Mathematics 1001H - Precalculus Mathematics

TRENT UNIVERSITY, Summer 2016

Assignment #3 Some Significant Sequence Sums

Due on Tuesday, 31 May, 2016.

In all that follows, n is some arbitrary positive integer.

1. Explain why
$$1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$$
. [2]

Note: We did this one in passing in class one day, if memory serves ...

2. Suppose a and d are numbers. Find a formula (in terms of a, d, and n) for the sum $a + (a + d) + (a + 2d) + \cdots + (a + nd)$. [2]

NOTE: The sequence of numbers $a, a+d, a+2d, \ldots$, is the arithmetic sequence with first term a and common difference d. Their sum is the corresponding arithmetic series.

3. Suppose a and r > 0 are numbers. Find a formula (in terms of a, r, and n) for the sum $a + ar + ar^2 + ar^3 + \cdots + ar^n$. [3]

Hint: Try multiplying the sum by 1-r and see what happens.

Note: The sequence of numbers a, ar, ar^2, \ldots , is the geometric sequence with first term a and common ratio r. Their sum is the corresponding geometric series.

4. Suppose a, d, and r > 0 are numbers. Let $a_0 = 0$ and, for each $k \ge 0$, let $a_{k+1} = a_k r + d$. (Thus $a_1 = ar + d$, $a_2 = (ar + d)r + d$, $a_3 = [(ar + d)r + d]r + d$, and so on.) Find a formula (in terms of a, d, r, and n) for the sum $a_0 + a_1 + a_2 + \cdots + a_n$. [3]

Hint: Use algebra to take it all apart and reassemble it in another way. Keep your answers to the previous questions in mind, too.

Note: There's a name for this, but – darn it! – I can't remember it ...