Mathematics 1001H - Precalculus Mathematics

Trent University, Summer 2016
Assignment \#3
Some Significant Sequence Sums
Due on Tuesday, 31 May, 2016.
In all that follows, n is some arbitrary positive integer.

1. Explain why $1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$. [2]

Note: We did this one in passing in class one day, if memory serves ...
2. Suppose a and d are numbers. Find a formula (in terms of a, d, and n) for the sum $a+(a+d)+(a+2 d)+\cdots+(a+n d)$. [2]
Note: The sequence of numbers $a, a+d, a+2 d, \ldots$, is the arithmetic sequence with first term a and common difference d. Their sum is the corresponding arithmetic series.
3. Suppose a and $r>0$ are numbers. Find a formula (in terms of a, r, and n) for the sum $a+a r+a r^{2}+a r^{3}+\cdots+a r^{n}$. [3]

Hint: Try multiplying the sum by $1-r$ and see what happens.
Note: The sequence of numbers $a, a r, a r^{2}, \ldots$, is the geometric sequence with first term a and common ratio r. Their sum is the corresponding geometric series.
4. Suppose a, d, and $r>0$ are numbers. Let $a_{0}=0$ and, for each $k \geq 0$, let $a_{k+1}=$ $a_{k} r+d$. (Thus $a_{1}=a r+d, a_{2}=(a r+d) r+d, a_{3}=[(a r+d) r+d] r+d$, and so on.) Find a formula (in terms of a, d, r, and n) for the sum $a_{0}+a_{1}+a_{2}+\cdots+a_{n}$. [3]

Hint: Use algebra to take it all apart and reassemble it in another way. Keep your answers to the previous questions in mind, too.
Note: There's a name for this, but - darn it! - I can't remember it ...

