
+ C �

15



13:00 Seminar

1. Compute
∫

x2

√
1− x2

dx.

Solution. We’ll use the trigonometric substitution x = sin(t); note that then dx =
cos(t)dt, t = arcsin(x), and cos(t) =

√
1− x2.∫

x2

√
1− x2

dx =
∫

sin2(t)√
1− sin2(t)

cos(t)dt =
∫

sin2(t)
cos(t)

cos(t)dt

=
∫

sin2(t)dt =
∫

1
2

(1− cos(2t)) dt =
1
2

(
t+

1
2

sin(2t)
)

+C

=
1
2
t+

1
4
2 sin(t) cos(t) +C =

1
2

arcsin(x) +
1
2
x
√

1− x2 + C �

Quiz #12. Wednesday, 22 January, 2002. [20 minutes]
12:00 Seminar

1. Compute
∫

3x2 + 4x+ 2
x3 + 2x2 + 2x

dx.

Solution. This can be done by partial fractions, but since
d

dx

(
x3 + 2x2 + 2x

)
= 3x2 +

4x+ 2, there is a quicker alternative, namely the substitution u = x3 + 2x2 + 2x:∫
3x2 + 4x+ 2
x3 + 2x2 + 2x

dx =
∫

1
u
du = ln(u) + C = ln

(
x3 + 2x2 + 2x

)
+C

Not many people spotted this shortcut . . . �
13:00 Seminar

1. Compute
∫

2x+ 1
x3 + 2x2 + x

dx.

Solution. Since we are trying to integrate a rational function and there are no readily
apparent shortcuts, we use partial fractions.

First, note that the degree of the numerator is already less than the degree of the
denominator.

Second, we factor the numerator as far as possible:

x3 + 2x2 + x = x
(
x2 + 2x+ 1

)
= x (x+ 1)2

Third, it follows that

2x+ 1
x3 + 2x2 + x

=
2x+ 1

x (x+ 1)2 =
A

x
+

B

x+ 1
+

C

(x+ 1)2

for some constants A, B, and C . Putting the right-hand side over a common denominator
of x (x+ 1)2 and comparing numerators, we see that we must have:

2x+ 1 = A(x+ 1)2 +Bx(x + 1) + Cx

= A
(
x2 + 2x+ 1

)
+B

(
x2 + x

)
+ Cx

= (A +B)x2 + (2A+B +C)x+A

16



Hence A+ B = 0, 2A +B + C = 2, and A = 1, from which it follows pretty quickly that
B = −1 and C = 1.

Fourth, we compute the integral:∫
2x+ 1

x3 + 2x2 + x
dx =

∫ (
1
x

+
−1
x+ 1

+
1

(x+ 1)2

)
dx

=
∫

1
x
dx−

∫
1

x+ 1
dx+

∫
1

(x+ 1)2
dx

= ln(x) − lnx+ 1 +
−1
x+ 1

+K

= ln
(

x

x+ 1

)
− 1
x+ 1

+K

We’re using K for the generic constant because C has already been used . . . �
Quiz #13. Wednesday, 29 January, 2002. [15 minutes]

12:00 Seminar

1. Compute
∫ ∞
−∞

e−|x| dx or show that it does not converge. [10]

Solution. This is obviously an improper integral since there is an infinity in each limit of
integration.∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
e−|x| dx+

∫ ∞
0

e−|x| dx

=
∫ 0

−∞
e−(−x) dx+

∫ ∞
0

e−x dx

. . . since |a| = −a when a ≤ 0 and |a| = a when a ≥ 0.

= lim
t→−∞

∫ 0

t

ex dx+ lim
t→∞

∫ t

0

e−x dx

= lim
t→−∞

ex|0t + lim
t→∞

−e−x
∣∣t
0

= lim
t→−∞

(
e0 − et

)
+ lim
t→∞

((
−e−t

)
−
(
−e−0

))
= lim
t→−∞

(
1− et

)
+ lim
t→∞

(
1− e−t

)
= 1 + 1 = 2

Note that lim
t→−∞

et = lim
t→∞

e−t = 0. �
13:00 Seminar

1. Compute
∫ 1

−1

x+ 1
3
√
x

dx or show that it does not converge. [10]

Solution. This is an improper integral since f(x) =
x+ 1

3
√
x

has an asymptote at x = 0,

which is in the interval over which the integral is taken. We will do a little bit of algebra

17



first to simplify our task.∫ 1

−1

x+ 1
3
√
x

dx =
∫ 1

−1

(
x

3
√
x

+
1

3
√
x

)
dx

=
∫ 1

−1

(
x

x1/3
+

1
x1/3

)
dx

=
∫ 1

−1

(
x2/3 + x−1/3

)
dx

=
∫ 1

−1

x2/3 dx+
∫ 1

−1

x−1/3 dx

Note that the left integral is not improper.

=
3
5
x5/3

∣∣∣∣1
−1

+
∫ 0

−1

x−1/3 dx+
∫ 1

0

x−1/3 dx

=
(

3
5
15/3 − 3

5
(−1)5/3

)
+ lim
t→0−

∫ t

−1

x−1/3 dx+ lim
t→0+

∫ 1

t

x−1/3 dx

=
(

3
5
−
(
−3

5

))
+ lim
t→0−

3
2
x2/3

∣∣∣∣t
−1

+ lim
t→0+

3
2
x2/3

∣∣∣∣1
t

=
(

3
5

+
3
5

)
+ lim
t→0−

(
3
2
t2/3 − 3

2
(−1)2/3

)
+ lim
t→0+

(
3
2
12/3 − 3

2
t2/3

)
=

6
5

+ lim
t→0−

(
3
2
t2/3 − 3

2

)
+ lim
t→0+

(
3
2
− 3

2
t2/3

)
=

6
5

+
(

0− 3
2

)
+
(

3
2
− 0
)

=
6
5
− 3

2
+

3
2

=
6
5

Note that lim
t→0−

t2/3 = lim
t→0+

t2/3 = 0. �
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Quiz #14. Wednesday, 5 February, 2002. [20 minutes]
12:00 Seminar

1. Sketch the solid obtained by rotating the region bounded by x = 0, y = 4 and y = x2

for 0 ≤ x ≤ 2 about the y-axis. [2]
Solution.

�

2. Compute the surface area of this solid. [8]
Solution. The surface of the solid has two parts: the disk at the top and the parabolic
surface below it. The disk has radius 2 and hence has area π22 = 4π. We compute the
area of the parabolic surface using the formula for the area of a surface of revolution. Note
that the radius R for the infinitesimal arc length at x is simply R = x− 0 = x. Then the
area of the parabolic surface is given by:

∫ 2

0

2πR ds =
∫ 2

0

2πx

√
1 +

(
dy

dx

)2

dx = π

∫ 2

0

2x

√
1 +

(
d

dx
x2

)2

dx

= π

∫ 2

0

2x
√

1 + (2x)2
dx = π

∫ 2

0

2x
√

1 + 4x2 dx

Using the substitution u = 1 + 4x2 we get du = 8xdx, so
1
4
du = 2xdx. When x = 0, u = 1, and when x = 2, u = 17.

= π

∫ 17

1

√
u

1
4
du =

π

4
1

2
√
u

∣∣∣∣17

1

=
π

4

(
1

2
√

17
− 1

2
√

1

)
=
π

8

(
1√
17
− 1
)

Thus the total surface area of the solid is 4π + π
8

(
1√
17
− 1
)

= π
8

(
31 +

√
17
)
. �
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13:00 Seminar
1. Sketch the curve given by the parametric equations x = 1 + cos(t) and y = sin(t),

where 0 ≤ t ≤ 2π. [3]
Solution.

�

2. Compute the arc-length of this curve using a suitable integral. [7]
Solution. We’ll use the parametric version of the arc-length formula:∫ 2π

0

ds =
∫ 2π

0

√(
dx

dt

)2

+
(
dy

dt

)2

dt =
∫ 2π

0

√(
d

dt
((1 + cos(t))

)2

+
(
d

dt
sin(t)

)2

dt

=
∫ 2π

0

√
(0− sin(t))2 + (cos(t))2

dt =
∫ 2π

0

√
sin2(t) + cos2(t) dt

=
∫ 2π

0

√
1 dt =

∫ 2π

0

1 dt = t|2π0 = 2π − 0 = 2π �

Quiz #15. Wednesday, 26 February, 2002. [20 minutes]
12:00 Seminar

1. Graph the polar curve r = sin(2θ), 0 ≤ θ ≤ 2π. [4]
Solution.

�

20



2. Find the area of the region enclosed by this curve. [6]
Solution. The area can be computed as follows:∫ 2π

0

1
2
r2 dθ =

∫ 2π

0

1
2

sin2(2θ)dθ =
1
2

∫ 2π

0

(
1
2
− 1

2
cos (2 · 2θ)

)
dθ

=
1
4

∫ 2π

0

(1− cos (4θ)) dθ =
1
4

(
θ − 1

4
sin (4θ)

)∣∣∣∣2π
0

=
1
4

(
2π − 1

4
sin (4 · 2π)

)
− 1

4

(
0− 1

4
sin (0 · 2π)

)
=

1
4

(
2π − 1

4
sin (8π)

)
− 1

4

(
0− 1

4
sin (0)

)
=

1
4

(2π − 0)− (0− 0) =
pi

2
�

13:00 Seminar
1. Graph the polar curve r = cos(θ), 0 ≤ θ ≤ 2π. [4]

Solution.

�

2. Find the arc-length of this curve. [6]
Solution. Note that to find the arc-length of the curve we only need to trace it once, so
we only need 0 ≤ θ ≤ π. The arc-length can then be computed as follows:∫ π

0

√
r2 +

(
dr

dθ

)2

dθ =
∫ π

0

√
cos2(θ) + (− sin(θ))2

dθ

=
∫ π

0

√
cos2(θ) + sin2(θ) dθ =

∫ π

0

√
1 dθ

=
∫ π

0

1 dθ = θ|π0 = π − 0 = π �
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Quiz #16. Wednesday, 5 March, 2003. [15 minutes]
12:00 Seminar

Let ak =
1

(k + 1)(k + 2)
and sn =

n∑
k=0

ak.

1. Find a formula for sn in terms of n. [5]
Solution. Note that 1

(k+1)(k+2) = 1
k+1 −

1
k+2 . (Partial fractions!) Hence:

sn =
n∑
k=0

1
(k + 1)(k + 2)

=
n∑
k=0

[
1

k + 1
− 1
k + 2

]
=
[
1
1
− 1

2

]
+
[
1
2
− 1

3

]
+
[
1
3
− 1

4

]
+ · · ·+

[
1
n
− 1
n+ 1

]
+
[

1
n+ 1

− 1
n+ 2

]
=

1
1
− 1
n+ 2

= 1− 1
n+ 2

�

2. Does
∞∑
k=0

ak converge? If so, what does it converge to? [5]

Solution. It converges to 1:

∞∑
k=0

ak =
∞∑
k=0

1
(k + 1)(k + 2)

= lim
n→∞

sn = lim
n→∞

(
1− 1

n+ 2

)
= 1− 0 = 1 �

13:00 Seminar

Let ak = ln
(

k

k + 1

)
and sn =

n∑
k=1

ak.

1. Find a formula for sn in terms of n. [5]
Solution. The key here is that ln

(
a
b

)
= ln(a)− ln(b).

sn =
n∑
k=1

ln
(

k

k + 1

)
=

n∑
k=1

[ln(k)− ln(k + 1)]

= [ln(1)− ln(2)] + [ln(2)− ln(3)] + [ln(3)− ln(4)] + · · ·
+ [ln(n − 1)− ln(n)] + [ln(n)− ln(n+ 1)]

= ln(1)− ln(n + 1) = 0− ln(n + 1) = −ln(n + 1) �

2. Does
∞∑
k=0

ak converge? If so, what does it converge to? [5]

Solution. It does not converge. First, recall that ln(x)→∞ as x→∞. Now:

∞∑
k=1

ak =
∞∑
k=1

ln
(

k

k + 1

)
= lim
n→∞

sn = lim
n→∞

[−ln(n+ 1)] = − lim
n→∞

ln(n + 1) = −∞ �
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Quiz #17. Wednesday, 12 March, 2003. [15 minutes]
12:00 Seminar
Determine whether each of the following series converges or diverges:

1.
∞∑
n=0

e−n [5] 2.
∞∑
n=1

1
arctan(n)

[5]

Solution for 1.
∞∑
n=0

e−n =
∞∑
n=0

1
en

=
∞∑
n=0

(
1
e

)n
converges because this is a geometric

series with |r| =
∣∣∣∣1e
∣∣∣∣ < 1. �

Solution for 2. Since

lim
n→∞

1
arctan(n)

=
1

limn→∞ arctan(n)
=

1
π/2

=
2
π
6= 0 ,

∞∑
n=1

1
arctan(n)

diverges by the Divergence Test. �

13:00 Seminar
Determine whether each of the following series converges or diverges:

1.
∞∑
n=0

1
n+ 1

[5] 2.
∞∑
n=1

21/n2
[5]

Solution for 1.
∞∑
n=0

1
n+ 1

diverges by the (general) p-test since the degree of the denom-

inator is 1, the degree of the numerator is 0, and their difference, 1− 0 = 1, is not greater
than 1. (The divergence of this series can also be verified pretty quickly using the Integral
Test.) �
Solution for 2. Since

lim
n→∞

21/n2
= 2limn→∞ 1/n2

= 20 = 1 6= 0 ,

∞∑
n=1

21/n2
diverges by the Divergence Test. �

Quiz #18. Wednesday, 17 March, 2003. [15 minutes]
12:00 Seminar
Determine whether each of the following series converges absolutely, converges condi-

tionally, or diverges:

1.
∞∑
n=0

(−1)n2n

n2 + 2
[5] 2.

∞∑
n=1

n!(−1)n

nn
[5]

23



Solution for 1.
∞∑
n=0

(−1)n2n

n2 + 2
diverges by the Divergence Test: since

lim
n→∞

∣∣∣∣ (−1)n2n

n2 + 2

∣∣∣∣ = lim
n→∞

2n

n2 + 2
= lim

x→∞

2x

x2 + 2
= lim
x→∞

ln(2)2x

2x+ 0
= lim
x→∞

(ln(2))2 2x

2
=∞

(using l’Hôpital’s Rule twice), it follows that lim
n→∞

(−1)n2n

n2 + 2
does not exist. �

Solution for 2.
∞∑
n=1

n!(−1)n

nn
converges absolutely since

∞∑
n=1

n!
nn

converges by the Com-

parison Test:

n!
nn

=
n(n− 1)(n− 2) · . . . · 3 · 2 · 1

n · n · n · . . . · n · n · n =
n

n
· n− 1

n
· n− 2

n
· . . . · 3

n
· 2
n
· 1
n
≤ 1 · 2

n
· 1
n

=
2
n2

and
∑
n=1

2
n2

= 2
∑
n=1

1
n2

converges by the p-test because 2− 0 > 1. �

13:00 Seminar

Determine whether each of the following series converges absolutely, converges condi-
tionally, or diverges:

1.
∞∑
n=0

(−1)n
(
2n2 + 3n+ 4

)
3n2 + 4n+ 5

[5] 2.
∞∑
n=1

cos(nπ)
n2

[5]

Solution for 1.
∞∑
n=0

(−1)n
(
2n2 + 3n+ 4

)
3n2 + 4n+ 5

diverges by the Divergence Test: since

lim
n→∞

∣∣∣∣∣ (−1)n
(
2n2 + 3n+ 4

)
3n2 + 4n+ 5

∣∣∣∣∣ = lim
n→∞

2n2 + 3n+ 4
3n2 + 4n+ 5

= lim
n→∞

2n2 + 3n+ 4
3n2 + 4n+ 5

·
1
n2

1
n2

= lim
n→∞

2 + 3
n + 4

n2

3 + 4
n + 5

n2

=
2 + 0 + 0
3 + 0 + 0

=
2
3

it follows that lim
n→∞

(−1)n
(
2n2 + 3n+ 4

)
3n2 + 4n+ 5

6= 0. �

Solution for 2. Note that cos(π) = −1, cos(2π) = 1 = (−1)2, cos(3π) = −1 = (−1)3,
cos(4π) = 1 = (−1)4, and so on. It follows that the given series is the alternating series
∞∑
n=1

(−1)n

n2
. This converges absolutely because

∞∑
n=1

1
n2

converges by the p-test since 2−0 >

1. �
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Bonus Quiz. Friday, 19 March, 2003. [15 minutes]

1. A smiley face is drawn on the surface of a balloon which is being inflated at a rate of
10 cm3/s. At the instant that the radius of the balloon is 10 cm the eyes are 10 cm
apart, as measured inside the balloon. How is the distance between them changing
at this moment? [10]

Solution. �
Quiz #19. Wednesday, 24 March, 2003. [20 minutes]

12:00 Seminar

Consider the power series
∞∑
n=0

2nx2n

n!
.

1. For which values of x does this series converge? [6]
Solution. �

2. This series is equal to a (reasonably nice) function. What is it? Why? [4]
Solution. �

13:00 Seminar

Consider the power series
∞∑
n=0

2nxn+1

n+ 1
.

1. For which values of x does this series converge? [6]
Solution. �

2. This series is equal to a (reasonably nice) function. What is it? Why? [4]
Solution. �
Quiz #20. Wednesday, 2 April, 2003. [20 minutes]

12:00 Seminar
Let f(x) = sin(π − 2x).

1. Find the Taylor series at a = 0 of f(x). [6]
Solution. �

2. Find the radius and interval of convergence of this Taylor series. [4]
Solution. �

13:00 Seminar

25



Let f(x) = ln(2 + x).
1. Find the Taylor series at a = 0 of f(x). [6]

Solution. �
2. Find the radius and interval of convergence of this Taylor series. [4]

Solution. �
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