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Abstract. In this paper we prove that the cone PDS(G) of positive,

positive definite, discrete and strong almost periodic measures over a

σ-compact, locally compact Abelian group G has an interesting prop-

erty: given any positive and positive definite measure µ smaller than

some measure in PDS(G), then the strong almost periodic part µS of

µ is also in PDS(G). We then use this result to prove that given a

positive weighted Dirac comb ω with finite local complexity and pure

point diffraction, any positive Dirac comb less than ω has either trivial

Bragg spectrum or a relatively dense set of Bragg peaks.

1. Introduction

Positive definite measures play an important role in the study of physical

diffraction. Given a point set Λ, its autocorrelation γ is a positive definite

measure. Thus γ is a Fourier transformable measure, and its Fourier trans-

form γ̂ is a positive measure, called the diffraction measure. The measure γ̂

models the physical diffraction of the structure Λ. Since γ is also positive, it

follows that both γ and γ̂ are positive and positive definite measures. This

makes the cone of positive and positive definite measures of special interest

in the study of diffraction.

The strongest form of long range order is pure point diffraction: a point

set Λ is pure point diffractive if its diffraction measure γ̂ is discrete. This

is equivalent to γ being a strong almost periodic measure [9]. Moreover,

often Λ has finite local complexity, and in this case γ is also a discrete

measure, making it a positive, positive definite, strong almost periodic and

discrete measure. Exactly like positivity and positive definiteness, strong

almost periodicity and discreteness are Fourier dual concepts. Hence, given

a Delone set Λ with finite local complexity and pure point diffraction, both

γ and γ̂ are positive, positive definite, strong almost periodic and discrete.

The goal of this paper is to introduce and study the cone PDS(G) of

positive, positive definite, discrete and strong almost periodic measures on

a σ-compact, locally compact Abelian group G. This cone of measures

already appeared in a hidden way in our earlier work on diffraction. In [12]

we proved that the pure point part γ̂pp of the diffraction of a Meyer set has a
1



2 NICOLAE STRUNGARU

relatively dense support. To obtain this result of interest for the quasicrystal

community, we proved the much stronger result that both γ̂pp and the strong

almost periodic component γS of γ are discrete measures, and it is easy to

see that they both are positive, positive definite and strong almost periodic

measures. The ideas from [12] can be generalized to Theorem 3.2, which is

the main result in this paper:

Theorem 3.2 Let ν ∈ PDS(G) and 0 ≤ µ ≤ ν be any positive definite

measure. Then µS ∈ PDS(G).

Using Theorem 3.2, we then prove two interesting results about diffrac-

tion. We first prove that given a pure point diffractive set Λ with Finite

Local Complexity, then any relatively dense subset Λ′ ⊂ Λ has a relatively

dense set of Bragg peaks:

Corollary 4.10 Let Λ be any Delone set with finite local complexity and

let Λ′ be any subset of Λ. Let γ′ be an autocorrelation of Λ′. If Λ is pure

point diffractive, then each of the supp(γ̂′)pp and supp(γ̂′)c is either empty

or relatively dense. In particular, any relatively dense subset of Λ shows a

relatively dense set of Bragg peaks.

Some particular cases of this result have been proven before. For subsets

of lattices in Rd, a stronger version of Corollary 4.10 has been proven by

Baake [2]. Also, for Meyer sets in Rd, Corollary 4.10 was proven in [12].

The second result we prove is of the following type: given a pure point

diffractive set Λ with Finite Local Complexity, and a measure ω which is

bigger than δΛ′ for some relatively dense Λ′ ⊂ Λ, then ω has infinitely many

Bragg peaks:

Corollary 4.13 Let Λ be a pure point diffractive Delone set with finite

local complexity, let Λ′ ⊂ Λ be a relatively dense subset of Λ and ω be a

positive translation bounded measure so that ω ≥ CδΛ′ for some C > 0,

then the diffraction pattern of ω has infinitely many Bragg peaks.

The paper is structured as follows:

In Section 3 we prove Theorem 3.2. We also show in Lemma 3.4 and

Lemma 4.5 that two large classes of measures commonly met in the mathe-

matics of long range aperiodic order are in PDS(G).

In Section 4 we use Theorem 3.2 to prove that given a positive Dirac

comb ω with finite local complexity support and pure point spectra, then

any non negative measure ω′ less than a constant multiple of ω has either

a relatively dense set of Bragg peaks or no Bragg spectrum. Moreover, we

show that if ω′ is not ”much smaller” than ω, then we are in the relatively

dense Bragg spectra case.

We conclude the paper by taking a short glimpse at the case of real valued

weighted Dirac combs.
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2. Preliminaries

For the entire paper G is a σ-compact, locally compact Abelian group,

with dual group Ĝ. We will denote by CC(G) the space of compactly sup-

ported continuous functions on G.

In this Section we will recall the basic notions and results we will need in

the paper. All these, with the proofs can be found in [5] and [9].

Definition 2.1. A measure µ on G is called translation bounded (or

shift bounded) if for all f ∈ CC(G) the function f ∗ µ is uniformly con-

tinuous and bounded.

We say that µ is a positive definite measure if for all f ∈ CC(G) we

have µ(f ∗ f̃) ≥ 0, where f̃(x) = f(−x).

µ is called a positive measure if for all f ∈ CC(G) with f(x) ≥ 0 ∀x ∈ G
we have µ(f) ≥ 0.

Any positive and positive definite measure is translation bounded [5].

Argabright and de Lamadrid [9] extended the classical notion of Fourier

transformability to measures the following way:

Definition 2.2. A measure µ is called Fourier transformable if there

exists a measure µ̂ on the dual group Ĝ so that, for all f ∈ CC(G) we have

f̌ ∈ L2(µ̂) and

µ(f ∗ f̃) = µ̂(
∣∣f̌ ∣∣2) .

In this case µ̂ is called the Fourier transform on µ.

Bochner’s Theorem for continuous positive definite functions can then be

extended to positive definite measures:

Theorem 2.3. ([1], Theorem 4.1) A measure µ is positive definite if and

only if µ is Fourier transformable and µ̂ is positive.

Thus positive definite measures are automatically Fourier transformable,

and their Fourier transform is positive. The other direction is also true, as

long as the measure is transformable:

Theorem 2.4. ([1], Theorem 4.2) Let µ be a positive measure. If µ is

Fourier transformable, then µ̂ is positive definite.

It follows that positive and positive definite measures are always Fourier

transformable, and their Fourier transform is also positive and positive defi-

nite. Exactly as in the case of functions, whenever we can apply the Fourier

transform multiple times, the double Fourier transform becomes an involu-

tion:
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Theorem 2.5. ([1],Theorem 3.4) Let µ be a Fourier transformable measure,

so that µ̂ is also Fourier Transformable. Then̂̂µ = µ̃ ,

where µ̃(f) = µ(f̃).

We conclude the Section by introducing the notion of strong almost pe-

riodic measures and the decomposition WAP (G) = SAP (G)
⊕
WAP 0(G)

of [9], where WAP (G),SAP (G),WAP 0(G) are the spaces of weak almost

periodic, strong almost periodic respectively null weakly almost periodic

measures on G.

Definition 2.6. A translation bounded measure µ is called strong almost

periodic if for all f ∈ CC(G), the function µ ∗ f is a Bohr-almost periodic

function.

In Section 4.2, we will make use few times of the following simple property

of almost periodic measures:

Fact 2.7. ([12], Proposition 2.5) If µ is strong almost periodic and µ 6= 0,

then supp(µ) is relatively dense.

For the exact decomposition WAP (G) = SAP (G)
⊕
WAP 0(G) we refer

the reader to ([9], Theorem 7.2 and Theorem 8.1). Since the construction

is very technical, we only introduce here a particular case of this decom-

position, which is easier to understand and enough for our needs. As the

result is not explicitly stated in [9], but it follows easily from the Theorems

in there, we include a proof which the reader might wish to skip.

Theorem 2.8. Let µ be a positive and positive definite measure. Then,

there exists a canonical decomposition

(1) µ = µS + µ0 ,

so that

i) µS , µ0 are positive definite,

ii) µS is positive and strong almost periodic,

iii) µ̂S = (µ̂)pp ; µ̂0 = (µ̂)c ; where µ̂ = (µ̂)pp + (µ̂)c is the Lesbegue

decomposition of µ̂ into its pure point and continuous parts.

This decomposition is uniquely determined by these properties. Moreover,

µ is strong almost periodic if and only if µ0 = 0.

Proof: Since µ is positive and positive definite, it is translation bounded,

twice Fourier transformable and weakly almost periodic (see [7], Theorem

11.2 or [9],Theorem 11.1) .
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As a weakly almost periodic measure it has a unique decomposition µ =

µS +µ0 into the strong and null weak almost periodic components. We first

show that this decomposition has the desired properties.

Since µ is positive, we get that µS is positive and strong almost periodic,

which proves ii).

We know that µ̂, and hence µ̂pp and µ̂c are positive measures. Since µ̂ is

Fourier transformable, it follows from ([9], Theorem 11.1) that µ̂pp and µ̂c
are Fourier transformable and

(2) ̂̂µpp = ̂̂µS ; ̂̂µpp = ̂̂µ0 .

Moreover, the positivity of µ̂pp and µ̂c, implies that ̂̂µS = µ̃S and ̂̂µ0 = µ̃0

are positive definite, and hence µS and µ0 are also positive definite, which

proves i).

To get iii) we proceed as follows: both µ and µS are positive and positive

definite, thus µ, µS and µ0 are all twice Fourier transformable. Hence we

can apply Theorem 2.5 to (2), which yields iii).

The uniqueness follows immediately from iii) and the uniqueness of the

decomposition µ̂ = µ̂pp+µ̂c, while the last claim follows from the uniqueness

of the decomposition in ([9], Theorem 7.2) .

�
It follows that the class of strong almost periodic measures is important

for diffraction:

Corollary 2.9. Let µ be a positive and positive definite measure on G. Then

µ is strong almost periodic if and only if µ̂ is discrete.

As proven in [9], the decomposition of (1) has a natural extension to the

space of translation bounded weakly almost periodic measures [9], and on

this space µ → µS is a linear operator, which is positive ([9] Proposition

7.2) and thus preserves inequalities. Thus we get:

Fact 2.10. Let µ ≤ ν be two positive and positive definite measures. Then

µS ≤ νS.

3. The cone PDS(G)

Throughout this paper we will denote by PDS(G) the set of all positive,

positive definite, strong almost periodic and discrete measures on G, that

is:

PDS(G) = {µ|µ ≥ 0 is positive definite, strong almost periodic and discrete} .
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It is easy to see that this space is closed under addition and multiplication

by positive scalars, thus it is a cone of measures.

We start with a simple Lemma, which is an immediate consequence of

Theorem 2.3, Theorem 2.4, Theorem 2.5, Corollary 2.9 and vague continuity

of the Fourier transform.

Lemma 3.1. If µ ∈ PDS(G) then µ is Fourier Transformable and µ̂ ∈
PDS(Ĝ). In particular, Fourier transform is a homeomorphism from PDS(G)

to PDS(Ĝ), both with the vague topology.

Let us note that neither PDS(G) nor PDS(Ĝ) is closed in the vague

topology. If a translation bounded measure µ is a vague limit of measures

in PDS(G), then µ is positive and positive definite, but it is not necessarily

discrete or strong almost periodic.

Now we are ready to prove the main result in this paper.

Theorem 3.2. Let ν ∈ PDS(G) and 0 ≤ µ ≤ ν be any positive definite

measure. Then µS ∈ PDS(G).

Proof:

Since µ is positive and positive definite, it follows from Corollary 2.9 that

µS is positive, positive definite and strong almost periodic.

Moreover, 0 ≤ µ ≤ ν are positive and positive definite measures, and

hence 0 ≤ µS ≤ νS . This implies that µS is also discrete. Indeed, since

ν ∈ PDS(G), we have ν = νS is a discrete measure, and using 0 ≤ µS ≤ ν,

we get that µS is also discrete. This concludes the proof.

�
By combining Theorem 3.2 with Lemma 3.1, we also get:

Corollary 3.3. Let ν ∈ PDS(G) and 0 ≤ µ ≤ ν be any positive definite

measure. Then µ̂pp ∈ PDS(Ĝ).

We conclude this Section by introducing a large subclass of PDS(G),

which appeared recently in the study of long range order [3], [11], [10]. This

subclass contains the autocorrelations of regular model sets ([3], Theorem 2),

the autocorrelation of any weighted Dirac comb of the type
∑

(x,x?)∈L g(x?)δx,

where g ∈ CC(H) ([10], Theorem 3.2), and it can easely be shown to contain

the strong almost periodic part γS of any autocorrelation γ of a Meyer set.

Since this result is not relevant for the remaining of the paper, we skip

the definition of a cut and project scheme, and refer the reader instead to

one of these papers.
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Lemma 3.4. Let (G × H,L) be a cut and project scheme, and let h ∈
CC(H). If h is positive and positive definite, then∑

(x,x?)∈L

h(x?)δx =: ωh ∈ PDS(G) .

Proof: By construction ωh is positive and discrete. Also, it is strong

almost periodic by ([10], Theorem 3.1).

The only thing left to prove is the positive definiteness of ωh. But this

follows immediately from the positive definiteness of h. Indeed, we get that

the function x → h(x?) is a positive definite function on π1(L), thus the

measure ωh is positive definite as a discrete measure on π1(L) and hence a

positive definite measure on G ([9], Theorem 10.1). �
It is easy to see that the condition h ∈ CC(H) can be further weakened to

h uniformly continuous, bounded and admissible (see [10] for the definition).

4. Diffraction

4.1. A review of Diffraction. In this Section we show that Theorem 3.2

can be used to prove that a very large class of weighted Dirac combs have

a relatively dense set of Bragg peaks. We start by reviewing the theory of

mathematical diffraction. For a nice overview of Mathematical Diffraction

we refer the reader to [4].

During the entire section {An}n will be a van Hove sequence (see for

example [13] for the definition).

Let ω be a translation bounded measure on G. We define

γn :=
ω|An ∗ ω̃|An

Vol(An)
,

where ω|An denotes the restriction of ω to An.

It was shown in [6] that for a translation bounded measure ω, there exists a

spaceMC
K(G) which is compact in the vague topology so that γn ∈MC

K(G)

for all n. It follows that the sequence γn always has cluster points.

Definition 4.1. Any cluster point γ of the sequence γn is called an auto-

correlation of ω.

Any such measure γ is positive definite, thus Fourier transformable. Its

Fourier transform γ̂ is called a diffraction measure for ω.

We say that Λ ⊂ G is relatively dense if Λ +K = G for some compact

set K. Λ is called uniformly discrete if 0 is an isolated point of ∆, where

∆ := {x − y|x, y ∈ Λ}. A set which is both relatively dense and uniformly

discrete is called a Delone set.
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For a Delone set Λ, by the autocorrelation of Λ we understand the auto-

correlation of the measure δΛ :=
∑

x∈Λ δx .

If γ is an autocorrelation of ω, by eventually replacing {An} by a subse-

quence we can always assume that

γ = lim
n
γn .

In this case we will say that ω has an unique autocorrelation with respect

to this van Hove sequence.

If we have two translation bounded measures ω, ω′, and a van Hove se-

quence {An}, then ω has an autocorrelation γ with respect of a subsequence

{Akn}, and ω′ has an autocorrelation γ′ with respect to a subsequence of

{Akn}. Thus we get:

Fact 4.2. Given two translation bounded measures ω, ω′, and a van Hove

sequence {An}, there exists a subsequence {Akn} of {An} with respect to this

subsequence, both ω and ω′ have an unique autocorrelation.

For the remaining of the paper we will adopt the following convention:

Given two or more translation bounded measures, their autocorrelations are assumed

to be calculated with respect to the same van Hove sequence. Moreover, with respect

to this van Hove sequence, all measures have unique autocorrelations.

One notion which will play an important role in the rest of the paper is

the notion of Finite Local Complexity. We say that a point set Λ has Finite

Local Complexity if for all compact sets K ⊂ G, the set ∆ ∩K is finite.

It is easy to see that the autocorrelation measures have the following

properties (see for example [3], Section 2):

Proposition 4.3. Let ω be a translation bounded measure, and let γ be

an autocorrelation of ω. Then

i) γ is positive definite.

ii) If ω is positive, then γ is positive.

iii) If ω =
∑

x∈Λ ωxδx and Λ has finite local complexity, then supp(γ) ⊂
Λ− Λ. In particular, γ is discrete.

We now prove a simple Lemma, which we will use few times in the rest

of the paper.

Lemma 4.4. If 0 ≤ ω′ ≤ ω and γ′, γ are autocorrelations of ω′ respectively

ω, then γ′ ≤ γ.

Proof: Let {An} be a van Hove sequence with respect to which the

autocorrelations γ′, γ are calculated. As usual, we denote by ω′
n and ωn the
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restrictions of ω′ and ω to An. Then, as convolutions of positive measures,

we have

ωn ∗ ( ˜ωn − ω′
n) ≥ 0 ; ω̃′

n ∗ (ωn − ω′
n) ≥ 0 .

Thus

γn ≥ ωn ∗ ω̃′
n ≥ γ′n .

Since any vague limit of positive measures is positive, we get that γ−γ′ =

limn(γn − γ′n) ≥ 0 .

�
We complete this subsection by observing that for the class of positive

translation bounded combs with finite local complexity support, there is a

strong connection between pure point diffraction and the PDS(G) cone:

Lemma 4.5. Let ω be positive translation bounded comb so that supp(ω)

has finite local complexity. Then ω is pure point diffractive if and only if

γ ∈ PDS(G).

Proof: We know that γ is positive and positive definite and that γ is

discrete. It follows that γ ∈ PDS(G) if and only if γ is strong almost

periodic, if and only if γ̂ is discrete. �
In particular we get:

Corollary 4.6. Let Λ be a Delone set with finite local complexity. Then Λ

is pure point diffractive if and only if γ ∈ PDS(G).

Recently it was proven by Lenz and I that an interesting class of measures

satisfies the conditions of Lemma 4.5. As this result is not relevant to our

work here, we omit its proof.

Lemma 4.7. Let ω be a weakly almost periodic measure. Then ω has a

unique autocorrelation γ and γ̂ is discrete.

An immediate consequence of this is:

Corollary 4.8. Let ω be a positive weakly almost periodic measure. If

supp(ω) has finite local complexity, then γ ∈ PDS(G).

4.2. Measures with a relative dense set of Bragg peaks. In this sub-

section we show that Theorem 3.2 can be used to prove that a very large

class of weighted Dirac combs have a relatively dense set of Bragg peaks.

The main result in this subsection is Theorem 4.9 below.

Theorem 4.9. Let ω :=
∑

x∈Λ ωxδx ; ω′ :=
∑

x∈Λ ω
′
xδx be two positive

translation bounded measures on G, so that 0 ≤ ω′ ≤ Cω , for some C ≥ 0.

Let γ, γ′ be autocorrelations of ω respectively ω′.
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If Λ has finite local complexity, γ 6= 0 and ω is pure point diffractive, then

i) γ̂′pp ∈ PDS(Ĝ),

ii) γ̂′c is strong almost periodic,

iii) supp(γ′S) ⊂ Λ− Λ and supp(γ′0) ⊂ Λ− Λ,

iv) Each of supp(γ̂′pp) and supp(γ̂′c) is either empty or relatively

dense,

Moreover, if there exists some C1 > 0 so that the set

Γ := {x ∈ Λ|C1 ≤ ω′
x}

is relatively dense, then ω′ has a relatively dense set of Bragg peaks.

Proof:

The basic idea of the proof is simple. Since 0 ≤ ω′ ≤ Cω, we will get that

0 ≤ γ′ ≤ C2γ, and we are exactly in the situation of Theorem 3.2. This

implies that γ′ ∈ PDS(G), and that 0 ≤ γ′S ≤ γ. Then i), ii) iii) and iv) are

immediate consequences of these two facts.

For the last claim, if Γ relatively dense, we prove that there exists a finite

set F so that ω ≤ ω′ ∗ δF . This implies that γ ≤ γ′ ∗ δF ∗ δ̃F and it is easy

to conclude that γ′S 6= 0.

i): Since 0 ≤ ω′ ≤ Cω we get that

0 ≤ γ′ ≤ C2γ .

Since C2γ ∈ PDS(G), by Theorem 3.2 we get γ′S ∈ PDS(G), which

proves i).

ii): We have seen in i) that 0 ≤ γ′ ≤ C2γ, thus γ′ is a discrete measure.

It follows that both γ̂′ and γ̂′pp are strong almost periodic, and hence so

is their difference γ̂c.

iii): Using again 0 ≤ γ′ ≤ C2γ we get

0 ≤ γ′S ≤ C2γS = C2γ .

This shows that supp(γ′S) ⊆ Λ− Λ . Since supp(γ′) ⊆ Λ− Λ, we also get

supp(γ′0) ⊂ Λ− Λ.

iv): Follows immediately from i) and ii).

To prove the last claim, let C1 > 0 be such that Γ is relatively dense.

Since Γ ⊂ Λ, Γ is relatively dense and Λ has finite local complexity, it

follows1 that there exists some finite set F so that

Λ ⊂ Γ + F .

1In the case of G = Rd this was proven in [12], and it is easy to see that the proof

works in the general case of σ-compact, locally compact Abelian groups G.
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Moreover, since ω is translation bounded, there exists a C2 so that ωx ≤
C2 ∀x.

Combining these two, we get:

0 ≤ ω ≤ C2δΓ ∗ δF .

By the definition of Γ, we have ω′ ≥ C1δΓ, and thus 0 ≤ ω ≤ C2
C1
ω′ ∗ δF .

By taking the autocorrelations, we then get:

γ ≤ C2
2

C2
1

(
γ′ ∗ δF ∗ δ̃F

)
,

and hence

0 � γ = γS ≤
C2

2

C2
1

(
γ′S ∗ δF ∗ δ̃F

)
.

Then γ′S 6= 0, and it follows from iv) that supp(γ̂pp) is relatively dense.

�
In particular, for Delone sets we get:

Corollary 4.10. Let Λ be any Delone set with finite local complexity and

let Λ′ be any subset of Λ. Let γ′ be an autocorrelations of Λ′. If Λ is pure

point diffractive, then each of supp(γ̂′)pp and supp(γ̂′)c is either empty or

relatively dense.

In particular, any relatively dense subset of Λ shows a relatively dense set

of Bragg peaks.

All these results show that given a positive pure point diffractive comb

with finite local complexity, any smaller positive comb, as long as it has some

Bragg spectrum, has a relatively dense set of Bragg peaks. In the remaining

of the paper, we show that in the other direction we also get some Bragg

spectra, but maybe less: given a positive pure point diffractive comb with

finite local complexity, any bigger translation bounded measure always has

infinitely many Bragg peaks.

Proposition 4.11. Let ω be a positive translation bounded measure with

autocorrelation γ so that 0 6= (γS)pp. Let ω′ ≥ ω be any translation bounded

measure, and let γ′ be an autocorrelation of ω′. Then for all van Hove

sequences {Bn} the following limit exists and

lim
n

γ̂′pp(Bn)

|Bn|
> 0 .

In particular, γ̂′pp is infinite and thus ω′ has infinitely many Bragg peaks.
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Proof: Since ω ≤ ω′ we get γ ≤ γ′, and hence γS ≤ γ′S .

This shows that γ′S has a point component, and hence γ̂′pp is not a null

almost periodic measure.

Because it is positive, it follows ([12], Corollary 5.6) that the limit

lim
n

γ̂′pp(Bn)

|Bn|
.

exists and is non-zero. �
The following result is an immediate consequence of Proposition 4.11:

Corollary 4.12. Let ω be a positive translation bounded comb with γ 6=
0, and let ω′ ≥ ω be any translation bounded measure. If supp(ω) has

finite local complexity and ω is pure point diffractive, then for all van Hove

sequences {Bn} we have

lim
n

γ̂′pp(Bn)

|Bn|
> 0 .

In particular, the diffraction pattern of ω′ shows infinitely many Bragg

peaks.

Also, by combining Proposition 4.11 with Theorem 4.9 we get an inter-

esting result:

Corollary 4.13. Let Λ be a pure point diffractive Delone set with finite

local complexity, and let Λ′ ⊂ Λ be a relatively dense subset of Λ. Let ω be

a positive translation bounded measure so that ω ≥ CδΛ′ for some C > 0,

then the diffraction pattern of ω has infinitely many Bragg peaks.

4.3. Real Valued Combs. We conclude by extending part of Theorem 4.9

to the case of real valued combs.

Theorem 4.14. Let ω :=
∑

x∈Λ ωxδx ; ω′ :=
∑

x∈Λ ω
′
xδx be two translation

bounded measures, so that ω ≥ 0 and −Cω ≤ ω′ ≤ Cω , for some C ≥ 0.

Let γ, γ′ be autocorrelations of ω respectively ω′. If γ 6= 0, ω is pure point

diffractive and γ′ is twice Fourier transformable2, then each of supp(γ̂′pp)

and supp(γ̂′c) is either empty or relatively dense.

Proof: We prove that

−C2γ ≤ γ′ ≤ C2γ ,

in a similar way as in the proof of Lemma 4.5.

2We need this requirement since we need to apply the results of [9] to γ̂′, and since ω′

might not be positive, we are not guaranteed that γ̂′ is positive definite.
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Let {An} be a van Hove sequence with respect to which the two auto-

correlations are computed, and let again ωn, ω
′
n denote the restriction of ω

respectively ω′ to An. Since Cω − ω′ ≥ 0 and Cω + ω′ ≥ 0, we have

0 ≤ (Cωn − ω′
n) ∗ ˜(Cωn + ω′

n) and 0 ≤ (Cωn + ω′
n) ∗ ˜(Cωn − ω′

n) .

By expanding and adding these two relations, we get C2γn ≥ γ′n.

Also, by expanding and adding

0 ≤ (Cωn + ω′
n) ∗ ˜(Cωn + ω′

n) and ≤ (Cωn − ω′
n) ∗ ˜(Cωn − ω′

n) ,

we get

γ′n ≥ −C2γn .

Thus

−C2γn ≤ γ′n ≤ C2γn .

By taking the vague limit we get that

−C2γ ≤ γ′ ≤ C2γ .

We now repeat the idea of Theorem 4.9: by taking the projection on the

strong almost periodic component, we get −C2γ ≤ γ′S ≤ C2γ which implies

that γ′S is a discrete measure.

Thus, since γ′ is twice Fourier transformable, γ̂′pp is strong almost peri-

odic. Moreover, γ̂′ is also strong almost periodic, and hence so is γ̂′c. This

completes the proof.
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