MATH 1001H Test

Tuesday, 31 May, 2016
Time: 60 minutes

Name: Solutions

Student Number: 0000000

Question Mark

Total _ / 30

Instructions

- Show all your work. Legibly, if possible!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Solve for x as best you can in any four (4) of $\mathbf{a}-\mathbf{f}$. [12 $=4 \times 3$ each]
a. $\log _{2}(x-2)=2$
b. $x^{2}+2 x+1=0$
c. $|x-3|=2$
d. $\sin ^{2}(x)=\frac{3}{4}$
e. $10^{2 x+1}=0.001$
f. $\tan ^{-1}(x)=-45^{\circ}$

Solutions. a. $\log _{2}(x-2)=2 \Rightarrow x-2=2^{\log _{2}(x-2)}=2^{2}=4 \Rightarrow x=4+2=6$.
b. If you observe that $x^{2}+2 x+1=(x+1)^{2}$, this over with very quickly: $(x+1)^{2}=0 \Leftrightarrow$ $x=-1$. Otherwise, you can work a little harder and apply the quadratic formula.
c. $|x-3|=2 \Rightarrow x-3= \pm 2 \Rightarrow x=3 \pm 2 \Rightarrow x=3+2=5$ or $x=3-2=1$.
d. $\sin ^{2}(x)=\frac{3}{4} \Rightarrow \sin (x)= \pm \sqrt{\frac{3}{4}}= \pm \frac{\sqrt{3}}{2}$. Recalling that $\sin \left(60^{\circ}\right)=\sin \left(120^{\circ}\right)=\frac{\sqrt{3}}{2}$, and that $\sin \left(t \pm n \cdot 360^{\circ}\right)=\sin (t)$ for every real number t and every integer n, we get that $x=60^{\circ} \pm n \cdot 360^{\circ}$ and $x=120^{\circ} \pm n \cdot 360^{\circ}$ satisfy the equation for every integer n. Similarly, recalling that $\sin \left(-60^{\circ}\right)=\sin \left(-120^{\circ}\right)=-\frac{\sqrt{3}}{2}$, and that $\sin \left(t \pm n \cdot 360^{\circ}\right)=\sin (t)$ for every real number t and every integer n, we get that $x=-60^{\circ} \pm n \cdot 360^{\circ}$ and $x=-120^{\circ} \pm n \cdot 360^{\circ}$ also satisfy the equation for every integer n.

Thus $x= \pm 60^{\circ} \pm n \cdot 360^{\circ}$ for any integer n and $x= \pm 120^{\circ} \pm n \cdot 360^{\circ}$ for any integer n are all the possible solutions of the equation $\sin ^{2}(x)=\frac{3}{4}$. Whew!
e. $10^{2 x+1}=0.001=\frac{1}{1000}=\frac{1}{10^{3}}=10^{-3} \Rightarrow 2 x+1=-3 \Rightarrow 2 x=-3-1=-4$ $\Rightarrow x=-\frac{4}{2}=-2$.
f. $\tan ^{-1}(x)=-45^{\circ}$ exactly when $x=\tan \left(-45^{\circ}\right)=\frac{\sin \left(-45^{\circ}\right)}{\cos \left(-45^{\circ}\right)}=\frac{-1 / \sqrt{2}}{1 / \sqrt{2}}=-1$.
2. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Suppose that $\cos (\alpha)=\frac{12}{13}$. Compute each of:
i. $\sin (\alpha)[1]$
ii. $\tan (\alpha)[1]$
iii. $\sec (\alpha)[1]$
iv. $\sin (2 \alpha)[1] \quad v \cdot \cos (2 \alpha)[1]$
b. Sketch the graphs of: \quad i. $y=e^{x}[1] \quad$ ii. $y=e^{-x}[1] \quad$ iii. $y=\frac{e^{x}+e^{-x}}{2}$ [1.5] $i v$. At what point(s), if any, do the graphs of these functions intersect? [1.5]
c. Let $f(x)=2 x+|x|$. i. Sketch the graph of $y=f(x)$. [2]
ii. Find the inverse function, $f^{-1}(x)$, of $f(x)$. [3]

SOLUTIONS. a. $i . \sin (\alpha)=\sqrt{1-\cos ^{2}(\alpha)}=\sqrt{1-\left(\frac{12}{13}\right)^{2}}=\sqrt{1-\frac{144}{169}}=\sqrt{\frac{25}{169}}=\frac{5}{13}$.
ii. $\tan (\alpha)=\frac{\sin (\alpha)}{\cos (\alpha)}=\frac{5 / 13}{12 / 13}=\frac{5}{12}$.
iii. $\sec (\alpha)=\frac{1}{\cos (\alpha)}=\frac{1}{12 / 13}=\frac{13}{12}$.
$i v . \sin (2 \alpha)=2 \sin (\alpha) \cos (\alpha)=2 \cdot \frac{5}{13} \cdot \frac{12}{13}=\frac{120}{169}$.
v. $\cos (2 \alpha)=\cos ^{2}(\alpha)-\sin ^{2}(\alpha)=\left(\frac{12}{13}\right)^{2}-\left(\frac{5}{13}\right)^{2}=\frac{144}{169}-\frac{25}{169}=\frac{119}{169}$.
b. $i-i i i$. Here is a graph of all three functions on a single set of axes. The increasing one is $y=e^{x}$, the decreasing one is $y=e^{-x}$, and the one with a minimum at $x=0$ is $y=\frac{e^{x}+e^{-x}}{2}=\cosh (x)$.

$i v$. Since $e^{0}=1$, we have $e^{0}=e^{-0}=1=\frac{1+1}{2}=\frac{e^{0}+e^{-0}}{2}$, so all three functions pass through the point $(0,1)$. It's pretty easy to see from the graph that this is the only point of intersection any two of them have.
c. i. Here is a graph of $y=2 x+|x|$. Note that when $x \geq 0,2 x+|x|=2 x+x=3 x$, and when $x \leq 0,2 x+|x|=2 x+(-x)=x$.

ii. As noted above, $f(x)=2 x+|x|=\left\{\begin{array}{cc}3 x & x \geq 0 \\ x & x \leq 0\end{array}\right.$. Since the inverse function of $g(x)=x$ is just $g^{-1}(x)=g(x)=x$, and the inverse function of $h(x)=3 x$ is $h^{-1}=\frac{x}{3}$, it follows that $f^{-1}(x)=\left\{\begin{array}{ll}\frac{x}{3} & x \geq 0 \\ x & x \leq 0\end{array}\right.$.
3. Do all three of $\mathbf{a}-\mathbf{c}$. [8]
a. Find the equation of the line passing through both $(1,2)$ and $(4,5)$ and sketch the line. [2]
b. Find the location of the tip of the parabola given by $y=x^{2}-4 x+5$ and sketch the parabola. [4]
c. Find all the points of intersection, if any, of the line in \mathbf{a} and the parabola in \mathbf{b}. [2]

Solutions. a. The line through $(1,2)$ and $(4,5)$ has slope $m=\frac{5-2}{4-1}=\frac{3}{3}=1$. We compute the y-intercept, b, by plugging one of the points into $y=1 x+b$ and solving for $b: 2=1 \cdot 1+b \Rightarrow b=2-1=1$. Thus the equation of the line is $y=x+1$. The graph of the line is given below together with the graph of the parabola from \mathbf{b}.
b. To find the tip of the parabola, we complete the square in the expression defining the parabola:

$$
\left[x^{2}-4 x\right]+5=\left[\left(x+\frac{-4}{2}\right)^{2}-\left(\frac{-4}{2}\right)^{2}\right]+5=\left[(x-2)^{2}-4\right]+5=(x-2)^{2}+1
$$

It follows that the tip of the parabola is at $x=2$ and $y=1$, i.e. at the point $(2,1)$.
Here is a graph of the line $y=x+1$ from a and the parabola $y=x^{2}-4 x+5$ from \mathbf{b} :

c. It's pretty obvious from the graph that the line and the parabola intersect at the points $(1,2)$ and $(4,5)$. Algebraically, observe that at any point of intersection (x, y), we must
have $x^{2}-4 x+5=y=x+1$, so $0=\left(x^{2}-4 x+5\right)-(x+1)=x^{2}-5 x+4$. we can solve this equation using the quadratic formula:

$$
x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \cdot 1 \cdot 4}}{2 \cdot 1}=\frac{5 \pm \sqrt{25-16}}{2}=\frac{5 \pm \sqrt{9}}{2}=\frac{5 \pm 3}{2}
$$

Thus the line and the parabola intersect when $x=\frac{5+3}{2}=\frac{8}{2}=4$ and when $x=\frac{5-3}{2}-\frac{2}{2}=1$. Plugging these values for x into the equations of the line (or the parabola, if you want to work harder :-) gives us the corresponding values for y of $4+1=5$ and $1+1=2$, respectively, giving the points of intersection $(1,2)$ and $(4,5)$.

