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Chapter 1

Mathematical Reasoning

1.1 Statements

Definition 1.1.1 A statement is a sentence which is either true or false,

but not both simultaneously.

Here are some examples.

Example 1.1.1 Today is Tuesday.

This is a statement which is true.

Example 1.1.2 Toronto is the capital of Canada.

This is a statement which is false.

Example 1.1.3 I have a cat.

This is also a statement. Note that for this statement, you know it is

either true or false, even if you do not know which is the case.

Important!: ”Titanic is the best movie either” is not a statement, it is

an opinion.

We usually use letters like p, q, r, s to denote statements. If we write

p : Today is Tuesday.
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it means that whenever when we refer to p, we mean the statement ”Today

is Tuesday”.

In the next few sections we will be interested in statements in general,

how to combine statements, we will not address the question of whether a

certain statement is true or not, until we learn truth tables.

1.1.1 Negating Statements

If we have a statement, by the negation of that statement we mean the

complete opposite of that statement.

For example, the negation of ”Today is Tuesday” is ”Today is not Tues-

day”.

The negation of a statement p is denoted by ∼ p.

Note that the same statement can be negated in different ways, for ex-

ample ”It is not true that today is Tuesday” is also a negation of ”Today

is Tuesday”. In general, when we refer to a statement, we don’t mean the

exact phrasing, it is the meaning which is important.

Exercise 1.1.1 If

p : Toronto is the capital of Canada.

what is ∼ p?

Solution:

∼ p : Toronto is not the capital of Canada.

Exercise 1.1.2 If

p : I have a cat.

what is ∼ p?

Solution:

∼ p : I do not have a cat.
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Question 1.1.1 What happens if we negate a question twice?

Solution: We get the initial statement. ∼∼ p is the same thing as p, we can

write this answer also as

∼∼ p = p .

1.1.2 Quantified Statements

A quantified statement is a statement containing the words ALL, SOME

or NONE.

Example 1.1.4

p : All penguins are black

q : Some cats are yellow

r : Some cars are not red

s : No students are lazy

A quantified statement has one of four forms:

All A are B (1.1)

The meaning of this statement is that every single element of A is B. Or

equivalently that there is no A which is not B. ”All penguins are black”,

means that every single penguin is black. Again, don’t forget that we don’t

worry yet if this is a true or false statement.

Some A are B (1.2)

The meaning of this statement is that there exists at least one element

in A which is B. ”Some cats are yellow” means that one or more cats are

yellow.

Important!: In mathematics, some means anything between one and

all, inclusive. Sometimes in English by ”some” it is understood ”some but
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not all”, in mathematics some could mean all. Same way, by ”some” it is

often understood multiple, in mathematics it could also mean one.

If a lady has 8 cats and I say ”some” of her cats, some can mean any of

the following numbers: 1, 2, 3, 4, 5, 6, 7, 8.

Some A are not B (1.3)

The meaning of this statement is that there exists at least one element in

A which is not B. ”Some cars are not red” means that there is at least one

car which is not red.

No A are B (1.4)

The meaning of this statement is that you cannot find any element of A

which is B. ”No students are Lazy” means that there exists no lazy student.

1.1.3 Negating quantified statements

If

p : All penguins are black

then

∼ p : Some penguins are not black

Important!: Be careful when you negate quantified statements, ”All

penguins are not black” is NOT the negation of ”All penguins are black”.

When we negate a quantified statement, the quantifier changes. Not

changing the quantifier is one of the most common mistakes people make

when negating statements.

Question 1.1.2 What is the negation of

Some penguins are not black

Solution: We already seen before that if we negate a statement once, and

then negate it again, we get our original statement. The negation of this

statement is

p : All penguins are black
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Example 1.1.5

q : Some cats are yellow

What is ∼ q?

Solution:

∼ q : No cats are yellow

And exactly as before the negation of ”No cats are yellow” is ”Some cats

are yellow”.

The four quantified statements come in two groups of two. In each group,

the negation of one statement is the other statement:

All A are B←→ Some A are not B

Some A are B←→ No A are B

1.1.4 Connecting statements

Definition 1.1.2 A simple statement is a statement which conveys a sin-

gle idea and no connecting words.

We can create more complex statements by connecting simple statement

by the words OR, AND, IF .... THEN and IF AND ONLY IF. We

will refer to these as connecting words.

Example 1.1.6

Today is Tuesday and we have a class .

Is a statement created by connecting the simple statements

p : Today is Tuesday ,

q : We have a class .

with the connecting word and.

5



AND statements

If p, q are two statements, the statement ”p and q” is denoted by p ∧ q.

Example 1.1.7

p : Today is Tuesday ,

q : We have a class .

What is p ∧ q?

Solution:

p ∧ q : Today is Tuesday and we have a class

OR statements

If p, q are two statements, the statement ”p or q” is denoted by p ∨ q.

Example 1.1.8

p : I visited London ,

q : I visited Paris .

What is p ∨ q?

Solution:

p ∧ q : I visited London or Paris

Important!: In English, an ”OR” statement can have two meanings.

The Statement ”I visited London or Paris” can mean ”I visited Paris or

London, but not both” (exclusive or), or it could mean ”I visited Paris or

London, or both” (inclusive or).

In mathematics the or is always inclusive. p ∨ q always means p or q or

both.

Exercise 1.1.3

p : I study ,

q : I pass the class. .

Write p ∨ q, p∨ ∼ q,∼ p ∨ q,∼ p∨ ∼ q.

6



Solution:

p ∨ q : I study or I pass the class.

p∨ ∼ q : I study or I don’t pass the class.

∼ p ∨ q : I don’t study or I pass the class.

∼ p∨ ∼ q : I domn’t study or I don’t pass the class.

IF... THEN statements

By an ”If then Statement” we mean a statement of the form ”If p then q”.

We denote such a statement by p→ q.

Example 1.1.9 The statement

If it is raining then there are clouds outside

is an if ... then statement. It can be viewed easily this way

If it is raining︸ ︷︷ ︸
p

then︸ ︷︷ ︸
−→

there are clouds outside︸ ︷︷ ︸
q

Note that most if...then statements can be rephrased with the quantitative

ALL. For example

If a student is registered in MATH 260 then he passed MATH 160.

can also be stated as

All students registered in MATH 260 passed MATH 160.

Important!: If p and q are two simple statements, most of the times

p→ q and q → p are different statements. For example, if we have

p : It is raining ,

q : There are coulds outside .

then we have

p→ q : If it is raining then there are clouds outside ,

while

q → p : If there are clouds outside then t is raining .

The first statement is true but the second statement is false.

7



IF AND ONLY IF statements

Sometimes when we reverse a true if... then statement we get another true

if ... then statement. Instead of writing them as two separate if ... then

statements, we write it as if and only denote it by p↔ q

Note that p↔ q means both p→ q and q → p.

Example 1.1.10

The campus is closed︸ ︷︷ ︸
p

if and only if︸ ︷︷ ︸
←→

it is a holiday︸ ︷︷ ︸
q

As I mentioned before, this statement tells us two things:

• When the campus is closed, it is a holiday.

• When it is a holiday, the campus is closed.

1.1.5 Parenthesis

When we have multiple statements or operations, we use parenthesis to em-

phasize which statements are grouped together.

Important!: If there is no parenthesis, ∼ negates only the statement

immediately after it.

Exercise 1.1.4

p : She is rich ,

q : She is happy .

Write ∼ p ∨ q,∼ p ∧ q,∼ (p ∨ q),∼ (p ∧ q).

Solution:

∼ p ∨ q : She is not rich or she is happy.

∼ p ∧ q : She is not rich and she is happy.

∼ (p ∨ q) : She is neither rich nor happy.

∼ (p ∧ q) : It is not true that she is rich and happpy.
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1.1.6 Importance of connecting words.

Important!: If and only if is more important than if .. then is more

important than and, or is more important than not.

In English, if there is a comma in the phrase, it means that the statements

before the comma appear in a parenthesis, and the statements after the

comma appear in a parenthesis.

If there are no parenthesis we start by identifying the most impor-

tant connecting word, and put the statements before and after it

in parenthesis.

Example 1.1.11 The most important connector in p → q ∧ r is p→q ∧ r.
Therefore it should be read as

p→(q ∧ r)

Example 1.1.12 Note that this is just common sense, if you see the state-

ment

If I study hard︸ ︷︷ ︸
p

then︸ ︷︷ ︸
−→

I will pass the class︸ ︷︷ ︸
q

and︸︷︷︸
∧

I will be happy︸ ︷︷ ︸
q

your understanding is exactly p→ (q ∧ r).

Exercise 1.1.5 Put the parentheses in the following statements

p→ q ↔ r

p∧ ∼ q → r

p ∧ q ↔ r ∨ s

Solution:

(p→ q)↔ r

(p∧ ∼ q)→ r

(p ∧ q)↔ (r ∨ s)
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1.1.7 Exercises

Exercise 1.1.6 : p and q are the following two statements.

p : I work hard

q : I succed

Write in words ∼ p ; ∼ q ; p ∨ q ; p ∧ q ; p→ q ; ∼ p→∼ q ; q ↔ p.

Exercise 1.1.7 : Write the negations of the following statements

p : All cats are pets

q : Some students are education majors

r : Some students are not business majors

s : No atheists go to church

Exercise 1.1.8 : Place the parentheses in the right spots for the following

statements.

p→ q ↔ r

p ∨ q → r

p→ r ∨ q

p→ q ↔ r ∨ s

Exercise 1.1.9 : Rewrite the statement ”No student is not passing this

class” without any negation and meaning the same thing.

Exercise 1.1.10 : Write the negation ∼ p of the statement

p : All banannas are yellow.

Exercise 1.1.11 : Write the negation ∼ p of the statement

p : Some problems are easy.
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1.2 Truth Tables

The negation of a True statement is a False statement. We can express this

in a table:

p ∼ p

T F

The negation of a False statement is a True statement. We can also

express this in a table:

p ∼ p

F T

We can combine the two tables in a single table, which is called the Truth

table for Negation.

p ∼ p

T F

F T

1.2.1 Truth Table for OR

The truth table for OR is easy to find:

p q p ∨ q

T T T

T F T

F T T

F F F

Exercise 1.2.1 Find the Truth table for p∨ ∼ q.

Solution:

p q ∼ q p ∨ ∼ q

T T F T

T F T T

F T F F

F F T T
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1.2.2 Truth Table for AND

The truth table for OR is easy to find:

p q p ∧ q

T T T

T F F

F T F

F F F

Exercise 1.2.2 Find the Truth table for p∧ ∼ q.

Solution:

p q ∼ q p ∧ ∼ q

T T F F

T F T T

F T F F

F F T F

Exercise 1.2.3 Find the Truth table for (∼ p ∨ q)∧ ∼ q.

Solution:

p q ∼ p ∼ p ∨ q ∼ q (∼ p ∨ q)∧ ∼ q

T T F T F F

T F F F T F

F T T T F F

F F T T T T

Exercise 1.2.4 Find the Truth table for p∨ ∼ p.

Solution:

p ∼ p p ∨ ∼ p

T F T

F T T
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Definition 1.2.1 A mathematical statement which is always true is called a

tautology.

For example p∨ ∼ p is a tautology.

Exercise 1.2.5 Find the Truth table for p∧ ∼ p.

Solution:

p ∼ p p ∧ ∼ p

T F F

F T F

Definition 1.2.2 A mathematical statement which is always false is called

a self contradiction.

For example p∧ ∼ p is a self contradiction.

1.2.3 Truth Table for IF ... THEN

The truth table for if.. then is the following:

p q p → q

T T T

T F F

F T T

F F T

Important!: In mathematics false implies anything is TRUE. The reason

for this is that in a formal proof, we only worry about the proof if the given

statement is true.

For example

If x > 2︸ ︷︷ ︸
p

then︸︷︷︸
→

x2 > 4︸ ︷︷ ︸
q

.

This is a true statement, which tells us that whenever x > 2 we have x2 > 4.

It doesn’t tell us what happens when x ≤ 2. Note that in that case p is false,

and q is sometimes true and sometimes false.
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Regardless the above statement is true.

Another interesting example is

If it is Tuesday︸ ︷︷ ︸
p

then︸︷︷︸
→

I go to school︸ ︷︷ ︸
q

.

This phrase simply means that every Tuesday I go to school. This is a

true phrase.

But, depending on which day it is, this TRUE statement has the form

T → T (Tuesday) or F → T (Thursday) or F → F (Sunday).

1.2.4 Truth Table for IF AND ONLY IF

The truth table for IF AND ONLY IF is easy to find:

p q p ∨ q

T T T

T F F

F T F

F F T

As expected, IF AND ONLY IF means that both statements have the

same truth value.

Exercise 1.2.6 Write the Truth table for (p ∨ q)→∼ r.

Solution:

p q r ∼ r p ∨ q (p ∨ q)→∼ r

T T T F T F

T F T F T F

F T T F T F

F F T F F T

T T F T T T

T F F T T T

F T F T T T

F F F T F F
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Exercise 1.2.7 Write the Truth table for p→ q, q → p,∼ p→∼ q,∼ q →∼
p, p∧ ∼ q.

Solution:

p q ∼ p ∼ q p → q q → p ∼ p→∼ q ∼ q →∼ p p∧ ∼ q

T T F F T T T T F

T F F T F T T F T

F T T F T F F T F

F F T T T T T T F

Let us observe that p→ q and ∼ q →∼ p have the same truth table thus

they are equivalent:

(p→ q) ≡ (∼ q →∼ p) .

Important!: This is the key for what we will call in the next section a

proof by contrapositive.

Also, the truth table for this is exactly the opposite of the truth table for

p∧ ∼ q. Therefore, they are also equivalent to ∼ (p∧ ∼ q).

Important!: This is the key for what we will call in the next section a

proof by contradiction.

We also have

(q → p) ≡ (∼ p→∼ q) .

1.2.5 Exercises

Exercise 1.2.8 Write the Truth tables for the following:

a) p→∼ q.

b) ∼ p↔ q.

c) p ∧ (∼ q ∨ p).

d) p↔ q ∨ r

Exercise 1.2.9 Write the truth table for (p∧ ∼ q)
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Exercise 1.2.10 : Use truth tables to determine if the following statements

are equivalent:

a) p ∨ q and p→ (p∨ ∼ q.

b) p ∨ q and ∼ (∼ p∧ ∼ q).

c) p→ q and ∼ p ∨ q.

Exercise 1.2.11 : Write the truth table for (p∨ ∼ q)

Exercise 1.2.12 : Write the truth table for (p ∧ q)→ (∼ p).

Exercise 1.2.13 : Write the truth table for (p ∨ q)→ (∼ p).

Exercise 1.2.14 : Are p ∨ q and (∼ p)→ q equivalent?

1.3 Proofs

1.3.1 Conditional, Converse, Inverse and Contraposi-

tive

Definition 1.3.1 If p and q are two statements we will call the following:

p→ q is called the conditional statement .

q → p is called the converse statement .

∼ p→∼ q is called the inverse statement .

∼ q →∼ p is called the contrapositive statement .

Exercise 1.3.1 Write the conditional, converse, inverse and contrapositive

for

p : you are 17

q : you cannot vote

16



Solution:

conditional : If you are 17 then you cannot vote.

converse : If you cannot vote then you are 17.

inverse : If you are not 17 then you can vote.

contrapositive : If you can vote then you are not 17.

1.3.2 Direct Proofs

A direct proof is a proof of the form p→ q. p is the statement given by the

problem, while q is what we need to prove.

Our goal is to start at p and by reasoning to arrive at q.

17



Exercise 1.3.2 If x ≥ 2 and y ≥ 3 show that 2x+ 3y ≥ 13.

Solution:

Given Wanted

x ≥ 2 2x+ 3y ≥ 13

y ≥ 3

For us p is the red statement, q is the blue statement, and we need to go

from p to q. Since our goal is to show that 2x + 3y ≥ 13, we need to create

2x+ 3y from the red statements. To do this, we first create 2x and 3y.

x ≥ 2⇒ 2x ≥ 4

y ≥ 3⇒ 3y ≥ 9

Adding these two statements, we get 2x + 3y ≥ 13, which is exactly q.

This completes the proof.

Exercise 1.3.3 If x is even show that x2 + 1 is odd.

Solution:

Given Wanted

x is even x2 + 1 is odd

x is even means that x = 2k for some integer x. Then

x2 + 1 = (2k)2 + 1 = 4k2 + 1 = 2(2k2) + 1 .

is an odd number.

1.3.3 Proof by Contrapositive

Recall that (p→ q) ≡ (∼ q →∼ p). Therefore

To prove a direct statement p → q we can prove instead, if we prefer

the contrapositive statement ∼ q →∼ p.

Such a proof is called a proof by contrapositive.

18



To do a proof by contrapositive, we start by writing the contrapositive

statement, and then we prove it. Note that for the contrapositive we do a

direct proof.

Important: Whenever when we are not sure if we should do a direct proof

or a proof by contrapositive, write both the direct implication p→ q and the

contrapositive ∼ q →∼ p. Whichever looks easier, that is the one we prove.

Most of the times it is easier to start at the simpler statement and

go towards the more complex one, then the other way around.

Exercise 1.3.4 Write the contrapositive of

If you take Math 260 then you passed Math 160.

Solution:

If you didnot pass Math 160 then you don’t take Math 260.

Exercise 1.3.5 If x2 is odd show that x is odd.

Solution:

The contrapositive of this statement is :

contrapositive : If x is even then x2 is even.

As the contrapositive goes from the simpler statement to the more com-

plex one, we will prove the contrapositive.

Given Wanted

x is even x2 is even.

x is even means that x = 2k for some integer x. Then

x2 = (2k)2 = 4k2 = 2(2k2) .

is an even number.

We proved the contrapositive statement, therefore we proved our state-

ment by contrapositive.
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Exercise 1.3.6 If x2 + 5x < 0 then x < 0.

Solution:

The contrapositive of this statement is :

contrapositive : If x ≥ 0 then x2 + 5x ≥ 0.

As the contrapositive goes from the simpler statement to the more complex

one, we will prove the contrapositive.

Given Wanted

x ≥ 0 x2 + 5x ≥ 0

We know that x2 ≥ 0. As x ≥ 0 we also have 5x ≥ 0. Adding them

together, we get x2 + 5x ≥ 0.

1.3.4 Proofs by contradiction

Recall that p→ q and p∧ ∼ q have opposite truth tables. Therefore, to show

that p→ q, we can prove instead that p∧ ∼ q is a selfcontradiction.

A proof by contradiction starts by assuming that ∼ q. Then, combining

p and ∼ q, our aim is to get a contradiction. We complete by proof, by ob-

serving that since we got a contradiction, our assumption is wrong, therefore

q must be true.

Important: Contradiction is often useful when the problem asks us to

show that something doesn’t happen. Whenever when we see such a problem,

we should consider a proof by contradiction. A proof by contradiction doesn’t

always work in that situation, but works more often than not.

Exercise 1.3.7 Show that we cannot find positive integers x, y so that

x2 = 2 + y2 .

Solution: Since we have a negative statement, we try a proof by contradic-

tion.

We assume by contradiction that we can find positive integers

x, y so that

x2 = 2 + y2 .
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Given Wanted

x, y integers contradiction

x2 = 2 + y2

We know

2 = x2 − y2 = (x− y)(x+ y) .

The only way of writing 2 as a product of two positive integers is 1 · 2. As

x− y < x+ y we have

x− y = 1

x+ y = 2

Adding the two relations we get 2x = 2 or x = 3
2
.

Therefore we know that x is a positive integer, and that x = 3
2
. This is a

contradiction.

Since we got a contradiction, our assumption is wrong. Therefore, we

showed that we cannot find positive integers x, y so that

x2 = 2 + y2 .

Note: Any problem which we can solve by contrapositive, also works by

contradiction. In this case, a proof by contrapositive is shorter. The converse

is not true, many proofs by contradiction don’t work by contrapositive.

Exercise 1.3.8 Show that
√

2 is irrational.

Solution: Note that the only thing we know about irrational numbers is

that they are not rational. Therefore the problem asks us to show that
√

2

is not rational.

Since we have a negative statement, we try a proof by contradiction.

We assume by contradiction
√

2 is rational.

Given Wanted√
2 is rational contradiction
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Since
√

2 is rational, we can write it as a reduced fraction
√

2 =
m

n

with m,n integers. Then

2 =
m2

n2

and

2n2 = m2 .

The left hand side is even, therefore the right hand side is also even. Since

m2 is even, m must be even.

Let m = 2k. Then

2n2 = (2k)2 = 4k2 ⇒ n2 = 2k2 .

We repeat the argument: The right hand side is even, therefore the left hand

side is also even. Since n2 is even, n must be even.

Therefore, we know that m,n are both even, which means that m
n

can be

simplified by an 2. We also know that m
n

is reduced, which means it cannot

be reduced. These two statements contradict eachother, therefore we reached

a contradiction.

Since we got a contradiction, our assumption is wrong. Therefore, we

showed
√

2 is not rational.

1.3.5 Exercises

Exercise 1.3.9 If

p : I live in Edmonton

and

q : I live in Alberta

write the conditional p→ q, the converse q → p, the inverse ∼ p→∼ q and

the contrapositive ∼ q →∼ p.

Exercise 1.3.10 : Write the converse, inverse and contrapositive for the

following statement

”If you work hard you will succeed.”
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Exercise 1.3.11 : What is the converse of the inverse of p→ q?

Exercise 1.3.12 : If x ≥ 1 and y ≥ 2 show that 2x+ 3y ≥ 8.

Exercise 1.3.13 : If x2 < 1 prove by contrapositive that x < 1.

Exercise 1.3.14 : Prove by contradiction that
√

3 is not rational.

Exercise 1.3.15 : Write the converse, inverse and contrapositive for

q : If it rains then I need my umbrella.

Exercise 1.3.16 : Write the converse, inverse and contrapositive for

q : If we have an exam then it is Thursday.

Exercise 1.3.17 :Prove by contrapositive that if x2 + 2x < 0 then x < 0.

Exercise 1.3.18 : Prove by contrapositive that if x2 + 1 is even then x is

odd.

Exercise 1.3.19 : Prove that if n2 + 1 is odd then n is even.

Exercise 1.3.20 : If x ≥ 2 and y ≥ 3 prove that 2x+ y ≥ 7.
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Chapter 2

Real numbers

2.1 Real Numbers

In Math 160 we first started by studying the Natural numbers. The set of

natural numbers is usually denoted by N. The natural numbers are:

1, 2, 3, 4, .......

Later we discovered the integers. The set of integers is usually denoted by

Z. The integers are:

...− 4,−3,−2,−1, 01, 2, 3, 4, .....

Division leads to fractions, and any ratio of two integers, the denominator

being not zero, is called a rational number. The set of all rational numbers

is denoted by Q. Numbers like 1
2
, 3

5
, −1

2
, 3 are rational numbers.

But we have seen in the previous section that some numbers like
√

2

cannot be rational. These are called irrational numbers. Other examples of

irrational numbers are
√

3,
√

2 +
√

3, π.

Rational and irrational numbers form together the real numbers. real

numbers are denoted by R.

Real numbers can be represented as points on the real line:

−4 −3−2.3 −1 0 1.2 2 3 4
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2.1.1 Intervals

An interval consists of all numbers between two fixed real numbers.

We use round brackets (, ) if the end point(s) is not in the interval and

square brackets [, ] if the end point(s) is in the interval.

For example [2, 5] represents all numbers between 2 and 5 inclusive. This

interval can be represented by the inequality

2 ≤ x ≤ 5 .

It can also be drawn on the real axis:

2 2.5 3 3.5 4 4.5 5

Important: When we draw an interval on the axis, we use hollow dot to

emphasize that the end point is not in the interval, and full dot to emphasize

that the end point is in the interval.
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Exercise 2.1.1 Express the intervals [2, 5) ; (−3, 7) and (−1, 3] as inequal-

ities and draw them on the real axis.

Solution:

[2, 5) : 2 ≤ x < 5

(−3, 7) : − 3 ≤ x < 7

(−1, 3] : − 1 < x ≤ 3

−2 0 2 4 6 8

[2,5)
(-3,7)
(-1,3]

To denote all the numbers greater than a real number a we use the nota-

tion (a,∞) or [a,∞) depending if a is included or not. Same way, to denote

all the numbers less than a real number a we use the notation (−∞, a) or

(−∞, a] depending if a is included or not.

Important: Since ∞ and −∞ are not numbers, they are never included

in the interval. The interval is always open at ∞ and −∞.

Exercise 2.1.2 Express the intervals [2,∞) ; (−1,∞) and (−∞, 3] as in-

equalities and draw them on the real axis.

Solution:

[2,∞) : 2 ≤ x .

−4 −3−2.3 −1 0 1.2 2 3 4
•

(−1,∞) : −1 < x .

−4 −3−2.3 −1 0 1.2 2 3 4
◦
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(−∞, 3] : x ≤ 3 .

−4 −3−2.3 −1 0 1.2 2 3 4
•

2.1.2 Intersection

In Mathematics we use the notation {, } to refer to the elements listed in

that list. Such a list is called a set.

Example 2.1.1

{1, 2, 5} .

means the set consisting of the numbers 1, 2 and 5.

Important: {1, 2} means only the numbers 1 and 2, while [1, 2] means all

the numbers between 1 and 2 inclusive.

We also use the symbol ∅ to refer to an empty list. This symbol is called

the empty set, and is always used to say that there is no number like the

one we seek.

Definition 2.1.1 The intersection of two sets consists of all common ele-

ments. The intersection is denoted by ∩.

Example 2.1.2

{1, 2, 3, 5} ∩ {1, 2, 4, 6} = {1, 2} .

Note: The intersection consists of all elements in the first set and in the

second set. This is why the symbols for intersection (∩) and ”and” (∧) are

similar.

Exercise 2.1.3 Find (2, 4] ∩ (3, 7).
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Solution:

2 3 4 5 6 7

[2,4)
(3,7)

In the intersection we seek the points colored with both colors. Thus

(2, 4] ∩ (3, 7) = (3, 4] .

Exercise 2.1.4 Find (−2, 1) ∩ (0, 7).

Solution:

−2 0 2 4 6

(-2,1)
(0,7)

(−2, 1) ∩ (0, 7) = (0, 1) .

Exercise 2.1.5 Find (0, 3] ∩ [3, 4).

Solution:

0 1 2 3 4

(0,3]
[3,4)

(0, 3] ∩ [3, 4) = {3} .

Exercise 2.1.6 Find (0, 1] ∩ [2, 4).
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Solution:

0 1 2 3 4

(0,1]
[2,4)

There is no point colored with both colors, we write ∅ to say this.

(0, 1] ∩ [2, 4) = ∅ .

Exercise 2.1.7 Find (0, 3) ∩ [3, 4).

Solution:

0 1 2 3 4

(0,3)
[3,4)

(0, 3) ∩ [3, 4) = ∅ .

Important: When we intersect intervals, there are three possible answers:

a smaller interval, a point or the empty set.

2.1.3 Union

Definition 2.1.2 The union of two sets consists of all elements of the two

sets. The intersection is denoted by ∪.

Example 2.1.3

{1, 2, 3, 5} ∪ {1, 2, 4, 6} = {1, 2, 3, 4, 5, 6} .

Note: The union consists of all elements in the first set or in the second

set. This is why the symbols for intersection (∪) and ”and” (∨) are similar.

Exercise 2.1.8 Find (2, 4] ∪ (3, 7).
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Solution:

2 3 4 5 6 7

[2,4)
(3,7)

In the union we seek the points colored with one or two colors. Thus

(2, 4] ∪ (3, 7) = (2, 7) .

Exercise 2.1.9 Find (−2, 1) ∪ (0, 7].

Solution:

−2 0 2 4 6

(-2,1)
(0,7]

(−2, 1) ∪ (0, 7) = (−2, 7] .

Exercise 2.1.10 Find (0, 3] ∪ [3, 4).

Solution:

0 1 2 3 4

(0,3]
[3,4)

(0, 3] ∪ [3, 4) = (0, 4] .

Exercise 2.1.11 Find (0, 1] ∪ [2, 4).
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Solution:

0 1 2 3 4

(0,1]
[2,4)

There is no way of writing the answer in a better form.

(0, 1] ∪ [2, 4) = ∅ .

Exercise 2.1.12 Find (0, 3) ∪ [3, 4).

Solution:

0 1 2 3 4

(0,3)
[3,4)

(0, 3) ∪ [3, 4) = (0, 4) .

Important: When we take the union of intervals, if the two intervals have

one or more common points we get a larger interval. If they don’t have any

common points, we cannot express our answer better than an union of two

intervals.

2.1.4 Absolute Value

Any real number can be thought as consisting of two parts: a non-negative

number (i.e positive or zero) and a sign + or − in front. The non-negative

part of it is called ”the absolute value”. Mathematically it is defined as

follows:

Definition 2.1.3 The absolute value of o real number a is the value |a|
defined as

|a| =
{

a if a ≥ 0

−a if a < 0
.
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Note that if a is a positive number, then |a| is exactly a. If a is negative,

it already has a minus inside. The absolute value |a| is then the number

without the minus. The definition simply erases this minus by adding a

second one: two minuses cancel eachother.

Example 2.1.4 Find

i) |2− 3|

ii) |3−
√

5|

iii) |5− |3− 9||.

Solution

i)

|2− 3| = | − 1| = 1 .

ii) as
√

5 >
√

4 = 2 it follows that 2−
√

5 is negative.

|2−
√

5| = −(2−
√

5) = −2 +
√

5 =
√

5− 2 .

iii)

|5− |3− 9|| = |5− | − 6|| = |5− 6| = | − 1|1 .

Example 2.1.5 Calculate

i) −| − 3|

ii) |2−5|
2−5

Solution

i)

−| − 3| = −3 .

ii)
|2− 5|
2− 5

=
3

−3
= −1 .

Note that the absolute value can be used to find the distance between

points on the real axis.
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Theorem 2.1.1 The distance between a and b is |b− a|.

Example 2.1.6 Find the distance between 2 and −5.

The distance is |2− (−5)| = |2 + 5| = 7.

Example 2.1.7 Find the distance between 2 and
√

5.

The distance is |2−
√

5| = −(2−
√

5) =
√

5− 2.

Property 2.1.1 The absolute value has the following properties:

i) |ab| = |a| · |b|.

ii) |a
b
| = |a|

|b| .

iii) | − a| = |a|.

2.1.5 Exercises

Exercise 2.1.13 Draw the following intervals on the real axis:

• [−2, 1)

• (1, 7)

• (−2,∞).

Exercise 2.1.14 Find the following:

• [−2, 1) ∪ (0, 3)

• (1, 7) ∩ [0, 2)

• (−∞, 2] ∩ [2,∞).

• (1, 3) ∩ (3, 6).

Exercise 2.1.15 Calculate

i) |2−
√

5| =
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ii) |3−
√

7|
4−|2−3| =

iii) |4− |5− 11|| =

Exercise 2.1.16 a) Find (2, 7) ∩ (3, 9].

b) Find (1, 4] ∩ [4, 7).

Exercise 2.1.17 For which value of a we have (1, 3) ∩ (a, 7] = (2, 3)?

Exercise 2.1.18 Calculate

|
√

5− 3|+ 2 .

Exercise 2.1.19 a) Find (1, 4) ∪ (3, 9].

b) Find (1, 5] ∩ [3, 5).

Exercise 2.1.20 Calculate

|
√

7− 4| − 1 .

Exercise 2.1.21 Find all numbers a so that

|a− 1|+ |2− a| = 1 .

2.2 Powers and Radicals

2.2.1 Powers

If a is a real number and n is a positive integer, we denote by an the number

an = a · a · a · ... · a︸ ︷︷ ︸
n times

.

Example 2.2.1

23 = 2 · 2 · 2 = 8 .
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Example 2.2.2

(−3)3 = (−3) · (−3) · (−3) = −27 .

If a 6= 0 we define

a0 = 1 ,

and

a−n =
1

an
,

Important: 00 doesn’t make any sense. Same way, 0 to a negative power

means division by zero, which again makes no sense.

Example 2.2.3

50 = 1 .

Example 2.2.4

(−2)−2 =
1

(−2)2
=

1

4
.

Property 2.2.1 If a is a real number and m,n are integers then

am+n = am · an .

Proof :

If m,n are both positive, then

aman = a · a · a · ... · a︸ ︷︷ ︸
m times

a · a · a · ... · a︸ ︷︷ ︸
n times

= a · a · a · ... · a︸ ︷︷ ︸
m+n times

= am+n .

Now, if m or n is zero or negative, the claim follows from the choice we made

for a0 and a−n.

�
Note: Because Property 2.2.1, the choice a0 = 1 is the only one which

makes sense. Indeed

an · a0 = an+0 = an .

implies that a0 should be 1.

Same way

ana−n = an−n = a0 = 1 ,

implies that a−n should be 1
an

.
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Property 2.2.2 If a is a real number and m,n are integers then

am−n =
am

an
.

Proof:

If m,n are both positive and m > n, then

am

an
=
a · a · a · ... · a
a · a · a · ... · a

= a · a · a · ... · a︸ ︷︷ ︸
m−n times

= am−n .

Exactly as before, the other cases follow from the choices we made for a0

and a−n.

�
A faster proof is by observing that by Property 2.2.1 we have

am−n · an = am .

Dividing both sides by an we obtain this property.

Property 2.2.3 If a is a real number and m,n are integers then

(am)n = amn .

Proof:

If m,n are both positive, then

(am)n = a · a · a · ... · a︸ ︷︷ ︸
m times

a · a · a · ... · a︸ ︷︷ ︸
m times

·... · a · a · a · ... · a︸ ︷︷ ︸
m times︸ ︷︷ ︸

n times

= a · a · a · ... · a︸ ︷︷ ︸
mn times

= amn .

Again, the other cases follow from the choice we made.

�

Property 2.2.4 If a is a real number and n is integer then

(ab)n = anbn .
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Proof:

If n is positive, then

(ab)n = (ab) · (ab) · (ab) · ... · (ab)︸ ︷︷ ︸
n times

= a · a · a · ... · a︸ ︷︷ ︸
n times

· b · b · b · ... · b︸ ︷︷ ︸
n times

= anbn .

�

Property 2.2.5 If a is a real number and n is integer then(a
b

)n
=
an

bn
.

Proof:

If n is positive, then

(
a

b
)n = (

a

b
) · (a

b
) · (a

b
) · ... · (a

b
)︸ ︷︷ ︸

n times

=
a · a · a · ... · a
b · b · b · ... · b

=
an

bn
.

�

Example 2.2.5

24 · (22)3 = 24 · 26 = 24+6 = 210 .

Example 2.2.6

22 · (2−2)3

22 · (23)−1
=

22 · 2−6

22 · 2−3
=

2−4

2−1
= 2−3 =

1

23
=

1

8
.

Example 2.2.7

63(2−13−2)−3

2332
=

23332336

2332
=

2639

2332
= 2337 .

Example 2.2.8
x2x−3

x−4
=
x−1

x−4
= x3 .

Example 2.2.9

(2x2)2 = 22(x2)2 = 4x4 .

Example 2.2.10(
x2y(x−1y−2)−3

x2y2(xy)−1

)2

=

(
x2yx3y6

x2y2x−1y−1

)2

=

(
x5y7

xy

)2

=
(
x4y6

)2
= x8y6 .
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2.2.2 Radicals

If n ≥ 2 is even and a ≥ 0 the number n
√
a denotes the positive number

whose nth power is a.

Intuitively
n
√
a = b means bn = a .

Because it is the most frequent radical, 2
√

is denoted simply
√

.

Important: Whenever when question asks what is n
√
a, remember that

the question is really asking: which number to the nth power is equal to a?

Example 2.2.11 Find
√

36.

Solution:

Since 62 = 36 we have √
36 = 6 .

Example 2.2.12 Find 4
√

16.

Solution: Since 16 = 24 we have

4
√

16 = 2 .

Important: One of the most common mistakes in mathematics is
√
x2 =

x. While this is true for positive numbers, it is NOT true for negative values

of x. The right formula is √
x2 = |x| .

Same formula holds for all even roots.

2n
√
x2n = |x| .

Example 2.2.13 Find
√

(−4)2.

Solution: Since (−4)2 = 16 we have√
(−4)2 =

√
16 = 4 .

If n ≥ 2 is odd and a is any real number then the number n
√
a denotes

the number whose nth power is a.
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Important: Even radicals only make sense if the number under the

radical is not negative. Even radicals cannot be negative.

Odd radicals make sense for all numbers, and they can be positive and

negative, but not both at once.

Example 2.2.14 Find 3
√

27.

Solution: Since 33 = 27 we have

3
√

27 = 3 .

Example 2.2.15 Find 5
√

32.

Solution: Since 25 = 32 we have

5
√

32 = 2 .

Example 2.2.16 Find 3
√
−8.

Solution: Since (−2)3 = −8 we have

3
√
−8 = −2 .

Example 2.2.17 Find 4
√
−16.

Solution: Since 4 is even 4
√
−16 doesn’t make sense.

We are now ready to define rational powers. Lets figure out what a
m
n

should be:

a
m
n =??(

a
m
n

)n
= (??)n

a
m
n
·n = (??)n

am = (??)n

This tells us that ?? to the nth power should be am, which is exactly the

definition of n
√
am.
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Definition 2.2.1 Let a be a real number and m,n integers with n > 0. We

define

a
m
n = n

√
am .

Important:
n
√
am =

(
n
√
a
)m

.

Example 2.2.18 Find 27
2
3 .

Solution:

27
2
3 =

(
3
√

27
)2

= 32 = 9 .

Property 2.2.6 The roots satisfy the following three properties:

n
√
a

n
√
b =

n
√
ab .

n

√
a

b
=

n
√
a

n
√
b
.

n

√
m
√
a = mn

√
a .

Important: In general

n
√
a+ b 6= n

√
a+

n
√
b .

Note that we can write

√
12 =

√
4 · 3 =

√
4
√

3 = 2
√

3 .

We can always pull perfect squares from under the square root. This idea is

important in exercises as the following:

Example 2.2.19 Find 2
√

12− 3
√

27 + 3
√

48.

Solution:

2
√

12− 3
√

27 + 3
√

48 = 2
√

4 · 3− 3
√

9 · 3 + 3
√

16 · 3
= 2 · 2

√
3− 3 · 3

√
3 + 3 · 4

√
3 = 4

√
3− 9

√
3 + 12

√
3 = 7

√
3
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Example 2.2.20 Find 2
√

2− 5
√

8 + 4
√

18.

Solution:

2
√

2− 5
√

8 + 4
√

18 = 2
√

2− 5
√

4 · 2 + 4
√

9 · 2
= 2
√

2− 5 · 2
√

2 + 4 · 3
√

3 = 2
√

2− 10
√

2 + 12
√

2 = 4
√

2

Example 2.2.21 Find 2
√

3 +
√

27−
√

75.

Solution:

2
√

3 +
√

27−
√

75 = 2
√

3 +
√

9 · 3−
√

25 · 3
= 2
√

3 + 3
√

3− 5
√

3 = 0

Example 2.2.22 Find
√

2 3
√

2 4
√

2.

Solution:
√

2
3
√

2
6
√

2 = 2
1
2 2

1
3 2

1
6

= 2
1
2

+ 1
3

+ 1
6 = 2

3+2+1
6 = 2

Example 2.2.23 Find
√

12√
27

.

Solution:
√

12√
27

=

√
12

27
=

√
4

9

=

√
4√
9

=
2

3

Example 2.2.24 Find
(

9
25

) 1
2 .

Solution: (
9

25

) 1
2

=

√
9

25
=

√
9√
25

=
3

5

Example 2.2.25 Find
(

4
9

)− 3
2 .
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Solution: (
4

9

)− 3
2

=
1(

4
9

) 3
2

=
1(√
4
9

)3

=
1(√
4√
9

)3 =
1(
2
3

)3 =
1
8
27

=
27

8

2.2.3 Exercises

Exercise 2.2.1 Calculate

i) 22 · (23)4 =

ii) 23(2−1)2

22
=

iii) 23·35·(2−232)−1

(2·32)2
=

Exercise 2.2.2 Calculate

i) (2x2)3 =

ii) x2x3

(x2)2
=

iii) (x2)−1(x−3)−2

x(x3)−2 =

Exercise 2.2.3 Calculate

i) 4
√

16.

ii)
√

27√
12

iii) 2
√

75− 4
√

12 + 3
√

27.

Exercise 2.2.4 Find
3
√

4
√

2√
6
√

2
.
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Exercise 2.2.5 Calculate
22 · 25

(22)2
.

Exercise 2.2.6 Calculate

a) 3
√
−27 +

√
9.

b) 2
√

18 + 3
√

27− 5
√

3.

Exercise 2.2.7 For which value of n is

n
√

9 =
6
√

3 ?

Exercise 2.2.8 Calculate

a)
√

18√
50

.

b)
√

2 + 5
√

8− 3
√

18.

Exercise 2.2.9
(2−1)2 · 25

22
.

2.3 Linear Equations and Inequalities

2.3.1 Linear Equations

Definition 2.3.1 An equation is a formula of the form A = B, where A,B

are expressions containing one or more unknowns.

By a solution we mean any number or numbers which make the equation

true.

Example 2.3.1 Are 1, 2, 3 solutions to x2 − 4x+ 3 = 0?

Solution:

12 − 4 ∗ 1 + 3 = 0X ,

1 is a solution.

22 − 4 ∗ 2 + 3 = 0X ,
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2 is not a solution.

32 − 4 ∗ 3 + 3 = 0X ,

3 is a solution.

Important!: By solving an equation we understand finding all solutions.

Important!: Most of the times it is much easier to check the solutions

than finding them. While this doesn’t help us solve equations, it tells us that

most of the times it takes very little to check if we got the right answer.

Definition 2.3.2 An linear equation is an equation of the form

ax+ b = 0 .

In this section we solve linear equations, as well as equations which after

few steps become linear.

Theorem 2.3.1 If a 6= 0 the linear equation

ax+ b = 0 ,

has unique solution

x = − b
a
.

Important!: Sometimes when we start with an equation, after few steps

we get something like 0 = 0, or some other true statement. This means that

all x work, the solution is x ∈ R.

Important!: Sometimes when we start with an equation, after few steps

we get something like 1 = 0, or some other false statement. This means that

the equation has no solution.

To solve any linear equation we do the following:

Step 1: Open any bracket containing the variable x and another term.

Step 2: Move all terms containing x on one side, all the other terms on

the other side.

Step 3: On its side, make x a common factor.

Step 4: Divide by the number in front of x.
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Example 2.3.2 Solve 2x+ 3 = 5.

Solution:

2x+ 3 = 5

2x = 5− 3

2x = 2

x = 1

Example 2.3.3 Solve 3x+ 2 = 4x+ 1.

Solution:

3x+ 2 = 4x+ 1

3x− 4x = 1− 2

−x = −1

x = 1

Example 2.3.4 Solve 3x+ 2 = 4x+ 1.

Solution:

2(x+ 2) = 5(x+ 3)

2x+ 4 = 5x+ 15

2x− 5x = 15− 4

−3x = 11

x =
11

−3
= −11

3

Example 2.3.5 Solve 4x−1
3

+ x
4

= −2.

Solution:
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4x− 1

3
+
x

4
= −2

16x− 4

12
+

3x

12
= −2

19x− 4

12
=
−24

12

19x− 4 = −24

19x = −20x = −20

19

Example 2.3.6 Solve 3(x+ 2) = 2(x+ 1) + x.

Solution:

3(x+ 2) = 2(x+ 1) + x

3x+ 6 = 2x+ 2 + x

3x+ 6 = 3x+ 2

3x− 3x = 2− 6

0 = −4

There is no solution.

Example 2.3.7 Solve x+ 1 = 2x+1
2

.

Solution:

x+ 1 =
2x+ 1

2
2(x+ 1)

2
=

2x+ 2

2

2(x+ 1) = 2x+ 2

2x+ 2 = 2x+ 2

0 = 0

The solution is x ∈ R.
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Example 2.3.8 Solve 2
x+1

= 3
x+2

.

Solution:

the common denominator is (x+ 1)(x+ 2). Bringing to common denom-

inator we get:

2(x+ 2)

(x+ 1)(x+ 2)
=

3(x+ 1)

(x+ 1)(x+ 2)

2(x+ 2) = 3(x+ 1)

2x+ 4 = 3x+ 3

2x− 3x = 3− 4

−x = −1

x = 1

The solution is x ∈ R.

The equality of fractions can easily be remembered by cross-multiplication:

If A
B

= C
D

, by bringing both fractions to the same denominator we get

AD = BC. This is easily remembered as:

A

B
=
C

D

We now solve again Example 2.3.8:

2

x+ 1
=

3

x+ 2

2(x+ 2) = 3(x+ 1)

2x+ 4 = 3x+ 3

2x− 3x = 3− 4

−x = −1

x = 1

Example 2.3.9 Solve 2x+1
3x+1

= 4
7
.
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Solution:

By cross multiplication we get

2x+ 1

3x+ 1
=

4

7

7(2x+ 1) = 4(3x+ 1)

14x+ 7 = 12x+ 4

14x− 12x = 4− 7

2x = −3

x = −3

2

Example 2.3.10 John’s father is 3 times as old as John. In 8 years John’s

father will be 4 years older than twice John’s age. How old is John?

Solution:

Let x be John’s age. His father’s age is 3x.

In 3 years John’s age will be x + 8, while his father age will be 3x + 8.

His father age (3x+ 8) will be 4 more than twice John’s age 2(x+ 8). Thus

3x+ 8 = 2(x+ 8) + 4

3x+ 8 = 2x+ 16 + 4

3x+ 8 = 2x+ 16 + 4

3x− 2x = 20− 8

x = 12

John is 12 years old.

2.3.2 Linear Inequalities

Definition 2.3.3 An inequality is a formula of the form A < B or A ≤ B

or A > B or A ≥ B, where A,B are expressions containing one or more

unknowns.

By a solution we mean any number or numbers which make the inequality

true.
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Example 2.3.11 Are 1, 2, 3 solutions to x2 − 3 < 0?

Answer:

12 − 3 < 0X ,

1 is a solution.

22 − 3 < 0X ,

2 is not a solution.

32 − 3 < 0X ,

3 is not a solution.

Important!: By solving an inequality we understand finding all solu-

tions.

Important!: Often inequalities have intervals as solutions. Since in-

tervals contain infinitely many points, it follows that often we need to find

infinitely many solutions.

To solve linear inequalities we proceed the same way as when we solve

equations. There is only one thing we have to be extremely careful with:

When we multiply or divide an inequality by a negative number,

the sign switches.

For example

−2x < −4 .

If we want to divide by −2 we get

x > 2 .

This is because, multiplication by − is the same as switching sides. In-

deed, if we move terms on the other side

−2x < −4 .

becomes

4 < 2x .

Note that 2x is now positive, but faces the inequality from the other side.
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Example 2.3.12 Solve 2x+ 3 < 6.

Solution :

2x+ 3 < 6

2x < 6− 3

2x < 3

x <
3

2

Answer: (−∞, 3
2
).

Example 2.3.13 Solve −(2 + x) < 3(x+ 1).

Solution :

−2− x < 3x+ 3

−x− 3x < 3 + 2

−4x < 5

x >
5

−4
= −5

4

Answer: (−5
4
,∞).

Example 2.3.14 Solve 13x− 12 < 2x+ 11.

Solution :

13x− 2x ≤ 11 + 12

11x ≤ 23

x ≤ 23

11

Answer: [23
11
,∞).
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Example 2.3.15 Solve 2x+ 1 ≤ 3x− 2 < 5x− 1.

Solution : Our inequality is made from two inequalities: 2x + 1 ≤ 3x − 2

and 3x− 2 < 5x− 1.

We solve the first inequality:

2x+ 1 ≤ 3x− 2

2x− 3x ≤ −2− 1

−x ≤ −3

x ≥ 3

The solution to this inequality is [3,∞).

We now solve the second inequality:

3x− 2 < 5x− 1

3x− 5x < −1 + 2

−2x < 1

x > −1

2

The solution to this inequality is (−1
2
,∞).

We want x to satisfy BOTH inequalities, which means we intersect the

solutions.

Answer: [3,∞) ∩ (−1
2
,∞) = [3,∞).

Important!: When we solve three or more inequalities in a row, we solve

consecutive inequalities and intersect the solutions.

Example 2.3.16 Solve 3x+ 1 ≥ x− 5 ≥ 1 + 4x.

Solution :

We solve the first inequality:

3x+ 1 ≥ x− 5

2x ≤ −6

x ≥ −3
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The solution to this inequality is [−3,∞).

We now solve the second inequality:

x− 5 ≥ 1 + 4x

−3x ≥ 6

x ≤ −2

The solution to this inequality is (−∞,−2].

We want x to satisfy BOTH inequalities, which means we intersect the

solutions.

Answer: [−3,∞) ∩ (−∞,−2] = [−3,−2].

Example 2.3.17 Solve 3x+ 1 ≤ 2x+ 3 ≤ 3x− 1.

Solution :

We solve the first inequality:

3x+ 1 ≤ 2x+ 3

x ≤ 2

The solution to this inequality is (∞, 2].

We now solve the second inequality:

2x+ 3 ≤ 3x− 1

−x ≤ −4

x ≥ 4

The solution to this inequality is [4,∞).

We want x to satisfy BOTH inequalities, which means we intersect the

solutions.

Answer: (∞, 2] ∩ [4,∞) = ∅.
There is no solution.
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Example 2.3.18 Find the mistake in the following problem:

We solve

x2 ≥ 3x .

dividing both sides x we get

x ≥ 3 .

Which means that the answer is [3,∞).

Note that the answer is wrong, as x = −1 is also a solution.

Solution :

The mistake we did was dividing by x. Note that if x is negative, we have

to switch the inequality, but we never took this into account.

2.3.3 Exercises

Exercise 2.3.1 Solve the following equations:

i) 3 + 1
3
x = 5

ii) 5(2x− 1) = 4(x+ 2).

iii) 2
x+3

= 3
x+2

.

Exercise 2.3.2 Jon thinks about some number x. He sees that if he double

his number and adds 5 he obtain the same result as when he triples the number

and subtracts two. What is Jon’s number?

Exercise 2.3.3 Solve the following inequalities

i) −(3 + x) < 2(3x+ 2)

ii) 3x+ 1 < 5x+ 2

Exercise 2.3.4 Solve the following inequalities

i) x
2
− x

3
≤ 2x+1

4

ii) 2x+1
−3
≤ 3x+1

5
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Exercise 2.3.5 Solve

3x+ 1 ≥ x− 5 ≥ 1 + 4x .

Exercise 2.3.6 Solve the following equations

a) 3x+ 5 = 5x− 7.

b) 2
x

= 3
x+2

.

Exercise 2.3.7 Solve the following equations

a) 2x+ 5 = 4x− 7.

b) 3
x+1

= 4
x−2

.

Exercise 2.3.8 Solve the following inequalities:

a) 3x+1
4

< 5x+2
3

.

b) 2x+ 1 ≤ 3x+ 2 ≤ 2x+ 7.

Exercise 2.3.9 Solve the following inequalities:

a) 2x+ 1 < 4x− 3.

b) x+ 1 ≤ 3x+ 5 ≤ x+ 7.

2.4 Systems of Linear Equations

By a system of linear equations we understand a group of linear equations.

We use an accolade { to emphasize that the equations are grouped together.

Example 2.4.1 {
x +2y = 8

2x +2y = 7
,

and 
y +2z = 2

x +3y +3z = −2

2x −7y +z = −2

.

are systems of linear equations.
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By a solution to a system we understand a set of numbers which satisfy

all equations. For example x = 1, y = 2 is a solution for{
x +2y = 5

2x +2y = 6
.

Important!: By solving a system we understand finding all solutions to

that system.

Theorem 2.4.1 A system of equations has either no solution, one solution,

or infinitely many solutions.

We will show next one example for each of these situations.

Example 2.4.2 Solve {
x +2y = 7

2x +2y = 8
.

Solution: Note that the second equation is

x+ (x+ 2y) = 8 .

Since x+ 2y = 7 we get x+ 7 = 8 therefore x = 1.

Subbing in the first equation we get 1 + 2y = 7. This yields 2y = 6 and

hence y = 3. We got {
x = 1

y = 3
.

Important!: This is exactly what we mean by the system having one

solution: we get x = a number, y = a number (and if there is a z, z = a

number).

Example 2.4.3 Solve {
x +y = 3

2x +2y = 8
.
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Solution: If we double the first equation we get{
2x +2y = 6

2x +2y = 8
.

Those two equations contradict eachother, it is impossible to get 2x+ 2y

to be both 6 and 8. This system has no solution.

Example 2.4.4 Solve {
x +3y = 3

3x +9y = 9
.

Solution: Note that by multiplying the first equation by 3 we get exactly

the second equation. This means that the second equation doesn’t tell us

anything new, we can ignore it.

We need to solve

x+ 3y = 3 .

There is no way of getting both x and y from here. The best we can do is to

find x in terms of y. We get

x = 3− 3y .

This means that y can be any real number, and, for each value of y, x is

exactly 3− 3y. We usually write the answer as y = t and x = 3− 3t where t

is a real number (parameter).{
x = 3− 3t

y = t
.

Important!: This is exactly what we mean by the system having one

solution: we get x = a number, y = a number (and if there is a z, z = a

number).

2.4.1 Methods of solving systems of equations

Substitution Method
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Pick one equation. Find one variable from this equation. Replace it in

the remaining equations.

This way we get a smaller system.

At any point, if we get a false statement, like 3 = 5, we stop there is no

solution.

If we get any true statement at any point, like 4 = 4, we just ignore it.

Last, if we are left with one equation with more variables, find one vari-

able in terms of the other variables, and assign letters (parameters) to each

variable which you cannot find at this step.

Reduction Method

Pick two equations. By multiplying each equation by some number, we

can make the coefficient of one variable match. By adding or subtracting the

equations we can eliminate that variable.

If you have more than 2 equations, pick one of the equations we used with

an unused equation, and eliminate the same variable.

Repeat as long as you have unused equations.

At any point, if we get a false statement, like 3 = 5, we stop there is no

solution.

If we get any true statement at any point, like 4 = 4, we just ignore it.

Last, if we are left with one equation with more variables, find one vari-

able in terms of the other variables, and assign letters (parameters) to each

variable which you cannot find at this step.

2.4.2 Systems of two equations with two unknowns

Example 2.4.5 Solve {
2x +3y = 2

3x +4y = 7
.

Solution:

Substitution Method From the first equation we get

2x = 2− 3y .

hence

x = 1− 3

2
y .
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Substitution in the second equation we get

3

(
1− 3

2
y

)
+ 4y = 7

3− 9

2
y + 4y = 7

− 1

2
y = 4

−y
2

= 4

− y = 8

y = −8

Therefore

x = 1− 3

2
(−8) = 1− (−12) = 13 .

The answer is {
x = 13

y = −8
.

Reduction Method

Multiplying the first equation by 3 and the second by 2 we get{
6x +9y = 6

6x +8y = 14
.

Subtracting we get

y = −8 .

Now, subbing in the first equation we get

2x− 24 = 2 .

Therefore

2x = 26⇒ x = 13 .

Thus {
x = 13

y = −8
.

59



Example 2.4.6 Solve {
x +2y = 2

3x +6y = 9
.

Solution:

Substitution Method From the first equation we get

x = 2− 2y .

Substitution in the second equation we get

3 (2− 2y) + 6y = 9

6− 6y + 6y = 9

6 = 9

As this statement is false This equation has no solutions.

Reduction Method

Multiplying the first equation by 3 get{
3x +6y = 6

3x +6y = 9
.

Subtracting we get

0 = −3 .

As this statement is false This equation has no solutions.

Example 2.4.7 Solve {
x −2y = 3

−2x +4y = −6
.

Solution:

Substitution Method From the first equation we get

x = 3 + 2y .

Substitution in the second equation we get
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−2 (3 + 2y) + 4y = −6

−6− 4y + 4y = −6

− 6 = −6

As this statement is true we can ignore the second equation. We need

to solve

x− 2y = 3 .

Then y moves on the other side and becomes a parameter.

x = 2y + 3 .

As y is a parameter, we assign a letter y = t. Then x = 2t+ 3.

The answer is {
x = 2t+ 3

y = t
.

Reduction Method

Multiplying the first equation by 2 we get{
2x −4y = 6

−2x +4y = −6
.

Adding we get

0 = 0 .

We can ignore the second equation. We need to solve

x− 2y = 3 .

Then y moves on the other side and becomes a parameter.

x = 2y + 3 .

As y is a parameter, we assign a letter y = t. Then x = 2t+ 3.

The answer is {
x = 2t+ 3

y = t
.
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Example 2.4.8 Solve {
2x +4y = 3

3x +3y = 4
.

Solution:

Substitution Method From the first equation we get

2x = 3− 4y .

hence

x =
3

2
− 2y .

Substitution in the second equation we get

3

(
3

2
− 2y

)
+ 3y = 4

9

2
− 6y + 3y = 4

− 3y = 4− 9

2

− 3y = −1

2

y =
1

6

Therefore

x =
3

2
− 2 · 1

6
=

7

6
.

The answer is {
x = 7

6

y = 1
6

.

Reduction Method

Multiplying the first equation by 3 and the second by 2 we get{
6x +12y = 9

6x +6y = 8
.

Subtracting we get

6y = 1⇒ y =
1

6
.
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Now, subbing in the first equation we get

2x+ 4 · 1

6
= 3 .

Therefore

2x = 3− 4

6
=

14

6
.

Thus {
x = 7

6

y = 1
6

.

2.4.3 Systems with 3 unknowns

Example 2.4.9 Solve 
3x +5y +3z = 2

3x +2y +z = 7

6x +7y +6z = 12

.

Solution:

Substitution Method From the second equation we get

z = 7− 3x− 2y .

Substitution in the first equation we get

3x+ 5y + 3(7− 3x− 2y) = 2

3x+ 5y + 21− 9x− 6y = 2

−6x− y = −19

6x+ y = 19

Substitution in the third equation we get

6x+ 7y + 6(7− 3x− 2y) = 12

6x+ 7y + 42− 18x− 12y = 12

−12x− 5y = −30

12x+ 5y = 30
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Therefore we get the smaller system:{
6x +y = 19

12x +5y = 30
.

From the first equation we get

y = 19− 6x .

Plugging into the second we get

12x+ 5(19− 6x) = 30

12x+ 95− 30x = 30

−18x = −65

x =
65

18

Then

y = 19− 6
65

18
= 19− 65

3
=

57− 65

3
= −8

3
.

and

z = 7− 3
65

18
− 2(−8

3
) = 7− 65

6
+

16

3
=

42− 65 + 32

6
=

9

6
=

3

2
.

The answer is 
x = 65

18

y = −8
3

z = 3
2

.

Reduction Method

We group the first two equations:{
3x +5y +3z = 2

3x +2y +z = 7
.

Subtracting we get

3y + 2z = −5 .

We now group first and third equation{
3x +5y +3z = 2

6x +7y +6z = 12
.
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Doubling the first equation we get{
6x +10y +6z = 4

6x +7y +6z = 12
.

Subtracting we get

3y = −8 .

Thus our system is {
3y +2z = −5

3y = −8
.

From here we get y = −8
3

and

2z = −5− 3y = −5 + 8 = 3 .

Thus

z =
3

2
.

The first equation now gives

3x+ 5(−8

3
) + 3 · 3

2
= 2

3x− 40

3
+

9

2
= 2

3x =
40

3
− 9

2
+ 2

3x =
80− 27 + 12

6

3x =
65

6

x =
65

18

The answer is 
x = 65

18

y = −8
3

z = 3
2

.

Important!: Systems often have solutions with fractions.

Important!: When we solve a system one method is enough. We can

also combine the two methods: start solving the system by the substitution

65



method, and when we get to the smaller system use the reduction method

to solve this one.

Example 2.4.10 Solve 
x +2y +3z = 2

2x +3y +z = 7

4x +7y +8z = 12

.

Solution:

Substitution Method From the first equation we get

x = 2− 2y − 3z .

Substitution in the second equation we get

2(2− 2y − 3z) + 3y + z = 74 −4y − 6z + 3y + z = 7

−y − 5z = 3

y + 5z = −3

Substitution in the third equation we get

4(2− 2y − 3z) + 7y + 8z = 128 −8y − 12z + 7y + 8z = 12

−y − 4z = 4

y + 4z = −4

Therefore we get the smaller system:{
y +5z = −3

y +4z = −4
.

Subtracting the two equations we get z = 1. Hence

y + 5 = −3⇒ y = −8 .

Therefore

x = 2− 2(−8)− 3 · 1 = 2 + 16− 3 = 15 .
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The answer is 
x = 15

y = −8

z = 1

.

Reduction Method

We group the first two equations:{
x +2y +3z = 2

2x +3y +z = 7
.

Doubling the first equation we get{
2x +4y +6z = 4

2x +3y +z = 7
.

Subtracting we get

y + 5z = −3 .

We now group last two equations{
2x +3y +z = 7

4x +7y +8z = 12
.

Doubling the first equation we get{
4x +6y +2z = 14

4x +7y +8z = 12
.

Subtracting we get

−y − 6z = 2 .

or

y + 6z = −2 .

Thus our system is {
y +5z = −3

y +6z = −2
.

Subtracting, we get

−z = −1 .
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Thus

z = 1 .

Then

y + 6 = −2⇒ y = −8 .

The first equation now gives

x+ 2(−8) + 3 = 2x = 2 + 16− 3

x = 15

The answer is 
x = 15

y = −8

z = 1

.

Example 2.4.11 Solve 
x +y +2z = 2

2x +3y +z = 7

3x +4y +3z = 9

.

Solution:

Substitution Method From the first equation we get

x = 2− y − 2z .

Substitution in the second equation we get

2(2− y − 2z) + 3y + z = 7

4− 2y − 4z + 3y + z = 7

y − 3z = 3

Substitution in the third equation we get

3(2− y − 2z) + 4y + 3z = 9

6− 3y − 6z + 4y + 3z = 9

y − 3z = 3
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We got the same equation twice, thus we can ignore the second one. The

system is reduced to

y − 3z = 3 .

As we only have one equation with 2 unknowns, one of the variables becomes

a parameter.

z = t .

Then

y = 3 + 3t

x = 2− (3 + 3t)− 2t = −1− 5t .

The answer is 
x = −1− 5t

y = 3 + 3t

z = t

.

Reduction Method

We group the first two equations:{
x +y +2z = 2

2x +3y +z = 7
.

Doubling the first equation we get{
2x +2y +4z = 4

2x +3y +z = 7
.

Subtracting we get

−y + 3z = −3 .

We now group last two equations{
2x +3y +z = 7

3x +4y +3z = 9
.

Multiplying the first equation by 3 and second by 2 we get{
6x +9y +3z = 21

6x +8y +6z = 18
.
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Subtracting we get

y − 3z = 3 .

Thus our system is {
−y +3z = −3

y −3z = 3
.

Adding the two equations we get 0 = 0, which is telling us that we can ignore

one equation. Thus, we need to solve

y − 3z = 3 .

As we only have one equation with 2 unknowns, one of the variables becomes

a parameter.

z = t .

Then

y = 3 + 3t .

Plugging in the first equation we get

x+ (3 + 3t) + 2t = 2 .

Thus the answer is 
x = −1− 5t

y = 3 + 3t

z = t

.

Example 2.4.12 Solve 
x +3y +2z = 7

2x −4y +z = 2

3x −y +3z = 10

.

Solution:

Substitution Method From the first equation we get

x = 7− 3y − 2z .

Substitution in the second equation we get
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2(7− 3y − 2z)− 4y + z = 2

14− 6y − 4z − 4y + z = 2

−10y − 3z = −12

10y + 3z = 12

Substitution in the third equation we get

3(7− 3y − 2z)− y + 3z = 1021 −9y − 6z − y + 3z = 10

−10y − 3z = −11

10y + 3z = 11

The system we get is {
10y +3z = 12

10y +3z = 11
.

Subtracting we get

0 = 1 .

This means that This system has no solution.

Reduction Method

We group the first two equations:{
x +3y +2z = 7

2x −4y +z = 2
.

Doubling the first equation we get{
2x +6y +4z = 14

2x −4y +z = 2
.

Subtracting we get

10y + 3z = 12 .

We now group last two equations{
2x −4y +z = 2

3x −y +3z = 10
.
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Multiplying the first equation by 3 and second by 2 we get{
6x −12y +3z = 6

6x −2y +6z = 10
.

Subtracting we get

−10y − 3z = −4 .

Thus our system is {
10y +3z = 12

−10y −3z = −4
.

Adding the two equations we get 0 = 8, This system has no solution.

Example 2.4.13 Solve
x −2y +z = 2

−2x +4y −2z = −4

3x −6y +3z = 6

.

Solution:

Substitution Method From the first equation we get

x = 2 + 2y − z .

Substitution in the second equation we get

−2(2 + 2y − z) + 4y − 2z = −4

−4− 4y + 2z + 4y − 2z = −4

−4 = −4

As this is true, we should ignore the second equation.

Substitution in the third equation we get

3(2 + 2y − z)− 6y + 3z = 66 + 6y − 3z − 6y + 3z = 6

6 = 6

As this is true, we should ignore the third equation.
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Therefore, wee need to solve

x− 2y + z = 2 .

As we only have one equation, two unknowns become parameters. y =

t, z = s.

Then

x = 2 + 2t− s .

The answer is 
x = 2 + 2t− s
y = t

z = s

.

Reduction Method

We group the first two equations:{
x −2y +z = 2

−2x +4y −2z = −4
.

Doubling the first equation we get{
2x −4y +2z = 4

−2x +4y −2z = −4
.

Adding we get

0 = 0 .

We should ignore the second equation.

We now group last two equations{
−2x +4y −2z = −4

3x −6y +3z = 6
.

Multiplying the first equation by 3 and second by 2 we get{
−6x +12y −6z = −12

6x −12y +6z = 12
.

Adding we get

0 = 0 .
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We should ignore the third equation.

Therefore, wee need to solve

x− 2y + z = 2 .

As we only have one equation, two unknowns become parameters. y =

t, z = s.

Then

x = 2 + 2t− s .

The answer is 
x = 2 + 2t− s
y = t

z = s

.

2.4.4 Exercises

Exercise 2.4.1 Solve the following systems of equations

i) {
2x+ 3y = 5

5x+ 7y = 8
.

ii) {
3x− y = 5

4x− 2y = 8
.

Exercise 2.4.2 Solve the following systems of equations

i) {
2x+ y = 5

4x+ 2y = 8
.

ii) {
2x− y = 4

4x− 2y = 8
.
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Exercise 2.4.3 For which real number a does the following system have so-

lutions? {
x+ 2y = 4

2x+ 4y = a
.

Exercise 2.4.4 Solve the following systems of equations

i) 
x −3z = 8

2x +2y +9z = 7

y +5z = −2

.

ii) 
y +5z = −4

x +4y +3z = −2

2x +7y +z = −2

.

Exercise 2.4.5 Solve the following systems of equations

i) 
x −2y +z = 0

2y −8z = 8

−4x +5y +9z = −9

.

ii) 
x +5y = 21

y +z = 4

2x +11y +z = 46

.

Exercise 2.4.6 Solve the following systems of equations:

a) {
3x+ 2y = 4

6x+ 4y = 4
.

b) 
2x+ 3y + 7z = 5

5x+ 7y + 2z = 8

3x+ 4y − 4z = 2

.
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Exercise 2.4.7 Solve the following systems of equations:

a) {
x+ 3y = 4

2x+ 7y = 9
.

b) 
x+ 2y − 3z = 2

2x+ 3y + z = 1

3x+ 5y − 2z = 3

.

Exercise 2.4.8 Solve 
x+ y − 2z = 0

2x+ 3y − z = 4

3x+ 4y − 2z = 3

.

Exercise 2.4.9 Solve 
x+ y − 2z = 0

2x+ 3y − z = 4

5x+ 7y − 3z = 9

.

2.5 Completing the square

By a quadratic expression we understand an expression of the form ax2 +

bx+ c, where a, b, c ∈ R and a 6= 0.

Often, the term bx creates problems. Completing the square is a simple

way of elimination this term.

The idea is to use backwards the formula

(x+ a)2 = x2 + 2ax+ a2 .

Completing the square: Whenever when we see x2 ± ax we can com-

plete the square by adding and subtraction (a
2
)2. This way we get

x2 ± ax = x2 ± ax+ (
a

2
)2 − (

a

2
)2 =

(
x± a

2

)2

− (
a

2
)2 .

This way we completed the square
(
x± a

2

)2
.

This is easy to remember, you take the coefficient of x, half it and square.
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Example 2.5.1 Complete the square in

x2 + 2x .

Solution:

x2 + 2x = x2 + 2x+ 12 − 12 = (x+ 1)2 − 1 .

Example 2.5.2 Complete the square in

x2 + 6x .

Solution:

x2 + 6x = x2 + 6x+ 32 − 32 = (x+ 3)2 − 9 .

Example 2.5.3 Complete the square in

x2 − 3x .

Solution:

x2 − 3x = x2 − 3x+ (
3

2
)2 − (

3

2
)2 = (x− 3

2
)2 − 9

4
.

Example 2.5.4 Complete the square in

x2 + 4x+ 5 .

Solution:

x2 + 4x+ 5 = x2 + 4x+ 22 − 22 + 5 = (x+ 2)2 + 1 .

Example 2.5.5 Complete the square in

x2 + 7x− 2 .

Solution:

x2 + 7x− 2 = x2 + 7x+ (
7

2
)2 − (

7

2
)2 − 2 = (x− 7

2
)2 − 49

4
− 2

= (x− 7

2
)2 − 49

4
− 8

4
= (x− 7

2
)2 − 57

4
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Example 2.5.6 Complete the square in

x2 +
1

3
x+ 2 .

Solution:

x2 1

3
x+ 2 = x2 +

1

3
x+ (

1

6
)2 − (

1

6
)2 + 2 = (x+

1

6
)2 − 1

36
+ 2

= (x+
1

6
)2 − 1

36
+

72

36
= (x+

1

6
)2 +

71

36

Example 2.5.7 Complete the square in

2x2 + 3x+ 1 .

Solution: To complete the square, we need to start with x2. To do this, we

make 2 a common factor by force: 3 = 2 · 3
2

and 1 = 2 · 1
2
. Therefore

2x2 + 3x+ 1 = 2x2 + 2 · 3

2
x+ 2(

1

2
) = 2

(
x2 +

3

2
x+

1

2

)
= 2

(
x2 +

3

2
x+ (

3

4
)2 − (

3

4
)2 +

1

2

)
= 2

((
x+

3

4

)2

− 9

16
+

1

2

)
= 2

((
x+

3

4

)2

− 9

16
+

8

16

)

= 2

((
x+

3

4

)2

− 1

16

)
= 2

(
x+

3

4

)2

− 2

16

= 2

(
x+

3

4

)2

− 2

16

2.5.1 Exercises

Exercise 2.5.1 Complete the square

i) x2 − 10x.

ii) x2 + 2x+ 3.

iii) 2x2 + 4x− 2.
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Exercise 2.5.2 Complete the square for

x2 + 3x+ 1 .

Exercise 2.5.3 Complete the square for

a) x2 + 4x− 2.

b) 2x2 + 3x.

2.6 Quadratic Equations

2.6.1 Solving quadratic equations by completing the

square

Definition 2.6.1 A quadratic equation is an equation of the form

ax2 + bx+ c = 0 .

with a, b, c ∈ R and a 6= 0.

Exactly as before, we seek all solutions.

Important!: If we start by dividing by a, and then complete the square,

any quadratic equation becomes one of the form

(x+ e)2 = f .

for some real numbers e, f .

If f < 0 the left hand side is positive, while the right hand side is negative.

Therefore there is no solution.

If f = 0 then x+ e must be zero. Therefore there is one solution.

If f > 0 then x + e must be either
√
f or −

√
f . Therefore, in this case

there are two solutions.

We also get

Theorem 2.6.1 A quadratic equation has 0,1 or 2 solutions.

79



Example 2.6.1 Solve

x2 + 4x− 5 = 0 .

Solution:

x2 + 4x+ 22 − 22 − 5 = 0

(x+ 2)2 − 9 = 0

(x+ 2)2 = 9x+ 2 = ±3

If x+ 2 = 3 we get x = 1, while if x+ 2 = −3 we get x = −5.

Answer: x = 1, x = −5.

Example 2.6.2 Solve

x2 − 6x+ 11 = 0 .

Solution:

x2 − 6x+ 32 − 32 + 11 = 0

(x− 3)2 + 2 = 0

(x− 3)2 = −2

Answer: No solution.

Example 2.6.3 Solve

x2 − 3x− 7 = 0 .

Solution:

x2 − 3x+ (
3

2
)2 − (

3

2
)2 − 7 = 0

(x− 3

2
)2 − 9

4
− 7 = 0

(x− 3

2
)2 =

9

4
+ 7

(x− 3

2
)2 =

37

4

x− 3

2
= ±

√
37

4

x− 3

2
= ±
√

37

2

x =
3

2
+±
√

37

2
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Answer: x = 3+
√

37
2

and x = 3−
√

37
2

.

Example 2.6.4 Solve

x2 + 6x+ 9 = 0 .

Solution:

x2 + 6x+ 32 − 32 + 9 = 0

(x+ 3)2 − 9 + 9 = 0

(x+ 3)2 = 0

x+ 3 = 0

x = −3

Answer: x = −3.

Example 2.6.5 Solve

3x2 − 5x+ 2 = 0 .

Solution: We start by dividing by 3:

x2 − 5

3
x+

2

3
= 0

x2 − 5

3
x+ (

5

6
)2 − (

5

6
)2 +

2

3
= 0

(x+
5

6
)2 − 25

36
+

2

3
= 0

(x+
5

6
)2 =

25

36
− 2

3

(x+
5

6
)2 =

1

36

x+
5

6
= ±

√
1

36

x+
5

6
= ±1

6

x = −5

6
± 1

6

Therefore x = −5
6

+ 1
6

= −4
6

= −2
3

and x = −5
6
− 1

6
= −6

6
= −1.

Answer: x = −1 and x = −2
3
.
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2.6.2 The Quadratic Formula

Consider the quadratic equation

ax2 + bx+ c = 0 .

As a 6= 0 we can divide by a. We get

x2 +
b

a
x+

c

a
= 0 .

Next lets complete the square.

x2 +
b

a
x+

c

a
= 0

x2 +
b

a
x+ (

b

2a
)2 − (

b

2a
)2 +

c

a
= 0(

x+
b

2a

)2

− (
b

2a
)2 +

c

a
= 0(

x+
b

2a

)2

= (
b

2a
)2 − c

a(
x+

b

2a

)2

=
b2

4a2
− c

a(
x+

b

2a

)2

=
b2

4a2
− 4ac

2a2(
x+

b

2a

)2

=
b2 − 4ac

4a2

Therefore, we get

• If b2 − 4ac < 0 the equation has no solution.

• If b2−4ac = 0 the equation has one solution. This is given by x+ b
2a

= 0,

therefore x = − b
2a

.

• If b2 − 4ac > 0 the equation has two solutions given by x + b
2a

=

±
√

b2−4ac
4a2

=
√
b2−4ac

2a
. Therefore

x =
−b±

√
b2 − 4ac

2a
.
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Since the expression b2 − 4ac plays an important role in solving the

quadratic equation, we denote it by a letter.

Notation:

∆ = b2 − 4ac .

Thus we get the following Theorem.

Theorem 2.6.2 Consider the quadratic equation

ax2 + bx+ c = 0 ,

and let ∆ = b2 − 4ac. Then

• i) If ∆ < 0 the equation has no solution.

• ii) If ∆ = 0 the equation has one solutio given by

x = − b

2a
.

• iii) If ∆ > 0 the equation has two solutions given by

x1,2 =
−b±

√
∆

2a
.

Example 2.6.6 Solve

x2 − 3x+ 2 = 0 .

Solution: a = 1, b = −3, c = 2. Then ∆ = (−3)2 − 4 · 1 · 2 = 9− 8 = 1.

Since ∆ > 0 this equation has two solutions given by

x1,2 =
−(−3)±

√
1

2
=

3± 1

2
.

The two solutions are

x1 =
3 + 1

2
= 2 ; x2 =

3− 1

2
= 1 .

Example 2.6.7 Solve

x2 − 6x+ 9 = 0 .
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Solution: a = 1, b = −6, c = 9. Then ∆ = (−6)2 − 4 · 1 · 9 = 36− 36 = 0.

Since ∆ = 0 this equation has one solutions given by

x =
−(−6)

2
= 3 .

Example 2.6.8 Solve

3x2 + 4x+ 10 = 0 .

Solution: a = 1, b = 4, c = 10. Then ∆ = (4)2 − 4 · 1 · 10 = 16− 40 < 0.

This equation has no solution.

Example 2.6.9 Solve

2x2 + 5x+ 3 = 0 .

Solution: a = 2, b = 5, c = 3. Then ∆ = 52 − 4 · 2 · 3 = 25− 24 = 1.

Since ∆ > 0 this equation has two solutions given by

x1,2 =
−5±

√
1

2 · 2
=
−5± 1

4
.

The two solutions are

x1 =
−5 + 1

4
= −1 ; x2 =

−5− 1

4
= −3

2
.

Example 2.6.10 Solve

x2 + x− 1 = 0 .

Solution: a = 1, b = 1, c = −1. Then ∆ = 11 − 4 · 1 · (−1) = 1 + 4 = 5.

Since ∆ > 0 this equation has two solutions given by

x1,2 =
−1±

√
5

2
= .

The two solutions are

x1 =
−1 +

√
5

2
; x2 =

−1−
√

5

2
.
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2.6.3 Factoring Quadratics

Note that

(X − 2)(X − 3) = X2 − 2X − 3X + 6 = X2 − 5X + 6 .

By factorisation we understand the reverse process: Given a quadratic

like X2 − 5x+ 6 try to write it in the form (X − 2)(X − 3).

Example 2.6.11 Factor

X2 − 6X + 8 .

Solution: Lets try to work backwards. Lets say that we managed to factor

the expression. Then we get some r, s so that

X2 − 6X + 8 = (X − r)(X − s) .

Foiling we get

X2 − 6X + 8 = X2 − rX − sX + rs = X2 − (r + s)X + rs .

Therefore, the r, s we found satisfy{
r + s = 6

rs = 8
.

It is easy now to guess that the right values are 2 and 4. Therefore, the

answer is

X2 − 6X + 8 = (X − 4)(X − 2) .

Important! If the factorization is easy to guess, then solving the quadratic

is very easy. Indeed, if we know that

X2 − 6X + 8 = (X − 4)(X − 2) .

to solve

X2 − 6X + 8 = 0 .

we can solve instead

(X − 4)(X − 2) = 0 .

The only way the product be zero is if X − 4 = 0 or X − 2 = 0.
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Theorem 2.6.3 If

X2 + bX + c = (X − r)(X − s) ,

then

• i) r + s = −b.

• ii) rs = c.

• iii) r, s are the solutions to X2 + bX + c = 0.

Important! The Theorem tells us the following. To find the factorization

of X2+bX+C we start by seeking two numbers r, s so that r+s = −b, rs = c.

If they are easy to find, we just guess them. If they are not easy to find/guess,

we simply solve instead the quadratic

X2 + bX + c = 0 .

If this equation has two solutions, those are r and s. If the equation has

one solution, then r = s is the solution. if the quadratic has no solution, it

means the quadratic cannot be factored.

Example 2.6.12 Factor

X2 − 4X + 3 .

Solution: We seek r, s so that{
r + s = 4

rs = 3
.

It is easy now to guess that the right values are 1 and 3. Therefore, the

answer is

X2 − 4X + 3 = (X − 1)(X − 3) .

Example 2.6.13 Factor

X2 + 7X + 10 .
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Solution: We seek r, s so that{
r + s = −7

rs = 10
.

It is easy now to guess that the right values are −2 and −5. Therefore,

the answer is

X2 + 7X + 10 = (X − (−2))(X − (−5)) = (X + 2)(X + 5) .

Example 2.6.14 Factor

X2 + 6X + 9 .

Solution: We seek r, s so that{
r + s = −6

rs = 9
.

It is easy now to guess that the right values are −3 and −3. Therefore,

the answer is

X2 + 6X + 9 = (X − (−3))(X − (−3)) = (X + 3)(X + 3) .

Example 2.6.15 Factor

X2 + 3X + 6 .

Solution: We seek r, s so that{
r + s = −3

rs = 6
.

As we cannot guess the numbers, we solve the equation

X2 + 3X + 6 = 0 .

∆ = 9− 24 < 0 .

This equation has no solution, which means that

X2 + 3X + 6

cannot be factored.
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Example 2.6.16 Factor

X2 + 2X − 5 .

Solution: We seek r, s so that{
r + s = −2

rs = −5
.

As we cannot guess the numbers, we solve the equation

X2 + 2X − 5 = 0 .

∆ = 4 + 20 = 24 .

Therefore

x1,2 =
−2±

√
24

2
=
−2± 2

√
6

2
= −1±

√
6 .

The two roots are −1−
√

6 and −1 +
√

6. These are our r and s.

This tells us that

X2+2X−5 =
(
X − (−1−

√
6)
)(

X − (−1 +
√

6)
)

=
(
X + 1 +

√
6
)(

X + 1−
√

6
)
.

Question 2.6.1 What if we want to factor something like

aX2 + bX + c .

Theorem 2.6.4 If it can be factored, then

aX2 + bX + c = a(X − r)(X − s) ,

Where

• i) r + s = − b
a
.

• ii) rs = c
a
.

• iii) r, s are the solutions to aX2 + bX + c = 0.
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Important! The Theorem tells us the following. To find the factorization

of aX2+bX+C we start by seeking two numbers r, s so that r+s = − b
a
, rs =

c
a
. If they are easy to find, we just guess them. If they are not easy to

find/guess, we simply solve instead the quadratic

aX2 + bX + c = 0 .

If this equation has two solutions, those are r and s. If the equation has

one solution, then r = s is the solution. if the quadratic has no solution, it

means the quadratic cannot be factored.

Example 2.6.17 Factor

2X2 − 5X + 3 .

Solution: We seek r, s so that{
r + s = 5

2

rs = 3
2

.

As we cannot guess the numbers, we solve the equation

2X2 − 5X + 3 = 0 .

∆ = 25− 24 = 1 .

The solutions are

x1,2 =
5±
√

1

4
,

which are 1 and 3
2
. Therefore

2X2 − 5X + 3 = 2(X − 1)(X − 3

2
.

2.6.4 Exercises

Exercise 2.6.1 Solve the following equations by completing the square.

i) x2 − 8x+ 9 = 0.

ii) x2 + 6x+ 10 = 0.
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iii) 2x2 − 5x+ 3 = 0.

Exercise 2.6.2 For which value of a does the following equation have exactly

one solution:

x2 − 2x+ a = 0 .

Exercise 2.6.3 Solve the following equations

i) x2 + 4x+ 3 = 0

ii) 2x2 + 7x− 5 = 0

Exercise 2.6.4 Solve the following equations

i) x2 + x− 3 = 0

ii) 3x2 + x+ 3 = 0

Exercise 2.6.5 Factor the following quadratics

i) x2 − 7x+ 12

ii) x2 − 2x− 4

Exercise 2.6.6 Solve the following quadratic equations

a) 3x2 + 2x− 0.

b) x2 + 3x+ 7 = 0.

Exercise 2.6.7 Solve the following quadratic equations

a) x2 + 2x− 3 = 0.

b) x2 + 6x+ 10 = 0.

Exercise 2.6.8 For which value of a does the following equation have exactly

one solution:

x2 − 2x+ a = 0 .
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2.7 Polynomials

Definition 2.7.1 A polynomial is an expression of the form

anX
n + an−1X

n−1 + ...+ a1X + a0 ,

where an, ..., a0 are real numbers. These numbers are called the coefficients

of the polynomial.

Example 2.7.1 X2 + 2X + 1 and 4X4 + 2X2 + 1 are polynomials.

The coefficients of X2 + 2x+ 1 are 1, 2, 1, while the coefficients of 4X4 +

2X2 + 1 are 4, 0, 2, 0, 1. That is because

4X4 + 2X2 + 1 = 4X4 + 0X3 + 2X2 + 0X + 1 .

Note that if we don’t list the zeroes, we could not say which polynomial

has the coefficients 4, 2, 1.

Definition 2.7.2 The degree of the polynomial is the largest power of X

which appears with a non-zero coefficient.

Example 2.7.2 Find the degrees of X2 + 2X + 1, 4X4 + 2X2 + 1 and 5.

Solution: The degrees are 2, 4 and 0. Note that 5 = 5X0.

We add two polynomials by adding the coefficients corresponding to the

same power of X. We subtract two polynomials by subtracting the coeffi-

cients corresponding to the same power of X.

Example 2.7.3 Find (2X4 + 3X3 −X2 + 3X + 1) + (3X3 + X2 −X + 1)

and (2X4 + 3X3 −X2 + 3X + 1)− (3X3 +X2 −X + 1).

Solution:

(2X4 + 3X3 −X2 + 3X + 1) + (3X3 +X2 −X + 1)

= 2X4 + 3X3−X2 + 3X + 1 + 3X3+X2−X + 1

= 2X4 + 6X3 + 2X + 2

91



(2X4 + 3X3 −X2 + 3X + 1)− (3X3 +X2 −X + 1)

= 2X4 + 3X3−X2 + 3X + 1−3X3−X2+X−1

= 2X4−2X2 + 4X

We multiply polynomials by multiplying each term in the first polynomial

by each term in the second polynomial and adding everything together.

Example 2.7.4 Find (2X3 + 3X + 1) · (3X2 +X − 1).

Solution:

(2X3 + 3X + 1) · (3X2 +X − 1)

= 2X3 · 3X2 + 2X3 ·X + 2X3 · (−1) + 3X · 3X2 + 3X ·X + 3X · (−1)

+ 1 · 3X2 + 1 ·X + 1 · (−1)

= 6X5 + 2X4 − 2X3 + 9X3 + 3X2 − 3X + 3X2 +X − 1

= 6X5 + 2X4 + 7X3 + 6X2 − 2X − 1

Exercise 2.7.1 Multiply (2X3 + 3X2 + 2) · (X2 − 2X + 1).

Answer: Multiplying each with each we get:

(2X3 + 3X2 + 2) · (X2 − 2X + 1) = 2X3 ·X2 + 2X3 · (−2X) + 2X3 · 1
+ 3X2 ·X2 + 3X2 · (−2X) + 3X2 · 1 + 2 ·X2 + 2 · (−2X) + 2 · 1
= 2X5 − 4X4 + 2X3 + 3X4 − 6X3 + 3X2 + 2X2 − 4X + 2

= 2X5 −X4 − 4X3 + 5X2 − 4X + 2

Exercise 2.7.2 Multiply (2X2 + 1)(2X2 − 1).

Answer: Multiplying each with each we get:

(2X2 + 1)(2X2 − 1) = 2X2 · 2X2 + 2X2 · (−1) + 1 · 2X2 + 1 · (−1)

= 4X4 − 2X2 + 2X2 − 1 = 4X4 − 1

Expressions of the form sum · product appear often in algebra. For this

reason it is often useful to remember the following formula:
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(a + b)(a− b) = a2 − b2 .

Using this formula in Example 2.7.2 with a = 2X2 and b = 1 we get

(2X2 + 1)(2X2 − 1) = (2X2)2 − (1)2 = 4X4 − 1 .

Exercise 2.7.3 Multiply (X + 2)(X − 2).

Answer: By the previous formula we have

(X + 2)(X − 2) = (X)2 − (2)2 = X2 − 4 .

Exercise 2.7.4 Calculate (2X2 + 1)2.

Answer: Multiplying each with each we get:

(2X2 + 1)2 = 2X2 · 2X2 + 2X2 · 1 + 1 · 2X2 + 1 · 1
= 4X4 + 2X2 + 2X2 + 1 = 4X4 + 4X2 + 1

Expressions of the form square of a sum or square of a difference appear

often in algebra. For this reason it is often useful to remember the following

formulas:

(a + b)2 = a2 + 2ab + b2 .

(a− b)2 = a2 − 2ab + b2 .

Using the formula for sum in Example 2.7.4 with a = 2X2 and b = 1 we

get

(2X2 + 1)2 = (2X2)2 + 2(2X2) + (1)2 = 4X4 + 4X2 + 1 .

Exercise 2.7.5 Calculate (X + 3)2.

Answer: By the previous formula we have

(X + 3)2 = (X)2 + 2 ·X · 3 + 32 = X2 + 6X + 9 .

Exercise 2.7.6 Calculate (X − 2)2.
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Answer: By the previous formula we have

(X − 2)2 = (X)2 − 2X(2) + 22 = X2 − 4X + 4 .

Exercise 2.7.7 Calculate (X2 − 6)2

Answer: By the previous formula we have

(X2 − 6)2 = (X2)2 − 2(X2)(6) + (6)2 = X4 − 12X2 + 36 .

There are also some similar formulas for cubes:

(a + b)3 = a3 + 3a2b + 3ab2 + b3 .

(a− b)3 = a3 − 3a2b + 3ab2 − b3 .

Important!: If you don’t remember the formula, you can always find it

by multiplying (a± b) by itself three times.

Exercise 2.7.8 Calculate (X + 2)3.

Answer: By the previous formula we have

(X + 2)3 = (X)3 + 3 ·X2 · 2 + 3 ·X · 22 + 23 = X3 + 6X2 + 12X + 8 .

Exercise 2.7.9 Calculate (X − 3)3.

Answer: By the previous formula we have

(X − 3)3 = (X)3 − 3 ·X2 · 3 + 3 ·X · 32 − 33 = X3 − 9X2 + 27X − 27 .

Exercise 2.7.10 Calculate (X2 − 1)3

Answer: By the previous formula we have

(X2 − 1)3 = (X2)3 − 3 · (X2)2 · 1 + 3 ·X2 · 12 − 13 = X6 − 3X4 + 3X2 − 1 .
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2.7.1 Factorization

By factorization we understand the following problem:

Given a polynomial P , can we find two polynomials Q,R of smaller

degree such that

P (X) = Q(X) ·R(X) ?

For example, we saw in Exercise 2.7.1 that

(2X3 + 3X2 + 2) · (X2 − 2X + 1) = 2X5 −X4 − 4X3 + 5X2 − 4X + 2

This is telling us that the polynomial 2X5 −X4 − 4X3 + 5X2 − 4X + 2

can be factored as (2X3 + 3X2 + 2) · (X2 − 2X + 1).

We might also ask if (2X3 + 3X2 + 2) or (X2 − 2X + 1) can be factored

further, this is what we understand by complete factorization.

Finding the factorization of a polynomial in general is a very hard ques-

tion, but in some situations we can find the factorization.

2.7.2 Review: Factorization of quadratics

Let us recall the following fact from the section about quadratic Equations:

Theorem 2.7.1 Consider the polynomial

aX2 + bX + c .

Let ∆ = b2 − 4ac.

• i) If ∆ < 0 then aX2 + bX + c cannot be factored.

• ii) If ∆ = 0 then aX2 + bX + c be factored as

aX2 + bX + c = a(X − r)2 .

where r = − b
2a

is the solution to aX2 + bX + c = 0.

• iii) If ∆ > 0 then aX2 + bX + c be factored as

aX2 + bX + c = a(X − r1)(X − r2) .

where r1,2 = −b±
√

∆
2a

are the solutions to aX2 + bX + c = 0.
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Exercise 2.7.11 Factor 3X2 − 2X + 1.

Answer:

∆ = 4− 12 < 0 .

This cannot be factored.

Exercise 2.7.12 Factor X2 − 2X + 1.

Answer:

∆ = 0 .

The solution to X2 − 2X + 1 = 0 is X = 1. Therefore

X2 − 2X + 1 = (X − 1)2 .

Exercise 2.7.13 Factor X2 − 5X + 6.

Answer:

∆ = 25− 24 > 0 .

The solutions to X2 − 5X + 6 = 0 are r1,2 = 5±
√

1
2

, which are 2 and 3 .

Therefore

X2 − 5X + 6 = (X − 2)(X − 3) .

2.7.3 Factorization by common factor

If the Polynomial doesn’t contain a term without X, we can factor it by

making the smallest power of X a common factor.

Exercise 2.7.14 Factor 3X2 − 2X.

Answer:

3X2 − 2X = X(3X − 2) .

Exercise 2.7.15 Factor X3 − 2X2.

Answer:

X3 − 2X2 = X2(X − 3) .
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Exercise 2.7.16 Factor X4 − 5X3 + 4X2.

Answer:

X4 − 5X3 + 4X2 = X2(X2 − 5X + 4) .

Now we can factor further the quadratic X2 − 5X + 4:

∆ = 25− 16 = 9 .

The roots are r1,2 = 5±
√

9
2

which is 1 and 4. Therefore X2 − 5X + 4 =

(X − 1)(X − 4).

This gives

X4 − 5X3 + 4X2 = X2(X − 1)(X − 4) .

2.7.4 Factorization by Formulas

The following formulas can also be used for factorization:

a2 − b2 = (a + b)(a− b) .

a3 − b3 = (a− b)(a2 + ab + b2) .

a3 + b3 = (a + b)(a2 − ab + b2) .

Exercise 2.7.17 Factor X2 − 4.

Answer:

X2 − 4 = X2 − 22 = (X − 2)(X + 2) .

Exercise 2.7.18 Factor X2 − 7.

Answer:

X2 − 7 = X2 − (
√

7)2 = (X −
√

7)(X +
√

7) .

Exercise 2.7.19 Factor X3 − 8.
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Answer:

X3 − 8 = X3 − (2)3 = (X − 2)(X2 + 2X + 4) .

The quadratic X2 + 2X + 4 has ∆ = 4 − 16 < 0, therefore we cannot

factor further.

Exercise 2.7.20 Factor X3 + 1.

Answer:

X3 + 1 = X3 + (1)3 = (X + 1)(X2 −X + 1) .

The quadratic X2 − X + 1 has ∆ = 1 − 4 < 0, therefore we cannot factor

further.

Exercise 2.7.21 Factor X4 − 16.

Answer:

X4−16 = (X2)2−42 = (X2−4)(X2+4) = (X2−22)(X2+4) = (X−2)(X+2)(X2+4) .

2.7.5 Long Division

Exactly as for numbers, we can do long division with Polynomials.

Theorem 2.7.2 Given two polynomials P (X) and D(X), there exists unique

polynomials Q(X) and R(X) such that

P (X) = Q(X) ·D(X) +R(X) ,

and either R(X) = 0 or deg(R) < deg(D).

When we perform long division of polynomials we proceed as follows:

We start by dividing the term in P (X) with the highest degree by the

term in D(X) with the highest degree. Their ratio yields a new term for

Q(X).

Next we multiply this term by D(X) and write it under P (X). We

subtract this from P (X).

As long as the difference we get has degree greater or equal than D(X),

we repeat the above process with the difference instead of P (X).
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Exercise 2.7.22 Divide X4 + 2X3 + 3X2 + 2X − 1 by X2 +X + 1.

Answer:

The highest term in X4 + 2X3 + 3X2 + 2X − 1 is X4. The highest term

in X2 + X + 1 is X2. Dividing X4 by X2 we get X4

X2 = X2. This is the first

term in Q(X).

So far we have

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2+ + + + + + + + +

Next we subtract X2(X2 +X + 1) = X4 +X3 +X2.

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2+ + + + + + + + +

X4 +X3 +X2−2X + 1 + .

We now subtract

(X4 + 2X3 + 3X2 + 2X − 1)− (X4 +X3 +X2) .

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2+ + + + + + + + +

X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X

Dividing X3 by X2 we get X3

X2 = X. This is the second term in Q(X).

So far we have

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2 +X+ + + + ++

X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X

Next we subtract X(X2 +X + 1) = X3 +X2 +X.
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X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2 +X+ + + + ++

X3..X2X3 + 2X2 + 2X
X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X

We now subtract

(X3 + 2X2 + 2X − 1)− (X3 +X2 +X) .

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2 +X+ + + + ++

X4 −+ + ++X2 +X − 1
X3..X2X3 + 2X2 + 2X
X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X

Dividing X2 by X2 we get X2

X2 = 1. This is the second term in Q(X).

So far we have

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2 +X + 1+ + + + +

X4 −+ + ++X2 +X − 1
X3..X2X3 + 2X2 + 2X
X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X

Next we subtract 1(X2 +X + 1) = X2 +X + 1.

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2 +X + 1+ + + + +

X4 − 5X3 − 18X2+
X4 −+ + ++X2 +X + 1
X4 −+ + ++X2 +X − 1
X3..X2X3 + 2X2 + 2X
X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X
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We now subtract

(X2 +X − 1)− (X2 +X + 1) .

X2 +X + 1))X4 + 2X3 + 3X2 + 2X − 1
X2 +X + 1+ + + + +

X4 − 5X3 − 18X2 + ..− 2
X4 −+ + ++X2 +X + 1
X4 −+ + ++X2 +X − 1
X3..X2X3 + 2X2 + 2X
X4 −+X3 + 2X2 + 2X − 1
X4 + 2X3 + 3X22X

Answer: The quotient is Q(X) = X2 + X + 1 and the remainder is

R(X) = −2.

Note that we can check our answer:

X4 + 2X3 + 3X2 + 2X − 1 = (X2 +X + 1)(X2 +X + 1)− 2X .

Exercise 2.7.23 Divide X4 + 3X3 +X2 − 2X + 1 by X2 − 3X + 1.

Answer:

X2 − 3X + 1))X4 + 3X3 +X2 −+2X + +1
X2 + 6X + 18

X4 − 5X3 − 18X2+46X − 17
X4 − 5X3−18X2 − 54X + 18
X4 − 5X3−18X2 − 8X + 221
X4−6X3 − 18X2 + 6X
X4−6X3 − 2X2....+2X + 221
X4 − 3X3 +X2−2X + 1.+ +

Answer: The quotient is Q(X) = X2 + 6X + 18 and the remainder is

R(X) = 46X − 17.

Note that we can check our answer:

X4 + 3X3 +X2 − 2X + 1 = (X2 − 3X + 1)(X2 + 6X + 18) + 46X − 17X .

Exercise 2.7.24 Divide X3 + 3X2 + 3X + 1 by X + 1.
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Answer:

X + 1))X3 + 3X2 + 3X + 1
X2 + 2X + 1

X4 − 5X30
X4 − 5X3 −+.+X + 1
X4 − 5X3 −+.+X + 1
X4 −++2X2 + 2X
X4 −++2X2 + 3X + 21
+.X3 +X2

Answer: The quotient is Q(X) = X2 + 2X + 1 and the remainder is

R(X) = 0.

Note that we can check our answer:

X3 + 3X2 + 3X2 + 1 = (X + 1)(X2 + 2X + 1)X .

Important!: Whenever when we get a remainder of 0, we actually get a

factorization of P (X).

In the next exercise we will see that if the highest degree term of D(X) has

a coefficient not equal to 1, even if all the coefficients of P (X) are integers,

we often get fractions in Q(X) and R(X).

Exercise 2.7.25 Divide X3 +X2 + 3X + 1 by 2X + 1.

Answer:

2X + 1))X3 +X2 + 3X + 1

1
2
X2 + 1

4
X + 11

8

X4 − 5X3 − 3
8

X4 − 5X3 −+.+11
4
X + 11

8

X4 − 5X3 −+.+11
4
X + 1

X4 −++1
2
X2 + 1

4
X

X4 −++1
2
X2 + 3X + 21

+ + +X3 + 1
2
X2

Answer: The quotient is Q(X) = 1
2
X2 + 1

4
X + 11

8
and the remainder is

R(X) = −3
8
.
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2.7.6 Rational Root Test

Definition 2.7.3 A real number a is called a root for the polynomial P (X)

if P (a) = 0.

Exercise 2.7.26 Are 0, 1, 2, 3 roots of P (X) = X3 − 2X2 −X − 6?

Answer:

P (0) = 0− 0− 0− 6 6= 0X .

P (1) = 1− 2− 1− 6 6= 0X .

P (2) = 8− 8− 2− 6 6= 0X .

P (3) = 27− 18− 3− 600X .

0, 1, 2 are not roots of P (X). 3 is a root of P (X).

Theorem 2.7.3 If P is not the zero polynomial, then P (X) has at most

deg(P ) roots.

Important!: To find the roots of a polynomial of degree 1 or 2, we simply

solve the linear or quadratic equation P (X) = 0.

The question is how can we find the roots of higher degree polynomials?

If all the coefficients are integers then we can find the rational roots.

Theorem 2.7.4 (Rational Root Test) Let P (X) = anX
n + ...+a1X +a0

be a polynomial with all the coefficients integers. If r = m
l
6= 0 is a rational

root, then m|a0 and l|an.

In particular, if an = 1 then all the rational roots of P (X) are integers

and divisors of a0.

Important!: Remember that r can be negative.

Exercise 2.7.27 Find all rational roots of P (X) = X3 − 3X2 + 4X − 2.
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Answer: By the Rational root test the potential roots are ±1 and ±2. We

now test them

P (1) = 0X .

P (−1) 6= 0X .

P (2) 6= 0X .

P (−2) 6= 0X .

The only rational root is 1.

Exercise 2.7.28 Find all rational roots of P (X) = 2X3 −X2 − 2X + 1.

Answer: By the Rational root test the potential roots are ±1 and ±1
2
. We

now test them

P (1) = 0X .

P (−1) = 0X .

P (
1

2
) = 0X .

P (−1

2
) 6= 0X .

The rational roots are 1,−1,−1
2
.

2.7.7 Rational Roots and Factorisation

Note that if we have a root of P (X) we can factor it:

Theorem 2.7.5 a is a root of P (X) if and only if (X − a) is a factor of

P (X).

Thus, if we can find a rational root of P (X), we can then do long division

of P (X) by (X − a). The remainder has to be zero, and if possible we try to

factor the quotient.

Exercise 2.7.29 Factor X3 − 3X + 2.
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By the Rational root test the potential roots are ±1 and ±2. By checking,

we find that 1 is a root.

Dividing X3 − 3X2 + 2 by X − 1 we get a quotient of X2 − 3X + 2 and

a remainder of R = 0. Therefore

(X3 − 3X2 + 2) = (X − 1)(X2 − 3X + 2) .

Now, the roots of the quadratic X2 − 3X + 2 = 0 are 1 and 2. Therefore

X2 − 3X + 2 = (X − 1)(X − 2). This Yields:

(X3 − 3X2 + 2) = (X − 1)(X − 1)(X − 2) .

Exercise 2.7.30 Factor X3 −X2 +X − 1.

By the Rational root test the potential roots are ±1. By checking, we find

that 1 is a root.

Dividing X3 −X2 + X − 1 by X − 1 we get a quotient of X2 + 1 and a

remainder of R = 0. Therefore

(X3 −X2 +X − 1) = (X − 1)(X2 + 1) .

Now, the quadratic X2 + 1 = 0 doesn’t have solutions, which means this

cannot be factored further.

2.7.8 Exercises

Exercise 2.7.31 Calculate

i) (X2 + 2X + 1) + (X3 + 2X − 1).

ii) (X2 + 2X + 1) · (X3 + 2X − 1)

Exercise 2.7.32 Calculate

i) (2X + 1)2

ii) (X2 − 1)2

iii) (X + 2)3
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Exercise 2.7.33 Factor

i) X2 − 7X + 12

ii) 3X3 + 2X2

iii) X4 − 81

Exercise 2.7.34 Find the quotient and remainder for the following long di-

visions:

i) X4 − 3X3 + 2X2 −X + 1 divided by X2 + 2X + 1.

ii) 2X3 + 3X2 −X + 1 divided by 2X + 1.

Exercise 2.7.35 Find all rational roots of

P (X) = 3X3 + 2X2 + 5X − 2 .

Exercise 2.7.36 Factor

X3 −X3 − 4x+ 4 .

Exercise 2.7.37 Find the quotient and remainder when X4−3X3−2X2 +2

is divided by X2 + 2X + 3.

Exercise 2.7.38 Find the quotient and remainder when 2X4−2X3+3X2−2

is divided by X2 + 2X + 2.

Exercise 2.7.39 Find the quotient and remainder when X4 + 3X2 + 2X+ 1

is divided by X2 +X − 1.

Exercise 2.7.40 Find the rational roots of X3 − 2X2 +X − 2.
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2.8 Rationalization

By rationalization we understand the process of eliminating a square root

from a denominator.

Fractions with denominator of the form
√
a.

If a is an integer and a fraction has the denominator
√
a, to rationalize

the fraction we multiply both the denominator and numerator by
√
a.

Example 2.8.1 Rationalize 1√
7
.

Solution:
1√
7

=
1√
7
·
√

7√
7

=

√
7

7
.

Exercise 2.8.1 Rationalize 3√
3
.

Solution:
3√
3

=
3√
3
·
√

3√
3

=
3
√

7

3
=
√

3 .

Exercise 2.8.2 Rationalize 1√
2
.

Solution
1√
2

=
1√
2
·
√

2√
2

=

√
2

2
.

Exercise 2.8.3 Rationalize 3+
√

5√
5

.

Solution:

3 +
√

5√
5

=
3 +
√

5√
5
·
√

5√
5

=
(3 +

√
5)
√

5

5
=

3
√

5 + 5

5
.

Fractions with denominator of the form a±
√
b,
√
a± b,

√
a±
√
b.

Let us recall that

(x+ y)(x− y) = x2 − y2 .
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This means that

(a+
√
b)(a−

√
b) = a2 − b .

(
√
a+ b)(

√
a− b) = a− b2 .

(
√
a+
√
b)(
√
a−
√
b) = a− b .

The pairs
(
a +
√
b, a −

√
b
)
,
(√

a + b,
√
a − b

)
and

(√
a +
√
b,
√
a −
√
b
)

are called conjugated pairs.

If a fraction has the denominator of the form a±
√
b,
√
a±b,

√
a±
√
b, with

a, b integers, to rationalize we multiply both the denominator and numerator

by the conjugate of the denominator.

Example 2.8.2 Rationalize 1√
7
.

Solution:

1√
5− 2

=
1√

5− 2
·
√

5 + 2√
52

=

√
5 + 2

(
√

5)2 − 22
=

√
5 + 2

5− 4
=
√

5 + 2 .

Exercise 2.8.4 Rationalize 2√
7+3

.

Solution:

2√
7 + 3

=
2√

7 + 3
·
√

7− 3√
7− 3

=
2(
√

7− 3)

7− 9
=

2(
√

7− 3)

−2
= −(

√
7−3) = 3−

√
7 .

Exercise 2.8.5 Rationalize
√

2√
5−
√

2
.

Solution: √
2√

5−
√

2
=

√
2√

5−
√

2
·
√

5 +
√

2√
5 +
√

2
=

√
10− 2

3
.

Exercise 2.8.6 Rationalize 3√
x−1

.

Solution:
3√
x− 1

=
3√
x− 1

·
√
x+ 1√
x+ 1

=
3(
√
x+ 1)

x− 1
.

Exercise 2.8.7 Rationalize 2√
x+1+

√
x−1

.
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Solution:

2√
x+ 1 +

√
x− 1

=
2√

x+ 1 +
√
x− 1

·
√
x+ 1−

√
x− 1√

x+ 1−
√
x− 1

=
2(
√
x+ 1−

√
x− 1)

(x+ 1)− (x− 1)
=

2(
√
x+ 1−

√
x− 1)

2

=
√
x+ 1−

√
x− 1 .

2.8.1 Exercises

Exercise 2.8.8 Rationalize

i) 2√
7

ii) 1√
3−1

iii) 2√
7−
√

3

Exercise 2.8.9 Rationalize 3√
3−1

.

Exercise 2.8.10 Rationalize 2√
5−
√

2
.

Exercise 2.8.11 Rationalize 1√
3−2

.

2.9 Sketching Curves

By a curve we understand in general an equation of the form y = f(x) or

more generally of the form F (x, y) = 0.

By drawing the curve we understand plotting all pair of points (x, y)

which satisfy the equation. Note that usually there are infinitely many of

them.

2.9.1 Lines: y = mx+ b

If m, b are real numbers, the equation y = mx+ b defines a line.

m is the slope, and it tells us how fast the line is raising (if m > 0) or

decreasing (if m < 0).
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If m = 0 the line is horizontal.

b is the y-intercept, it tells us where the line intersects the y-axis.

To draw any line, we can plot two points and draw the line

through those points.

Exercise 2.9.1 Sketch y = 2x+ 3.

When x = 0, y = 3. Thus (0, 3) is a point on the line.

When x = 1, y = 5. Thus (1, 5) is a point on the line.

x axis

y axis

0 1

3

5

•

•
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Exercise 2.9.2 Sketch y = −x− 2.

When x = 0, y = −2. Thus (0,−2) is a point on the line.

When x = 1, y = −3. Thus (1,−3) is a point on the line.

x axis

y axis

0 1

−3

−2 •

•

Note: When we solve a linear equation

ax+ b = 0 ,

we find the intersection between the line y = ax+ b and the y-axis.
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2.9.2 y = xn ; n ≥ 2

The graph of y = x2 is a parabola:

−4 −2 2 4

5

10

15

x-axis

y-axis

The graph of y = x3 looks like this:

−2 −1 1 2

−5

5

x-axis

y-axis

The graph of y = x4 looks like this:
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−2 −1 1 2

5

10

15

x-axis

y-axis

To compare, here are the graphs of x2, x4, x4 drawn on the same graph:

−4 −2 2 4

5

10

15

x-axis

y-axis

x2

x4

x6

Note: Only the graph of y = x2 is a parabola.

Also, below are the graphs of x3, x5, x7 drawn on the same graph:
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−1 1

−5

5

x-axis

y-axis

x3

x5

x7

2.9.3 y =
√
x, y = 3

√
x

The graph of y =
√
x is half parabola which opens along the x-axis:

20 40 60 80 100
2

4

6

8

10

x-axis

y-axis

Note: The reason why this is half parabola is easy to see: the equation

y =
√
x is equivalent to x = y2 ; y ≥ 0. If we think about it as x as function

in y, this is the positive half of the parabola given by f(y) = y2.

The graph of y = 3
√
x is given below:
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−10 −5 5 10

−2

−1

1

2

x-axis

y-axis

2.9.4 y = 1
x , y = 1

x2

The graph of y = 1
x

is given below:

−10 −5 5 10

−10

10

20

x-axis

y-axis

Note: The shape of this curve is called a hyperbola.

The graph of y = 1
x2 is given below:
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−10 −5 5 10

5

10

15

20

25

x-axis

y-axis

2.9.5 y = |x|

The graph of y = |x| is given below:

−10 −5 5 10

2

4

6

8

10

x-axis

y-axis

2.9.6 Operations on graphs

The graph of f(x± a).

If a > 0 the graph of f(x − a) is obtained from the graph of f(x) by

moving a spots to the right.
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If a > 0 the graph of f(x + a) is obtained from the graph of f(x) by

moving a spots to the left.

For example, if the graph of f(x) is given below

−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

then, the graphs of f(x− 2) and f(x+ 1) are

−4 −2 2 4

−10

10

x-axis

y-axis

f(x)
f(x− 2)
f(x+ 1)

Exercise 2.9.3 Sketch the graph of 1
x+2

.

If f(x) = 1
x

we have f(x + 2) = 1
x+2

. Thus, we start with the graph of

f(x) = 1
x

and move it two units to the left:
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−10 −5 5 10

−10

10

20

x-axis

y-axis

1
x
1

x+2

Exercise 2.9.4 Sketch the graph of (x− 1)2.

If f(x) = x2 we have f(x− 1) = (x− 1)2. Thus, we start with the graph

of f(x) = x2 and move it one unit to the right:

−2 −1 1 2 3

1

2

3

4

x-axis

y-axis

x2

(x− 1)2

The graph of f(x)± a.
If a > 0 the graph of f(x) + a is obtained from the graph of f(x) by

moving a spots up.

If a > 0 the graph of f(x − a) is obtained from the graph of f(x) by

moving a spots down.

For example, if the graph of f(x) is given below
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−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

then, the graphs of f(x) + 2 and f(x)− 3 are

−3 −2 −1 1 2 3

−20

−10

10

20

x-axis

y-axis

f(x)
f(x) + 2
f(x)− 3

Exercise 2.9.5 Sketch the graph of x2 + 1.

If f(x) = x2 we have f(x) + 1 = x2 + 1. Thus, we start with the graph of

f(x) = x2 and move it one unit up:
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−2 −1 1 2

1

2

3

4

5

x-axis

y-axis

x2

x2 + 1

Exercise 2.9.6 Sketch the graph of 1
x

+ 6.

If f(x) = 1
x

we have f(x) + 2 = 1
x

+ 6. Thus, we start with the graph of

f(x) = 1
x

and move it six units up:

−4 −2 2 4

−20

20

40

x-axis

y-axis

1
x

+ 6
1
x

The graph of f(−x).

The graph of f(−x) is obtained from the graph of f(x) reflection in the

y-axis.

For example, if the graph of f(x) is given below
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−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

then, the graphs of f(−x) is

−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

f(x)
f(−x)

Exercise 2.9.7 Sketch the graph of 1
−x .

If f(x) = 1
x

we have f(−x) = 1
−x . Thus, we start with the graph of

f(x) = 1
x

and we reflect it in the y-axis:

121



−4 −2 2 4

−40

−20

20

40

x-axis

y-axis

1
x
1
−x

The graph of −f(x).

The graph of −f(x) is obtained from the graph of f(x) reflection in the

x-axis.

For example, if the graph of f(x) is given below

−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

then, the graphs of −f(x) is
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−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

f(x)
−f(x)

Exercise 2.9.8 Sketch the graph of −x2.

If f(x) = x2 we have −f(x) = −x2. Thus, we start with the graph of

f(x) = x2 and we reflect it in the x-axis:

−2 −1 1 2

−4

−2

2

4

x-axis

y-axis

x2

−x2

The graph of f(kx).

If k > 1 the graph of f(kx) is obtained from the graph of f(x) by

shrinking the x-axis k times.

If 0 < k < 1 the graph of f(kx) is obtained from the graph of f(x)

expanding the x-axis 1
k

times.

For example, if the graph of f(x) is given below
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−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

then, the graphs of f(3x) and f(x
2
) are

−6 −4 −2 2 4 6

−10

10

x-axis

y-axis

f(x)
f(3x)
f(x

2
)

Exercise 2.9.9 Sketch the graph of (2x)2.

If f(x) = x2 we have f(2x) = (2x)2. Thus, we start with the graph of

f(x) = x2 and we shrink the x-axis by a factor of 2:
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−2 −1 1 2

1

2

3

4

x-axis

y-axis

x2

(2x)2

Exercise 2.9.10 Sketch the graph of
∣∣1

3
x
∣∣.

If f(x) = |x| we have f(1
3
x) =

∣∣1
3
x
∣∣. Thus, we start with the graph of

f(x) = |x| and we expand the x-axis three times:

−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

x-axis

y-axis

|x|∣∣1
3
x
∣∣

The graph of kf(x).

If k > 1 the graph of kf(x) is obtained from the graph of f(x) by

expanding the y-axis k times.

If 0 < k < 1 the graph of f(kx) is obtained from the graph of f(x)

shrinking the y-axis 1
k

times.

For example, if the graph of f(x) is given below
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−3 −2 −1 1 2 3

−10

10

x-axis

y-axis

then, the graphs of 3f(x) and 1
2
f(x) are

−3 −2 −1 1 2 3

−40

−20

20

40

x-axis

y-axis

f(x)
3f(x)
1
2
f(x)

Exercise 2.9.11 Sketch the graph of 4x2.

If f(x) = x2 we have 4f(x) = 4x2. Thus, we start with the graph of

f(x) = x2 and we shrink the x-axis by a factor of 4:
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−2 −1 1 2

1

2

3

4

x-axis

y-axis

x2

4x2

Exercise 2.9.12 Sketch the graph of 2
√
x− 1 + 3.

We start at
√
x move it one unit to the left, then expand the y axis by a

factor of 2 and finally move it up by 3 units.

5 10 15 20 25

2

4

6

8

10

12

x-axis

y-axis

√
x√

x− 1

2
√
x− 1

2
√
x− 1 + 3

Note: The order in which we do the operations matters. We always start

from x and work our way out. This is the same order we would calculate if

we replace x by a number.
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2.9.7 Drawing quadratic functions

By completing the square we can draw the graph of any function of the form

f(x) = ax2 + bx + c. Indeed, by completing the square, we can write f in

the form

f(x) = a (x+ e)2 + f .

Therefore, the graph of f can be drawn by staring with the graph of x2,

moving it e units to left/right, then expanding/contracting the y axis by a

factor of a and then moving up/down by f units.

Exercise 2.9.13 Sketch the graph of x2 + 2x+ 4.

Completing the square we get

x2 + 2x+ 4 = x2 + 2x+ 1− 1 + 4 = (x+ 1)2 + 3

−4 −3 −2 −1 1 2 3

2

4

6

8

10

12

x-axis

y-axis

x2

(x+ 1)2

(x+ 1)2 + 3

Exercise 2.9.14 Sketch the graph of −2x2 + 4x− 6.

Completing the square we get

−2x2 + 4x− 6 = −2
(
x2 − 2x+ 3

)
= −2

(
x2 − 2x+ 1− 1 + 3

)
= −2

(
(x− 1)2 + 2

)
= −2 (x− 1)2 − 4
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−2 −1 1 2 3

−10

−5

x-axis

y-axis

x2

(x− 1)2

−(x− 1)2

−2(x− 1)2

−2 ∗ x2 + 4 ∗ x− 6

2.9.8 Circles

The circle with center (a, b) and radius R is the curve given by the

equation

(x− a)2 + (y − b)2 = R2 .

Example 2.9.1 Sketch the circle (x− 2)2 + (y − 3)2 = 32.
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x axis

y axis

2

3 •

Exercise 2.9.15 Find the center and the radius of

(x− 1)2 + (y + 2)2 = 4

Answer: Center is (1,−2) and radius is 2.

Exercise 2.9.16 Find the center and the radius of

x2 + (y + 1)2 = 7

Answer: Center is (0,−1) and radius is
√

7.

Exercise 2.9.17 Write the equation of the circle with the center (−1, 2) and

radius 3.

Answer:

(x+ 1)2 + (y − 2)2 = 9 .

Exercise 2.9.18 Draw

x2 + 2x+ y2 − 6y = 6 .
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Sol: Completing the square we get

x2 + 2x+ 1− 1 + y2 − 6y + 9− 9 = 6 .

(x+ 1)2 + (y − 3)2 − 10 = 6 .

(x+ 1)2 + (y − 3)2 = 16 .

The circle has center (−1, 3) and radius 4.

x axis

y axis

−1

3•

2.9.9 Exercises

Exercise 2.9.19 Draw the following graphs:

i) y = 1
x−2

.

ii) y = x2 − 4x+ 1

iii) y = −2x2 − 4x+ 6.
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Exercise 2.9.20 i) Find an equation for the circle of radius 3 with centre

(2,−1).

ii) Find the center and radius of the circle

X2 − 4X + Y 2 + 2Y = 4 .

Exercise 2.9.21 Sketch the graph of y = x2 − 4x+ 3.

Exercise 2.9.22 Find the center and radius of the circle

X2 + 4X + Y 2 − 6Y = 3 .

Exercise 2.9.23 Sketch the graph of y = x2 − 2x− 3.

Exercise 2.9.24 Find the center and radius of the circle

X2 + 2X + Y 2 − 6Y = 15 .

Exercise 2.9.25 Sketch the graph of y = x2 + 4x− 5.

Exercise 2.9.26 i) Write an equation for the circle with center (1, 2)

and radius 3.

ii) Find the center and radius of the circle

X2 − 2X + Y 2 + 4Y = 11 .
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Chapter 3

Introduction to Geometry

3.1 Angles

Definition 3.1.1 An angle is the figure made by two rays at a common

point. We use the symbol ∠ to denote an angle.

•
An angle made by two rays which make a line is considered to have 180◦:

•

180◦

Definition 3.1.2 Two angles are called congruent if we can translate and

rotate one angle in such a way that it completely overlaps with another angle.

We use the symbol ≡ for congruence.

If we split an angle of d degrees in n congruent angles, each of the smaller

angle has exactly d
n

degrees.
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For example, if we split an angle of 180◦ into two congruent angles, each

of the smaller angles has exactly 90◦.

•

90◦ 90◦

•
45◦ 45◦

45◦ 45◦

The measures of angles can tell us if angles are congruent or not:

Theorem 3.1.1 Two angles are congruent if and only if they have the same

measure.

An angle is called right angle if it measures 90◦.

An angle which measures less that 90◦ is called an acute angle.

An angle which measures more that 90◦ is called an obtuse angle.

Two angles are called supplementary their measures add to 180◦.
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3.1.1 Opposite, alternating interior and corresponding

angles

If two lines intersect at a point they make two pairs of angles on opposite

side. These are called opposite angles.

Theorem 3.1.2 Opposite angles are congruent.

Proof: If we rotate one of the angles by 180◦ it completely overlaps with the

other angle.

180◦ 180◦

Alternately, we can observe that we can add the same angle to both of

the given angles to get 180◦.

�
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Given two lines l1, l2, a line t which intersects both of them is called a

transversal.

l1

l2

t

Two angles on opposite side of t, in between l1, l2, one made by l1 and t,

the other by l2 and t are called alternate interior angles. There are two

pairs of alternate interior angles:

l1

l2

t

a b
cd

e f

gh

In this picture, the angles c and e are alternate interior angles. The angles

d and f are also alternate interior angles.

if two lines l1, l2 are cut by a transversal, angles in matching corners are

called corresponding. There are four pairs of corresponding angles:
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l1

l2

t

a b
cd

e f

gh

In this picture, the angles a and e are corresponding angles. The angles b

and f are corresponding angles. The angles c and g are corresponding angles.

The angles d and h are corresponding angles.

Let us recall the definition of parallel lines:

Definition 3.1.3 Two lines l1 and l2 are called parallel if they don’t inter-

sect. We use the notation

l1 ‖ l2 ,

to say that the lines are parallel.

Example 3.1.1 The lines below are parallel:

l1

l2

Theorem 3.1.3 If two parallel lines are cut by a transversal t, the alternate

interior angles are congruent.
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l1

l2

t

a b
cd

e f
gh

The theorem tells us that if we are given that l1 ‖ l2, then we know that

∠d ≡ ∠f and

∠c ≡ ∠e

The following is a consequence of the Theorem3.1.3:

Theorem 3.1.4 If two parallel lines are cut by a transversal t, then the

corresponding angles are congruent.

l1

l2

t

a b
cd

e f
gh
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Proof:

By Theorem 3.1.3 we have

∠d ≡ ∠f and

∠c ≡ ∠e

As opposite angles we also have

∠a ≡ ∠c
∠b ≡ ∠d
∠e ≡ ∠g
∠f ≡ ∠h

Combining the two relations, we get

∠a ≡ ∠c ≡ ∠e ≡ ∠g
∠b ≡ ∠d ≡ ∠f ≡ ∠h

�
It follows that given two parallel lines l1 ‖ l2 cut by a transversal t, all

the red angles are congruent and all the blue angles are congruent:

l1

l2

t

a b
cd

e f
gh

The converses of the previous results are also true:
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Theorem 3.1.5 If two lines are l1, l2 are cut by a transversal t, and one pair

of alternate interior angles are congruent, then the two lines are parallel.

Theorem 3.1.6 If two lines are l1, l2 are cut by a transversal t, and one

pair of corresponding angles are congruent, then the two lines are parallel.

3.1.2 Sum of angles in a triangle

Theorem 3.1.7 The sum of angles in any triangle is 180◦.

Proof: We will denote the triangle by ABC and we will call the three

angles in the triangle ∠A,∠B,∠C.

We draw a line l parallel through A to the line BC. We denote the two

extra angles we get by ∠d and ∠e, as on the picture below:

B C

Al
d e

The parallel lines l ‖ BC are cut by the transversal AB. Therefore, by

Theorem 3.1.3 we have

∠B ≡ ∠d .

The parallel lines l ‖ BC are cut by the transversal AC. Therefore, by

Theorem 3.1.3 we have

∠C ≡ ∠e .

It follows that

∠A+ ∠B + ∠C = ∠A+ ∠d+ ∠e = 180◦ .

�

Exercise 3.1.1 In a triangle ABC we know that ∠A = 60◦ and ∠B = 50◦.

Find ∠C.
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Solution:

180◦ = ∠A+ ∠B + ∠C = 60◦ + 50◦ + ∠C .

It follows that

∠C = 70◦ .

Exercise 3.1.2 In a triangle ABC we know that ∠A = 90◦. What is ∠B +

∠C.

Solution:

180◦ = ∠A+ ∠B + ∠C = 90◦ + ∠B + ∠C .

It follows that

∠B + ∠C = 90◦ .

Definition 3.1.4 In a triangle, the angle made by one side with the exten-

sion of another side is called an exterior angle.

The angle emphasized below is exterior angle C:

B C

A

Theorem 3.1.8 Any exterior angle in a triangle is equal to the sum of the

other two angles.

Proof:

B C

A

D
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We know that

∠A+ ∠B + ∠ACB = 180◦ = ∠ACB + ∠DCB .

Canceling ∠ACB we get

∠A+ ∠B = ∠DCB .

�

3.2 Congruent Triangles

Definition 3.2.1 Two triangles are called congruent if they have corre-

sponding equal sides and equal angles.

For example the two triangles below are congruent:

B C

A

E F

D

It turns out that in general we don’t need to check all six. In the following

cases, by checking (the right) three of them we get for free the remaining

three.

Theorem 3.2.1 (SSS) If two triangles have equal side lengths, they are

congruent.
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B C

A

E F

D

Exercise 3.2.1 Let ABC be a triangle. If AB ≡ AC then show that ∠B ≡
∠C.

Solution: We compare ABC with it mirror reflection ACB.

B C

A

C B

A

AB ≡ AC

AC ≡ AB

BC ≡ CB

Therefore, by SSS we have

∆ABC ≡ ∆ACB .

This implies that ∠B ≡ ∠C.

Theorem 3.2.2 (SAS) If two triangles have two pairs of equal sides, and

if the angles between those sides are also congruent, then the triangles are

congruent.
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B C

A

E F

D

Exercise 3.2.2 Let ABC be a triangle and let D be a point on side BC such

that AD ⊥ BC. If BD ≡ DC prove that AB ≡ AC.

Solution

B C

A

D

90◦ 90◦

We have

AD ≡ AD

BDCD

∠BDA ≡ ∠CDA

Therefore, by SAS we have

∆BDA ≡ ∆CDA .

This implies that AB ≡ AC.

Note: Exercise 3.2.1 can also be solved with SAS.
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Theorem 3.2.3 (ASA) If two triangles have two pairs of equal angles, and

if the sides between those angles are also congruent, then the triangles are

congruent.

B C

A

E F

D

Exercise 3.2.3 Let ABC be a triangle. If ∠B ≡ ∠C then show that AB ≡
AC.

Solution: We compare ABC with it mirror reflection ACB.

B C

A

C B

A

∠B ≡ ∠C
BC ≡ CB

∠C ≡ ∠B

Therefore, by ASA we have

∆ABC ≡ ∆ACB .

This implies that AB ≡ AC.

By using the sum of the angles in a triangle, we get that the case AAS

also works.
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Theorem 3.2.4 (AAS) If two triangles have two pairs of equal angles, and

if a pair of corresponding sides not between those angles are also congruent,

then the triangles are congruent.

B C

A

E F

D

Important: The cases AAA and SSA don’t work. If two triangles are

in one of those two cases, it doesn’t mean that they are congruent.

3.2.1 Isosceles and Equilateral Triangles

Definition 3.2.2 A triangle which has two equal sides is called isosceles.

A triangle which has all sides equal is called equlateral.

In Exercise 3.2.1 we proved the following Theorem.

Theorem 3.2.5 In an isosceles triangle, the angles opposing congruent sides

are congruent.

In Exercise 3.2.3 we proved that the converse of this Theorem is also true:

Theorem 3.2.6 If two angles in a triangle are congruent, then the triangle

is isosceles.

In the case of equilateral triangles, by using these theorems twice we get:

Theorem 3.2.7 In an equilateral triangle, all angles are congruent.

Theorem 3.2.8 If all angles in a triangle are congruent, then the triangle

is equilateral.
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Exercise 3.2.4 Find the angles of an equilateral triangle.

Solution: We will denote the triangle by ABC. Since the triangle is

equilateral, we know that ∠A ≡ ∠B ≡ ∠C.

Therefore

180◦ = ∠A+ ∠B + ∠C = 3∠A .

It follows that

∠A = ∠B = ∠C = 60◦ .

3.3 Quadrilaterals

Definition 3.3.1 A figure with four sides and 4 vertices is called a quadri-

lateral.

If the quadrilateral has no interior angle larger than 180◦ is called convex.

A quadrilateral with an angle larger than 180◦ is called concave.

Example 3.3.1 In the picture below,

A C

B

D

E G

F

H

ABCD is a convex quadrilateral, while EFGH is a concave quadrilateral.

Exercise 3.3.1 Let ABCD let be a quadrilateral such that AB ‖ CD and

AD ‖ BC. Prove that AB ≡ CD and AD ≡ BC.

We draw the diagonal AC.
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A B

CD

The parallel lines AB ‖ CD are cut by the transversal AC. It follows

that the alternate interior angles are congruent:

∠CAB ≡ ∠DCA .

The parallel lines AD ‖ BC are cut by the transversal AC. It follows

that the alternate interior angles are congruent:

∠ACB ≡ ∠CAD .

Therefore we have:

∠CAB ≡ ∠DCA
AC ≡ AC

∠ACB ≡ ∠CAD

Therefore, by ASA we have

∆ABC ≡ ∆CDA .

From here we get:

AB ≡ CD

AD ≡ BC

Definition 3.3.2 A quadrilateral in which the opposite edges are parallel is

called a parallelogram.

Exercise 3.3.2 Let ABCD let be a convex quadrilateral. Find the sum of

the four angles.
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We draw the diagonal AC.

A C

B

D

The sum of angles in ∆ABC is 180◦:

∠BAC + ∠B + ∠BCA = 180◦ .

The sum of angles in ∆ADC is 180◦:

∠DAC + ∠D + ∠DCA = 180◦ .

Adding together these relations we get

∠BAC + ∠B + ∠BCA+ ∠DAC + ∠D + ∠DCA = 360◦ .

Therefore

∠A+ ∠B + ∠C + ∠D = 360◦ .

3.4 Thales Theorem

Theorem 3.4.1 (Thales) Let A,B,C be three points on a circle such that

BC is a diameter. Then

∠BAC = 90◦ .
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A

CB •

Exercise 3.4.1 Let A,B,C,D be four points on a circle such that AC and

BD are diameters. Show that ABCD is a rectangle.

Solution:
A

DB

C

•

Since AC is a diameter, by Thales Theorem ∠B = ∠D = 90◦.

Since BD is a diameter, by Thales Theorem ∠A = ∠C = 90◦.

Therefore

∠A = ∠B = ∠C = ∠D = 90◦ .

This shows that ABCD is a rectangle.

3.5 Areas

The area is a quantity which measures how big a figure is in the plane. The

basic property of area is the following Theorems:
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Theorem 3.5.1 If we cut a shape into pieces, the area of the shape is equal

to the sum of areas of pieces.

Theorem 3.5.2 Congruent pieces have equal areas.

3.5.1 Area of a rectangle

Definition 3.5.1 The area of a rectangle is equal to the length of the base

times the length of the height.

Example 3.5.1 Consider the rectangle ABCD below:

A B

D C

6

2

Its area is 2 · 6 = 12 square units.

3.5.2 Area of a triangle

Theorem 3.5.3 Let ABC be a triangle with ∠A = 90◦. Then the area of

ABC is AB·AC
2

.

Proof: Complete ABC to a rectangle.

A B

C A′

As ∆ABC ≡ ∆A′BC, it follows that the area of ABC is half of the area

of ABA′C. As the area of the rectangle ABA′C is AB · AC, we obtain the

desired result.
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Exercise 3.5.1 ABC is a triangle with ∠A = 90◦ and AB = 3, AC = 4.

Find its area.

Solution Area is 3·4
2

= 6.

Theorem 3.5.4 The area of a triangle is base times hight divided by 2.

Proof: Consider a triangle ABC and let D be a point on the side BC

so that AD ⊥ BC.

B C

A

D

Then, the area of the right triangle ABD is AD·BD
2

. The area of the right

triangle ACD is AD·CD
2

.

Adding them together we get that the area of ABC is

AD ·BD
2

+
AD · CD

2
=
AD · (BD + CD)

2
=
AD ·BC

2
.

�

3.5.3 Area of a parallelogram

Theorem 3.5.5 The area of a parallelogram is base times heigth.

Proof: Consider a parallelogram ABCD and let AE be its height. Draw

the diagonal BD.
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A B

CD

E

Then, the triangles ABD and CBD are congruent. Therefore, the area

of the parallelogram is twice the area of ABD.

As the area of ABD is AB·DE
2

, the claim follows.

3.6 Pythagoras’ Theorem

Theorem 3.6.1 Let ABC be a triangle with ∠A = 90◦. Then

AB2 + AC2 = BC2 .

A B

C

Proof: We give a nice proof of Pytagora’s Theorem, based on areas. For

simplicity we will denote AB = c, AC = B,BC = a. We need to prove that

a2 + b2 = c2 .

Add together four copies of the triangle ABC as in the picture below:
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c b

c

b

b c

b

c

a
a

a
a

The outside shape is a square with side b+ c, therefore the total area in

the picture is (b+ c)2 = b2 + c2 + 2bc.

The inside shape is a square with side a, therefore the white area is a2.

Each of the blue triangles is a right triangle of area b·c
2

. Therefore the

blue area is 4 · b·c
2

= 2bc.

We know that the total area is equal to the white area plus the blue area.

Therefore

b2 + c2 + 2bc = a2 + 2bc .

Canceling 2bc from both sides we get the Pytagorean theorem.

�

Exercise 3.6.1 ABC is a triangle with ∠A = 90◦. If AB = 3, AC = 4 find

BC.

Solution:

By Pytagora’s Theorem

BC2 = AB2 + AC2 = 32 + 42 = 9 + 16 = 25 .

Therefore BC = 5.

Exercise 3.6.2 ABC is a triangle with ∠A = 90◦. If AB = 2, AC = 3 find

BC.
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Solution:

By Pytagora’s Theorem

BC2 = AB2 + AC2 = 22 + 32 = 4 + 9 = 13 .

Therefore BC =
√

13.

Exercise 3.6.3 ABC is a triangle with ∠A = 90◦. If AB = 5, BC = 13

find AC.

Solution:

By Pytagora’s Theorem

132 = BC2 = AB2 + AC2 = 52 + AC2 = 25 + AC2 .

Thus

AC2 = 169− 25 = 144 .

Therefore AC =
√

144 = 12.

Exercise 3.6.4 ABC is a triangle with ∠A = 90◦. If AB = 3, BC = 7 find

the area of ABC.

Solution:

By Pytagora’s Theorem

72 = BC2 = AB2 + AC2 = 32 + AC2 = 9 + AC2 .

Thus

AC2 = 49− 9 = 40 .

Therefore AC =
√

40 = 2
√

10.

The area of ABC is AB·AC
2

= 3·2
√

10
2

= 3
√

10.

Exercise 3.6.5 Find the diagonal of a square with side 1.
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Solution:

A B

CD

By Pytagora’s Theorem

AC2 = AB2 +BC2 = 12 + 12 = 2 .

Therefore AC =
√

2.

Exercise 3.6.6 Find the area of an equilateral triangle with side 2.

Solution:

B D C

A

Since ABC is equilateral, we have BD ≡ toCD. As BC = 2, it follows

that BD = 1.

By Pytagora’s Theorem

4 = AB2 = BD2 + AD2 = 1 + AD2 .

Therefore AD =
√

3.

It follows that the area of ABC is 2·
√

3
2

=
√

3.

Note: Same way we can prove that the area of a equilateral triangle with

side l is l2
√

3
4

.
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3.7 Exercises

Exercise 3.7.1 Prove that the following lines are parallel:

l1

l2

t

135◦

45◦

Exercise 3.7.2 ABC is a triangle. D is on side BC such that AD ⊥ BC

and ∠BAD ≡ ∠CAD.

B C

A

D

90◦ 90◦

Prove that AB ≡ AC.

Exercise 3.7.3 ABCD is a quadrilateral such that AB ‖ CD and AD ‖ BC
(i.e. ABCD is a parallelogram). O is the intersection of the diagonals AC

and BD. Prove that the triangles AOB and COD are congruent.

Exercise 3.7.4 ABC is an isosceles triangle with ∠A = 30◦. Find the other

two angles.
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Exercise 3.7.5 ABCD are four points on a circle such that AC is a diam-

eter. Find ∠BAD + ∠BCD.

Exercise 3.7.6 i) ABC is a triangle with ∠A = 90◦, AB = 12, AC = 5.

Find BC.

ii) ABC is a triangle with ∠A = 90◦, AB = 2, BC = 5. Find AC.

Exercise 3.7.7 ABC is an isosceles triangle. If one angle is 70◦ find the

other two angles.

Exercise 3.7.8 A triangle ABC has ∠A = 90◦, AB = 1 and BC = 4. Find

AC.

Exercise 3.7.9 The diagonals AC and BD of a quadrilateral ABCD meet

at E. If AB ≡ CD and AB ‖ CD prove that AE ≡ CE.

D C

A B

E

Exercise 3.7.10 ABC is an isosceles triangle. If one angle is 80◦ find the

other two angles.

Exercise 3.7.11 A triangle ABC has ∠A = 90◦, AB = 2 and BC = 5.

Find AC.

Exercise 3.7.12 The diagonals AC and BD of a quadrilateral ABCD meet

at E. If AE ≡ CE and BE ≡ DE prove that AB ≡ CD.
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D C

A B

E

Exercise 3.7.13 A triangle ABC has ∠B = 30◦ and ∠C = 50◦. What is

the exterior angle A?

Exercise 3.7.14 A triangle ABC has ∠A = 90◦, AB = 3 and AC = 5.

Find BC.

Exercise 3.7.15 In the figure below we know that AB ‖ CD and AB ≡ CD.

Prove that the triangles ABE and CDE are congruent.

D C

A B

E

159



160



Chapter 4

Introduction to Combinatorics

4.1 Addition and multiplication principle

Addition principle: If two sets have no common elements, then the total

number of elements in the two sets is the sum of elements in each set.

The addition principle also tells us that if we want to chose one object

from one of two groups, groups which have no common element, the number

of possible choices we have is the sum of the number of elements in groups.

Exercise 4.1.1 There are 15 Pepsi bottles and 18 Coca Cola bottles in a

box. How many bottles are in the box?

Solution: By the addition principle there are 15 + 18 = 33 bottles in the

box.

Exercise 4.1.2 John sold 12 issues of Sun and 7 issues of Edmonton Jour-

nal. How many newspapers did he sell?

Solution: By the addition principle he sold 12 + 7 = 19 newspapers.

Exercise 4.1.3 A coffee shop has 5 brands of tea and 4 types of coffee. In

how many ways can we get a tea OR a coffee?

Solution: By the addition principle there are 5 + 4 = 9 different drinks we

can chose. Thus we can get one tea or one coffee in 9 different ways.
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Multiplication principle: If we want to chose one item from a group of

M elements and another item from a group of N elements, the total number

of two-items choices is M ·N .

Exercise 4.1.4 A restaurant shop has 3 choices of soup and 6 main courses.

In how many ways can we chose one soup AND one main course?

Solution: By the multiplication principle there are 3 ·6 = 18 different ways.

Note: It is easy to see why in these situation we have to multiply the

number of choices. In this exercise, we can first pick one of the three soups.

If we pick the first soup, we have 6 choices for the main course. If we pick

the second soup, we again have 6 choices for the main course. If we pick the

third soup, we again have 6 choices for the main course.

Note that choices from different groups have different soups, thus they

are different. This means that by the addition principle, the total number of

choices is

6 + 6 + 6 = 3 · 6 .

Exercise 4.1.5 Jake has 3 pairs of jeans and 4 shirts. In how many ways

can he dress using one shirt and one pair of jeans?

Solution: By the multiplication principle there are 3 ·4 = 12 different ways.

If we have more thant 2 groups, the multiplication principle can be gen-

eralized the following way:

The Fundamental Counting Principle: If we have two or more

groups of items, and we want to pick exactly one item from each group,

the number of ways of choosing the items is obtained by multiplying the

number of elements in the groups.

Exercise 4.1.6 A test consists of 5 multiple choice questions, each with 3

choices. John is not prepared for the test, and answers the questions at

random. In how many different ways can he answer the test?

Solution: As he chooses exactly one answer from each group of 3 potential

answers, by the Fundamental Counting Principle the number of ways is

3 · 3 · 3 · 3 · 3 = 243 .
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4.1.1 Inclusion Exclusion Principle

In this section we study what happens if we add together two groups of

elements with common items.

Inclusion exclusion principle: If we have two groups of items, the

total number if items in the two groups is the sum of the items in each group

minus the number of common elements.

Note: If the two groups have no common items, then the Inclusion Ex-

clusion principle tells us exactly the same thing as the addition principle.

Exercise 4.1.7 There are 23 students in a Math class and 25 in English. If

there are 5 students taking both classes, how many students are in total in

the two classes?

Solution: By the inclusion exclusion principle there are

23 + 25− 5 = 43 ,

students in the two classes.

Note: The reason why the inclusion exclusion principle works is because

if we add the number of students in Math and English, we get all the stu-

dents, but we counted the common students twice : once in math and once

in English. Therefore, the sum 23 + 25 is the number of students plus 5.

Subtracting 5 we get the number of students.

Exercise 4.1.8 How many numbers between 1 and 100 inclusive are divisible

by 2 or 5?

Solution: There are 50 even numbers up to 100. There are 20 numbers

divisible by 5 up to 100. But since there are common elements (for example

10 appears in both groups), we cannot use the addition principle, we must

use inclusion-exclusion.

We now figure out how many common elements are. A number is common

if it is divisible by both 2 and 5. Since gcd(2, 5) = 1 a number is divisible by

2 and 5 if it is divisible by 10. There are 10 numbers up to 100 which are

divisible by 10.
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Therefore, by the inclusion-exclusion principle there are

50 + 20− 10 = 60

numbers between 1 and 100 inclusive that are divisible by 2 or 5.

Exercise 4.1.9 There are 21 students in Math and 24 in English. If there

are 37 students in total in the two classes, how many are taking both Math

and English.

Solution: Let us denote by x the number of students which take both classes.

Then, by the inclusion-exclusion principle we have

37 = 21 + 24− x .

Solving we get x = 8 students are taking both classes.

4.2 Permutations, Arrangements and Com-

binations

4.2.1 Permutations

A permutation is an arrangement of some elements.

In this section we try to answer to the following general question: How

many different permutations are for some elements.

Example 4.2.1 There are 6 permutations of red , blue and green:

red blue green

red green blue

blue red green

blue green red

green blue red

green red blue

Theorem 4.2.1 The number of permutations of n elements is n · (n − 1) ·
(n− 2) · ... · 1.
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Proof: We have n choices for the first position. After making this choice, we

have n− 1 elements left, thus we have n− 1 choices for the second position.

Same way we have n− 2 choices for the second position,.... , and one choice

for the last position.

Since we need to make a choice for the first position AND a choice for

the second position AND ... AND a choice for the last position, we need

to use the Fundamental Counting Principle. By the Fundamental Counting

Principle we have

n · (n− 1) · ... · 1

choices. �

Notation: We use the notation n! to denote the product of numbers

between 1 and n:

n! = 1 · 2 · 3 · ... · n .

By convention we will use 0! = 1.

Exercise 4.2.1 Find 6!.

Solution:

6! = 1 · 2 · 3 · 4 · 5 · 6 = 6 · 20 · 6 = 120 · 6 = 720 .

Exercise 4.2.2 In how many ways can we arrange 5 books on a shelf?

Solution: By Theorem 4.2.1, the number of ways is 5! = 120.

Exercise 4.2.3 Find 10!
8!

.

Solution:

10!

8!
= (((((((((((

1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10

(((((((((((
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8

= 90
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4.2.2 Permutations with selection

Exercise 4.2.4 A hockey team has 18 skaters. The coach needs to chose in

order 3 players for the shootout. In how many ways can he select them?

Solution: We have 18 choices for the first shooter. For the second shooter

we only have 17 choices left. For the last shooter we have 16 choices left.

By the Fundamental Counting Principle we have

18 · 17 · 16 = 4896 ,

different ways of choosing in order the three shooter.

Same way as this problem we can prove the following formula:

Theorem 4.2.2 The number of possible permutations of r elements taken

from n is

nPr =
n!

(n− k)!
= n · (n− 1) · ... · (n− r + 1) .

Note: This is the same as choosing in order r elements from n possibili-

ties.

Exercise 4.2.5 A TV station needs to assign three movies for 6 : 00, 8 : 00

and 10 : 00 time slots. If they have 5 movies available, in how many ways

can they assign the three time slots.

Solution: The number of ways is

5P3 =
5!

(5− 3)!
= 5 · 4 · 3 = 60 .

4.2.3 Combinations

Combinations count the number of ways of picking r objects from a group

of n, if the order of picking is not important .

Exercise 4.2.6 We have four markers: black, red , blue and green. In how

many ways can we chose 2 colored markers?
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Solution: We can chose 2 markers in 6 different ways:

red blue

red green

red black

blue green

blue black

green black

Theorem 4.2.3 The number of permutations of ways of choosing r elements

from a group of n elements, if the order is not important, is(
n

k

)
=

n!

k!(n− k)!
.

(
n
k

)
is also called the binomial coefficient.

Exercise 4.2.7 There are 32 students in your class. The class requires team

projects, and each team consists of 4 students. In how many ways can you

chose three other students for a team project?

Solution: There are 31 other students in the class. We must chose 3 students

from these 31. This can be done in(
31

3

)
=

31!

3!28!
=

31 · 30 · 29

1 · 2 · 3
= 4495

ways.

Exercise 4.2.8 There are 7 singers auditing for a 3 singers group. In how

many ways can the 3 singers be selected?

Solution: The number of ways is(
7

3

)
=

7!

3!4!
=

7 · 6 · 5
1 · 2 · 3

= 35 .

ways.
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4.2.4 Pascal Triangle

We build a triangle the following way: We start with a single row, which we

will call row 0, with a 1 in the center.

We then build, step by step row 1, row 2, ... the following way. In each

row, a number is obtain by adding the two numbers diagonally above it. If

there is no number above it, we consider it to be 0.

We get the following table, which can be continued forever:
Row 0: 1

Row 1: 1 1

Row 2: 1 2 1

Row 3: 1 3 3 1

Row 4: 1 4 6 4 1

Row 5: 1 5 10 10 5 1

Row 6: 1 6 15 20 15 6 1

Row 7: 1 7 21 35 35 21 7 1

Row 8: 1 8 28 56 70 56 28 8 1

Row 9: 1 9 36 84 126 126 84 36 9 1

Row 10: 1 10 45 120 210 252 210 120 45 10 1

Row 11:1 11 55 165 330 462 462 330 165 55 11 1

This triangle is called the Pascal triangle.

Important: The nth row in the Pascal triangle is, in order(
n

0

)(
n

1

)(
n

2

) (
n

3

)
...

(
n

n

)
Example 4.2.2 The sixth row in the Pascal triangle tells us that(

6

0

)
= 1 ;

(
6

1

)
= 6 ;

(
6

2

)
= 15 ;

(
6

3

)
= 20 ;

(
6

4

)
= 15 ;

(
6

5

)
= 6 ;

(
6

6

)
= 1 .

The Pascal triangle is a very useful way of calculating many binomial

coefficients at once.

4.2.5 Patterns in the Pascal Triangle

The Pascal triangle has the following interesting properties:

Property 1: The Pascal triangle is symmetric. Every row is the same

red forward and backward.
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Property 2: The sum of elements in row n is 2n.

For example, the sum of elements in row 5 is

1 + 5 + 10 + 10 + 5 + 1 = 32 = 25 .

Property 3: If we pick any row n ≥ 1, we pick the first number subtract

the second and we keep alternating the addition and subtracting, we always

get 0.

For example, using the fourth row we get:

1− 4 + 6− 4 + 1 = 0 .

Same way, using 5th row, we get:

1− 5 + 10− 10 + 5− 1 = 0 .

Property 4: The first and last diagonals consist of all 1′.

Property 5: The second and second last diagonals consist of the integers

in order:

1 2 3 4 5 ... .

Property 6: The third and third last diagonals consist of the triangular

numbers:

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10

1 + 2 + 3 + 4 + 5 = 15

4.2.6 Binomial Theorem

The binomial coefficients are also important because of the following theorem:

Theorem 4.2.4 (Binomial Theorem) Let n be a positive integer. Then

the formula for (a+ b)n is

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 + ...+

(
n

n− 1

)
abn−1 + bn .
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The coefficients are exactly the n th row of the Pascal triangle.

For example, the second row of the Pascal triangle is 121. The Binomial

Theorem tell us that

(a+ b)2 = a2 + 2ab+ b2 .

Same way, the 6th row tells us that

(a+ b)6 = a6 + 6a5b+ 15a4b2 + 20a3b3 + 15a2b4 + 6ab5 + b6 .

4.3 Pigeon Hole Principle

The Pigeon Hole Principle says that if we split some objects into groups,

and we have more objects than groups, then at least one group must contain

multiple objects.

It is often stated in the following form:

Pigeon Hole Principle: If some pigeons go inside some pigeonholes,

and there are more pigeons than holes, then at least one hole has more than

one pigeons.

Exercise 4.3.1 If we have three gloves, then there must be (at least) two left

gloves or two right gloves in our group.

This is a simple application of the pigeon hole principle. Our objects

(pigeons) are the gloves and our groups (pigeonholes) are the type of gloves.

As we have 3 objects and only 2 groups, there must be more than one object

in a group.

Exercise 4.3.2 If there are 13 or more people in a room, there are two people

whose birthday is in the same month.

Our elements are the people, and the groups are given by month they are

born.

Exercise 4.3.3 If we pick six numbers between 1 and 10, two of these num-

bers must add to 11.
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Solution: Our objects are the six numbers we pick. Now we group them

such that the sum is 11:

group i : {1, 10}
group ii : {2, 9}
group iii : {3, 8}
group iv : {4, 7}
group v : {5, 6}

As we have 6 objects and only 5 groups, two of our objects (numbers) must

be in the same group. Those two numbers add to 11.

Exercise 4.3.4 If we pick six numbers between 1 and 10, there must be two

consecutive numbers in our group.

Solution: Our objects are the six numbers we pick. Now we group them in

such way that we get 5 groups of consecutive numbers:

group i : {1, 2}
group ii : {3, 4}

group iii : {5, 6}
group iv : {7, 8}
group v : {9, 10}

As we have 6 objects and only 5 groups, two of our objects (numbers) must

be in the same group. Those two numbers are consecutive.

4.4 Exercises

Exercise 4.4.1 There are 4 brands of coffee and 3 brands of tea. In how

many ways can we chose one coffee and one tea?

Exercise 4.4.2 In how many ways cane we arrange the letters A,B,C,D,E

is a row?
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Exercise 4.4.3 There are 7 horses in a race. In how many ways can the

first three horses come in?

Exercise 4.4.4 In how many ways cane we chose 3 different letters in the

English alphabet?

Exercise 4.4.5 A school offers 6 MATH classes and 9 ENG classes. In how

many ways can a student choose one class?

Exercise 4.4.6 There are 10 books in a store. In how many ways can some-

one buy three books from the store?

Exercise 4.4.7 A school offers 7 MATH classes and 8 ENG classes. In how

many ways can a student take a Math and a ENG class?

Exercise 4.4.8 There are 10 problems at the end of a section in a book. A

student wants to solve 3 of these problems. In how many ways can he chose

3 problems from the list of 10?

Exercise 4.4.9 A pet store has 5 dogs and 6 cats. If Jon wants to buy a dog

and a cat, in how many ways can he do this?

Exercise 4.4.10 A teacher wishes to assign each of 5 students a different

book to read. If the teacher has 9 available books, in how many ways can this

be done?

172



Chapter 5

Solutions

5.1 Section 1.1

5.2 Section 1.2

5.3 Section 1.3

5.4 Section 2.1

5.5 Section 2.2

Exercise 2.2.6

(a) Since (−3)3 = −27 we have 3
√
−27 = −3. Therefore

3
√
−27 +

√
9 = −3 + 3 = 0 .

(b)

2
√

18 + 3
√

27− 5
√

3 = 2
√

9 · 2 + 3
√

9 · 3− 5
√

3

= 6
√

2 + 9
√

3− 5
√

3 = 6
√

2 + 4
√

3

Exercise 2.2.7
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9
1
n = 3

1
6

(32)
1
n = 3

1
6

3
2
n = 3

1
6

Therefore
2

n
=

1

6
.

Cross-multiplication gives us

2 · 6 = 1 · n .

Thus

n = 12 .

5.6 Section 2.3

Exercise 2.3.8

(a)

3(3x+ 1) < 4(5x+ 2)

9x+ 3 < 20x+ 8

9x− 20x < 8− 3

−11x < 5

x > − 5

11

Answer: (− 5
11
,∞).

(b)

2x+ 1 ≤ 3x+ 2

2x− 3x ≤ 2− 1

−x ≤ 1

x ≥ −1
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[−1,∞).

3x+ 2 ≤ 2x+ 7

3x− 2x ≤ 7− 2

x ≤ 5

(−∞, 5].

Answer (−∞, 5] ∩ [−1,∞) = [−1, 5].

5.7 Section 2.4

Exercise 2.4.6

(a) Doubling the first equation we get{
6x+ 4y = 8

6x+ 4y = 4
.

Subtracting, we get

0 = 4 .

There is no solution.

(b) {
2x+ 3y + 7z = 5

5x+ 7y + 2z = 8
.

Multiplying the first equation by 5 and second by 2 we get{
10x+ 15y + 35z = 25

10x+ 14y + 4z = 16
.

Subtracting we get

y + 31z = 9 .

We now look at first and third.{
2x+ 3y + 7z = 5

3x+ 4y − 4z = 2
.
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Multiplying the first equation by 3 and second by 2 we get

{
6x+ 9y + 21z = 15

6x+ 8y − 8z = 4
.

Subtracting we get

y + 29z = 11 .

Therefore we get the smaller system{
y + 31z = 9

y + 29z = 11
.

Subtracting we get 2z = −2 hence z = −1.

The first equation tells us

y − 31 = 9 .

therefore y = 40.

Then

2x+ 3 · 40 + 7(−1) = 5⇒ 2x = 12− 120⇒ x = −54 .

The answer is 
x = −54

y = 40

z = −1

.

5.8 Section 2.5

Exercise 2.5.2

x2 + 3x+ 1 = x2 + 3x+ (
3

2
)2 − (

3

2
)2 + 1 = (x+

3

2
)2 − 9

4
+ 1 = (x+

3

2
)2 − 5

4
.
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5.9 Section 2.6

Exercise 2.6.6

(a)

∆ = 4− 4 · 3 · 0 = 4 .

There are two solutions

x1,2 =
−2±

√
4

2 · 3
=
−2± 2

6
.

The solutions are x = 0 an x = −2
3
.

(b)

∆ = 9− 4 · 7 < 0 .

There is no solution.

5.10 Section 2.7

5.11 Section 2.8

5.12 Section 2.9
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