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Abstract

This paper investigates an investment/hedging problem in a multi-stock financial market with
random appreciation rates. Only those strategies with bounded risks (i.e. they guarantee that a given
claim will be replicated with an error not exceeding a given level) are considered. Moreover, admis-
sible strategies are based upon observations of market prices rather than those of the appreciation
rates. An optimal strategy, which does not depend on the current estimation of the appreciation
rates of the stocks, is obtained for a model with a general utility function. The result is further
shown to cover some important special cases, especially the so-called goal achieving problem.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper investigates an investment/risk-hedging problem for a stochastic diffusion
model of a security market consisting of a risk-free bond and a finite number of risky
stocks. Associated with a given contingent claim, an investment strategy is said to have
bounded risk if the claim is replicated with an error not exceeding a given level. In a
broad sense, a bounded risk investment strategy is also called a hedging strategy. The most
well-known hedging strategies for this model were obtained by Black and Scholes (1973)
and Merton (1969, 1973). For the Black and Scholes model, the strategies were used to
hedge given claims exactly (without any error). For the Merton model, the strategies were
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obtained for an optimization problem of maximizingEEEU(X(T)), whereX(T) is the wealth at
the expiration timeT andU(·) is a utility function. For various variants and extensions, see,
e.g. Samuelson (1969), Hakansson (1971), Perold (1984), Karatzas et al. (1987), Dumas
and Liucinao (1991), Zhou (1998), and Khanna and Kulldorff (1999). However, in the
literature explicit formulae for optimal strategies have been established only for the cases
when appreciation rates of the stocks are non-random and known, andU(·) has quadratic
form, log form or power form. In the general case of random appreciation rates, solution of
the optimal investment problem calls for using the so-called backward stochastic differential
equations (for a most updated account of this theory see Chapter 7 of Yong and Zhou (1999)),
which unfortunately is difficult to solve explicitly and computationally.

Another problem of wide interest is a mean–variance hedging, or a problem of minimizing
EEE|X(T )− ξ |2, whereξ is a given random claim. For this problem, explicit solutions were
obtained for the case of observable appreciation rates, see, e.g. Föllmer and Sondermann
(1986), Duffie and Richardson (1991), Pham et al. (1998), Kohlmann and Zhou (1998),
Pham et al. (1998), and Laurent and Pham (1999). The resulting optimal hedging strategies
are combinations of the Merton strategy and the Black and Scholes strategy, which depend
on the direct observation of the appreciation rates. Unfortunately, as well known the appre-
ciation rates are usually hard to observe in real-time market, especially when the volatility
coefficients are larger than the average deviations of the appreciation rates per unit time.
Moreover, in these studies the error between the terminal wealth and the claim is bounded
in the mean–variance sense, rather than in the almost-surely one.

In this paper, we consider an investment/hedging model with several new features. First of
all, in our model we do not assume that the appreciation rates of the stocks are non-random
and observable; we only assume that the distributions of the appreciation rates are known
based on the observation of the stock prices. The finally derived strategy depends only on
the current stock prices, the distributions of the appreciation rates, and one scalar parameter
which can be calculated numerically. Second, our model involves the replication of a given
claim with a guaranteed error bound (gap). More precisely, our admissible strategies ensure
that the replication errors do not exceed a given level almost surely. Note that in the classical
problem (for a complete market) of an exact replication, the strategy is uniquely determined
by the claim. In an incomplete market, where an exact replication is no longer generally
possible, it is sensible to consider replications with some gap, which in turn makes it possible
to choose among many possible strategies. Finally, the utility function under consideration
in our model is a fairly general one, covering the mean–variance criterion, non-continuous
functions, and nonlinear concave functions as special cases. In particular, our general utility
function incorporates the so-called goal achieving problem. A goal achieving problem is to
maximize the probability that the event of reaching a prescribed goal happens before the
event of a failure. Specifically, it is to maximizePPP (τ1 ≥ τ2), whereτ i is the first time that
the discounted procesŝX(t) , er(T−t)X(t) reaches the levelki , i = 1,2. Herer is the risk
free interest rate,k2 is the goal level whilek1 is a level considered to be a failure (certainly,
k1 < k2).

The goal achieving problem is interesting in its own right. The problem for a single-stock
market model with only additive stochastic disturbances was first solved by Karatzas (1997),
where the constructed optimal strategy depends only on the distribution of the stock appreci-
ation rate. In the present paper, using an approach completely different than that of Karatzas
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(1997), we are able to derive optimal strategies that are independent of the appreciation rate
estimations, for a general model with multiple, correlated stocks and additional constraints
of bounded risks. In particular, it is concluded that for an optimal strategy the levelsk1 and
k2 will never be achieved before the expiration time.

It should also be noted that for a general problem with non-random appreciation rates,
Khanna and Kulldorff (1999) showed that the so-called Mutual Fund Theorem holds,
namely, the optimum can be achieved on a set of Merton type strategies. But, this the-
orem does not hold for the case of random and non-observable rates that is being studied
here, nor does the method of Khanna and Kulldorff (1999) apply.

The rest of this paper is organized as follows. In Section 2, the general model under
consideration is formulated and necessary preliminaries are given. In Section 3, an optimal
solution to the general problem is presented. Section 4 discusses several important special
cases of the general problem, including the goal achieving problem. Numerical results are
reported in Section 5. In Section 6, some concluding remarks are given. Finally, in Appendix,
proofs of the results are supplied.

2. Problem formulation and preliminaries

Consider a diffusion model of a security market consisting of a risk-free bond with the
priceB(t), t ≥ 0, andn risky stocks with pricesSi(t), t ≥ 0, i = 1,2,. . . , n, wheren < +∞
is given. Throughout this paper all random processes are defined on a standard probability
space (Ω,F,PPP ). The price of the bond is given by the following

B(t) = ertB0, (2.1)

wherer ≥ 0 andB0 are given constants. On the other hand, the prices of the stocks evolve
according to the following stochastic differential equations{

dSi(t) = Si(t)
(
ai dt +∑n

j=1σij dwj(t)
)
, t > 0,

Si(0) = Si0,
(2.2)

wherew(t) ≡ (w1(t), . . . , wn(t)) is a standardn-dimensional Wiener process (withw(0) =
0), ai is the (random) appreciation rate of theith stock, andσ ij the volatility coefficient.
The initial priceSi0 > 0 is a given non-random constant. We seta = (a1, . . . , an) and
S(t) = (S1(t), . . . , Sn(t)). In addition, we introduce an auxiliary processS∗(t) which is
defined as the price processS(t) under the assumption that the appreciation rates of all the
stocks coincide with the bond rate, i.e.ai(ω)≡r, ∀i. Note that, we choose to use this process
rather than a risk-neutral probability measure because it is more convenient for our aims,
as evident from the sequel.

Remark that in practice, the volatility coefficientsσ ij can be effectively estimated from
Si(t). In contrast, it is more difficult to estimate the appreciation rateai . In fact, an estimator
of ai is not satisfactory when the volatility is sufficiently large. In view of these, we assume
thatσ , (σij ) is a known, deterministicn×nmatrix such thatσσ ′ > 0; yeta is random and
not directly observable. Moreover, we assume thata is independent ofw(·), andPPP(|a| ≤
c) = 1 for a constantc > 0.
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Let FSt ⊂ F be the right-continuous monotonically increasing filtration of complete
σ -algebras generated byS(t), t ≥ 0.

Let X(t) be the wealth of an agent at timet with X(0) > 0 being the initial wealth. Then

X(t) = β(t)B(t)+
n∑
i=1

γi(t)Si(t), t ≥ 0, (2.3)

whereβ(t) is the quantity of the bond, andγ i(t) the quantity of theith stock in the portfolio.
Let γ (t) = (γ1(t), . . . ., γn(t)). It is clear that the pairs (β(t), γ (t)) describe the state of the
portfolio at timet. We call them strategies.

Definition 2.1. A pair (β(·), γ (·)) is said to be an admissible strategy ifβ(t), γ i(t), and
γ i(t)Si(t), i = 1, . . . , n, are random processes that are progressively measurable with
respect to the filtrationFSt and satisfy

EEE

∫ T

0
|β(t)|2 dt < +∞,

n∑
i=1

EEE

∫ T

0
|γi(t)Si(t)|2 dt < +∞, ∀T > 0.

Definition 2.2. An admissible strategy (β(t), γ (t)) is said to be self-financing, if

dX(t) = β(t)dB(t)+
n∑
i=1

γi(t)dSi(t). (2.4)

By definition, any self-financing admissible strategy has the form

γ (t) = Γ (t, S(·)|[0,t ]), β(t) = X(t)−∑n
i=1γi(t)Si(t)

B(t)
, (2.5)

whereΓ (t, ·) : C([0, t ];RRRn) → RRRn is a functional,t ≥ 0, andX(t) is defined through the
closed system (2.4) and (2.5). Notice that the random processes (β(t), γ (t)) with a same
Γ (·, ·) in (2.5) may be different with differenta(·).

Let the initial wealthX(0) be fixed. For a self-financing admissible strategy (β(·), γ (·)),
β(t) and X(t) are uniquely determined byγ (·). We shall then denote byX(t, γ (·)) the
corresponding total wealth at timet.

Definition 2.3. Let the initial wealthX(0) and a timeT > 0 be fixed, andξ = φ(S(·)|t∈[0,T ]),
whereφ : C([0, T ];RRRn) → RRR is a measurable functional. A self-financing admissible strat-
egy (β(·), γ (·)) is said to replicate the claimξ with the initial wealthX(0) if

X(T , γ (·)) = ξ, a.s.

Definition 2.4. Let X(0) andT > 0 be fixed, andξ1, ξ2 be random numbers such that
−∞ ≤ ξ1 ≤ ξ2 ≤ +∞, a.s.. An admissible strategy (β(·), γ (·)) is said to be a bounded risk
strategy with boundsξ1, ξ2 if

ξ1 ≤ X(T , γ (·)) ≤ ξ2, a.s.

Let RRRn+ , {x = (x1, x2, . . . , xn) ∈ RRRn : xi ≥ 0, i = 1,2, . . . , n}, and
◦
RRRn+ ,

{x = (x1, x2, . . . , xn) ∈ RRRn : xi > 0, i = 1,2, . . . , n}.
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Definition 2.5. A functionC(·): ◦
RRRn+ → RRR is said to be of polynomial growth if there exist

constantsc1 > 0 andc > 0 such that

|C(x)| ≤ c1

(
|x|c +

n∑
i=1

x−c
i + 1

)
, ∀x = (x1, . . . , xn) ∈ ◦

RRRn+.

Now we formulate the problem to be studied in this paper. LetT > 0 andX(0) be fixed,
ξ1 andξ2 be given random numbers, andU(·):RRR → RRR be a given utility function such that
there exist constantsc1 > 0 andc > 0 satisfying

U(x) ≤ c1(|x|c + 1), ∀x ∈ RRR.
The problem is to find a self-financing admissible strategy (β(·), γ (·)) that solves the

following optimization problem:

Maximize EEEU(X(T , γ (·))),

Subject to

{
X(0, γ (·)) = X(0),

ξ1 ≤ X(T , γ (·)) ≤ ξ2, a.s.

(2.6)

Throughout this paper we impose the following assumptions.

Assumption 2.1. The given random boundsξ1 andξ2 satisfy the following:

1. ξi = hi(S(T )), i = 1,2, where the functionshi :
◦
RRRn+ → [−∞,+∞] are such that

wheneverh:
◦
RRRn+ → RRR is a function of polynomial growth, so are max(h1(x), h(x)) and

min(h2(x), h(x)).
2. −∞ ≤ h1(x) ≤ h2(x) ≤ +∞ for all x.
3. EEEh1(S∗(T )) < erTX(0) < EEEh2(S∗(T )).

Assumption 2.2. There exist constantsq0 ∈ {−∞,0}, c1 > 0, c > 0, measurable sets

I ⊆ (q0,+∞) andI0 ⊆ I , and a functionF(·, ·) : RRR × ◦
RRRn+ → RRR such that the following

hold:

1. mes((q0,+∞)\I ) = 0.
2. For anyx ∈RRRn andq ∈ I , the optimization problem

Maximize U(y)− qy,
Subject to y ∈ [h1(x), h2(x)]

(2.7)

has a solutiony = F(q, x) > q0, and

|F(q, x)| ≤ c1

(
|q|c + |q|−c + |x|c +

n∑
i=1

x−c
i + 1

)
, ∀x = (x1, . . . , xn) ∈ ◦

RRRn+.

Moreover, ifq ∈ I0 then the solution of (2.7) is unique.
It is shown below that Assumptions 2.1 and 2.2 are satisfied in many important special

cases.
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3. Main results

First we need to introduce some notation. Define the setA = {α ∈ RRRn : |α| ≤ c},
wherec is a constant such thatPPP(|a| ≤ c) = 1. Without loss of generality, we may take
the probability space as follows:Ω = A ×Ωc, whereΩc = C([0, T ];RRRn). LetB be the
σ -algebra of subsets ofΩc generated by the cylinder sets. Furthermore, we assume that
there areσ -additive probability measuresν(·) andPPP c onA andΩc, respectively, such that
P = ν ×PPP c.

Let Ee , (1, . . . ,1)′ ∈ RRRn, Er , rEe ∈ RRRn, ã , a − Er.. LetSSS(t) , diag(S1(t), . . . , Sn(t))

be the diagonal matrix with the diagonal elements defined by (2.2). Furthermore, letSSS∗(t) ,
diag(S∗1(t), . . . , S∗n(t)) be the diagonal matrix with the diagonal elements defined by (2.2)
with a = Er.

Finally, introduce the Banach spaceY1 of functionsu(·, ·) :
◦
RRRn+ × [0, T ] → RRR satisfying

sup
t
EEE|u(S(t), t)|2 +

n∑
k=1

EEE

∫ T

0

∣∣∣∣ ∂u∂xk (S(t), t)Sk(t)
∣∣∣∣
2

dt < +∞,

with the norm

||u(·, ·)||†1 ,
(

sup
t
EEE|u(S(t), t)|2 +

n∑
k=1

EEE

∫ T

0

∣∣∣∣ ∂u∂xk (S(t), t)Sk(t)
∣∣∣∣
2

dt

)1/2

.

Actually, the above space is a weighted Sobolev space. Hence the derivatives involved
are in the sense of distributions.

The following lemma is an adaptation of the standard result in the Black and Scholes
theory of replicating claims (see Black and Scholes (1973)) to the class ofFSt -adapted
strategies introduced above. For the case whena = a(t) is adapted to the filtration generated
by w(t), a corresponding result is presented in Karatzas (1996), Theorem 1.2.1. However,
in our case the assumption of that theorem is not satisfied, sincea is independent ofw(·).

Lemma 3.1. Let f (·) :
◦
RRRn+ → RRR be a measurable function such thatEEEf (S∗(T ))2 <

+∞ andEEEf (S(T ))2 < +∞. Then a self-financing admissible strategy(β(·), γ (·)) which
replicates the claim f(S(T)) exists if and only ifEEEf (S∗(T )) = erTX(0). Moreover, when the
replication(β(·), γ (·)) exists, γ (t) and the corresponding X(t) are given by

γi(t) = ∂H

∂xi
(er(T−t)S(t), t), X(t) = er(t−T )H(er(T−t)S(t), t),

where the functionH(·, ·) :
◦
RRRn+ × [0, T ] → RRR is the solution to the following Cauchy

problem:

∂H

∂t
(x, t)+ 1

2

n∑
i,j=1

[
n∑
k=1

(σikσjk)xixj
∂2H

∂xi∂xj
(x, t)

]
= 0,

H(x, T ) = f (x).

(3.1)
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In addition, the problem(3.1)admits a solution in the classY1, and the corresponding
processes Si(t)γ i(t), β(t), and X(t) are all square integrable.

Note that Eq. (3.1) is in the sense of Sobolev generalized functions.
It is easy to see that

ln Si(t) = ait − t

2

n∑
j=1

σ 2
ij +

n∑
j=1

σijwj(t), lnSi∗(t) = rt − t

2

n∑
j=1

σ 2
ij +

n∑
j=1

σijwj(t).

From these formulas, it follows thatS(t) has a conditional log-normal probability density
function givena, whileS∗(t) has an unconditional log-normal probability density function.
In fact,S(t) also has a probability density function.

Letp(x, t) andp∗(x, t) be the probability density functions ofS(t) andS∗(t), respectively.

Define the functionsψ(x) :
◦
RRRn+ → RRR andf(λ, x): (q0,+∞)× ◦

RRRn+ → RRR as follows

ψ(x) , p(x, T )

p∗(x, T )
, f (λ, x) , F

(
λ

ψ(x)
, x

)
. (3.2)

Clearlyψ(x) > 0, ∀x.
Let H(x, t, λ):

◦
RRRn+ × ◦

RRR × ◦
RRR+ → RRR be the solution of the Eq. (3.1) with the following

terminal condition (parameterized byλ):

H(x, T , λ) = f (λ, x).

Theorem 3.1. We haveEEE|f (λ, S∗(T ))|2 < +∞ andEEE|f (λ, S(T ))|2 < +∞ for all λ 6=
0, and the Eq.(3.1) admits a solution for the terminal conditionf = f (λ, x) with any
λ 6= 0. Furthermore, assume that

mes

{
x ∈ ◦

RRRn+ :
λ

ψ(x)
/∈ I
}

= 0, ∀λ > q0, λ 6= 0, (3.3)

and there existŝλ > q0, λ̂ 6= 0, such that

EEEf (λ̂, S∗(T )) = erTX(0). (3.4)

Then the self-financing admissible strategy(γ (·), β(·)) that replicates the claim f(S(T),
λ̂) is an optimal solution of the problem (2.6). The corresponding strategy is

γi(t) = ∂H

∂xi
(er(T−t)S(t), t, λ̂), β(t) = X(t)−∑n

i=1γi(t)Si(t)

B(t)
, (3.5)

where X(t) is the corresponding wealth given by

X(t) = er(t−T )H(er(T−t)S(t), t, λ̂). (3.6)

Moreover, any optimal solution must be represented via(3.5) and (3.6), whereλ̂ > q0,

λ 6= 0, is such that(3.4)holds. Furthermore, if

mes

{
x ∈ ◦

RRRn+ :
λ

ψ(x)
/∈ I0

}
= 0, ∀λ > q0, λ 6= 0, (3.7)
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then the optimal solution is unique in the sense that all optimal processes X(t),γ (t) and
β(t) are the same (equivalent) even for possibly differentλ̂ satisfying(3.4).

Notice that

H(x, t, λ) =
∫
RRRn+
p̄∗(y, T , x, t)f (λ, y)dy = EEE{f (λ, S∗(T ))/S∗(T ) = x}, (3.8)

wherep̄∗(x, t, y, τ ) is the conditional probability density function for the vectorS∗(t) given
the conditionS∗(τ ) = y,0 ≤ τ < t ≤ T . In particular,p∗(x, t) = p̄∗(x, t, S(0),0), and
(3.4) has the form∫

RRRn+
p∗(x, T )f (λ̂, x)dx = erTX(0).

Remark 3.1. We can see from Theorem 3.1 that the optimal strategy depends only on the
distribution of the appreciation rates, not these rates themselves.

Remark 3.2. Karatzas (1997) studied a simpler model wheren = 1, dS(t) = a dt +
σ dw(t), with σ being a constant, anda being a random number independent ofw(·). A
problem of maximizing the probability of achieving a certain level was solved. It was shown
that for this simplest model, the optimal strategy does not depend on the current estimation
of the appreciation ratea. In the next section we will demonstrate that the goal achieving
problem is a special case of the problem (2.6), and the independence on the estimation of
the appreciate rates is indeed a property possessed by an optimal strategy even for more
general model.

Next, we give a sufficient condition for the critical Eq. (3.4) to have a solutionλ̂ > q0.

Lemma 3.2. Lethi(·) :
◦
RRRn+ → RRR, i = 1,2, be functions of polynomial order of growth,

and let q0 and F(q, x) be as specified in Assumption2.2.If either

F(q, x) → h1(x) asq → q0, and F(q, x) → h2(x) asq → +∞, ∀x
or

F(q, x) → h2(x) asq → q0, and F(q, x) → h1(x) asq → +∞, ∀x,
then there existŝλ > q0 such that(3.4)holds.

Notice that for the most important special cases to be discussed below,∫
RRRn+
p∗(x, T )f (λ, x)dx is a monotonically decreasing function ofλ. Hence as long as

ψ(x) is known, λ̂ can be numerically determined from (3.4). On the other hand, an ex-
plicit formula forψ(x) is derived below in the case of non-correlated stocks (i.e.σij = 0,
∀i 6= j ).

To this end, fori = 1, . . . , n, let

σ̄i ,
√
T σii , µi = (ai − r)T , θi ,

µi(σ̄
2
i − 2rT)− µ2

i

2σ̄ 2
i

. (3.9)
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It is easy to see that ifσij = 0 ∀i 6= j , then

p̄∗(y, τ, x, t) =
n∏
i=1

p(i)∗ (yi, τ, xi, t), (3.10)

wherex = (x1 . . . , xn), y = (y1, . . . ., yn), and

p(i)∗ (yi, τ, xi, t) = 1

xiσii
√

2π(t − τ)

×exp
−(ln(yi)− ln(xi)− r(τ − t)+ σ 2

ii (t − τ)/2)2

2σ 2
ii (t − τ)

.

Theorem 3.2. If σij = 0 ∀i 6= j then

ψ(x) = p(x, T )

p∗(x, T )
= EEE

[
n∏
i=1

(
xi

Si(0)

)µi/σ̄2
i

eθi

]
, x = (x1, . . . , xn). (3.11)

4. Special cases

In this section, we study some important special cases of the general model presented in
the previous section.

4.1. Goal achieving problem

Letk1, k2 be such that−∞ < k1 < k2 < +∞. For any admissible self-financing strategy
(β(·), γ (·)), introduce the goal achieving stopping times

τ1 , T ∧ inf {t : er(T−t)X(t, γ (·)) = k1}, τ2 , inf {t : er(T−t)X(t, γ (·)) = k2}.
Let X(0) be an initial wealth withk1 < erTX(0) < k2.

Consider the following goal achieving problem:

Maximize PPP(τ1 ≥ τ2) over(β(·), γ (·)) (4.1)

Subject to X(0, γ (·)) = X(0). (4.2)

We now show that this problem is a particular case of the problem (2.6).

Proposition 4.1. Let h1(x) ≡ k1, h2(x) ≡ k2, U(x) = χ{k2≤x} whereχ is the indicator
function. Then Assumptions2.1and2.2hold with

q0 = 0, I = (0,+∞), I0 = {q > 0 : 1− qk2 6= −qk1},

F (q, x) =
{
k2, if 1 − qk2 ≥ −qk1,

k1, if 1 − qk2 < −qk1.
(4.3)

Furthermore, the assumptions of Theorem3.1hold.
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Thus, by definition,

f (λ, x) =
{
k2, if ψ(x) ≥ λ(k2 − k1)

k1, if ψ(x) < λ(k2 − k1)
(4.4)

and

H(x, t, λ) = k1 + (k2 − k1)PPP (ψ(S∗(T )) ≥ λ(k2 − k1)|S∗(t) = x)

= k1 + (k2 − k1)

∫
RRRn+
p̄∗(y, T , x, t)χ{ψ(y)≥λ(k2−k1)} dy, (4.5)

wherep̄∗(y, T , x, t) is the probability density function forS∗(T) conditional onS∗(t) = x.
For the case whenσij = 0 for i 6= j , the functionsψ(·) and p̄∗(y, T , x, t) are defined
explicitly in (3.10) and (3.11).

The proof of Proposition 4.1 is straightforward, hence omitted here.

Theorem 4.1. The problem(2.6) with parameters specified in Proposition4.1 and the
Problem(4.1) and (4.2) have the same optimal value of the functionals to be maximized.
More-over, an optimal strategy (as given in Theorem 3.1) for the Problem(2.6) with pa-
rameters specified in Proposition 4.1 is also optimal for the problem(4.1)and(4.2).

The above proof also leads to the following result immediately.

Corollary 4.1. Under the assumptions of Proposition4.1, any optimal strategy for the
Problem(4.1)and(4.2)must satisfyPPP(τ1 ∧ τ2 < T ) = 0.

Corollary 4.1 shows that for an optimal strategy the first time when the wealth achieves
k1 or k2 occurs only att = T . In other words, stopping the investment before the expiration
timeT cannot be optimal.

4.2. Mean–variance criteria

The following proposition is devoted to the problem which is close to the Markowitz
formulation of mean-variance optimal portfolio selection (see Markowitz (1952)), where the
expectation of a return is to be maximized and the dispersion of the return is to be minimized.

Proposition 4.2. Let ξ1 ≡ −∞, ξ2 ≡ +∞, U(x) = −kx2 + cx, wherec ∈ RRR, k ∈
RRR, k > 0, c ≥ 0. Then Assumptions2.1and2.2hold with

q0 = −∞, I = I0 = (−∞,+∞), F (q, x) = c − q

2k
.

In this case, the Eq.(3.4)has an unique solution

λ̂ = 2k
( c

2k
− erTX(0)

)(∫
RRRn+

p∗(x, T )2

p(x, T )
dx

)−1

= 2k
( c

2k
− erTX(0)

)(
EEE

1

ψ(S∗(T ))

)−1

. (4.6)



N. Dokuchaev, X. Y. Zhou / Journal of Mathematical Economics 35 (2001) 289–309 299

Again, the above result can be verified directly. Moreover, it is shown in Lemma A.2 in
Appendix that the integrand in (4.6) is integrable.

4.3. Nonlinear concave utility functions

Proposition 4.3. Let U(x) :
◦
RRR+ → RRR be a concave differentiable function such that

U ′(x) : (0,+∞) → (0,+∞) is a bijection (i.e. a one-to-one mapping), and there exist
constantsC > 0,0< c1 < 1, andc2 > 0 satisfying

|U(x)| ≤ C(xc1 + x−c2 + 1), |V (x)| ≤ C(xc2 + x−c2 + 1), ∀x > 0, (4.7)

where V(x) is the converse function of U′(x). Then Assumption2.2holds with

q0 = 0, I = I0 = (0,+∞), F (q, x) =



h1(x), if V (q) ≤ h1(x),

V (q), if h1(x) < V (q) < h2(x),

h2(x), if V (q) ≥ h2(x).

(4.8)

In this case, the Eq.(3.4) has a unique solution. Furthermore, ifh1(x) ≤ 0, ∀x,
h2(x)≡ + ∞, andV (x) = Kx−k, whereK > 0, k > 0 are constants, then

λ̂ = (erTX(0))−1/k

(
K

∫
RRRn+
p∗(x, T )1−kp(x, T )k dx

)1/k

. (4.9)

The proof is omitted here as it can be checked directly.
Notice ifU(x) = ln(x), thenV (x) = x−1; if U(x) = x1/δ, δ > 1, thenV (x) = (δx)−δ′ ,

whereδ′ = δ(δ − 1)−1.
Also, it is a direct consequence of Lemma A.2 in Appendix that the integrand in (4.9) is

integrable.

5. Illustrative examples

Example 5.1. We present a numerical solution of the goal achieving problem (4.1) and
(4.2), with the following parameters:n = 1, S(0) = 1.6487,r = 0, X(0) = 1, T = 1,
σ = 0.5, k2 = 1.2, k1 = 1/1.2 = 0.8333,PPP(a(t)≡α1) = PPP(a(t)≡α2) = 1/2, where
α1 = 0.2,α2 = log(2 − e0.2) (under this assumption,EEES(T ) = S(0)).

With these parameters, optimal claimf (λ̂, x) is given by the formula

f (λ̂, x) =




1

1.2
if x ∈ (1.1070,2.3490)

1.2 if x /∈ (1.1070,2.3490)

with λ̂ = 2.5915.
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Furthermore, by (3.6) and (3.8), we have

X(t) = H(S(t), t), (5.1)

where

H(x, t) = 1

1.2
+
(

1.2 − 1

1.2

)

×
(∫ 1.1070

0
p̄∗(y, T , t, x)dy +

∫ +∞

2.3490
p̄∗(y, T , t, x)dy

)
,

p̄∗(y, T , x, t) = 1

yσ
√

2π(T − t)
exp

−(ln(y)− ln(x)− r(T − t)+ σ 2(T − t)/2)2

2(T − t)σ 2
.

(5.3)

The strategy can be easily calculated from (3.5), (5.2) and (5.3).

Fig. 1. Optimal claimf (λ̂, x) andH(x, 0) for goal achieving withk1 = 1/1.2, k2 = 1.2. (—): values ofH (x, 0);
(- - -): values off (λ̂, x) = H(x, T ).
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The wealth process associated with the optimal strategy is given by the following:

X(t) = 0.8 + 0.3666[1−PPP(S∗(T ) ∈ (1.1070,2.3490)|S(t))].

Fig. 1 showsH(x,0) and the optimal claimf (λ̂, x) = H(x, T ).

Example 5.2. Consider a problem of optimal replication of a European put option with a
possible gap. This problem is a particular case of the problem (2.6). We present a numerical
solution with the following parameters:n = 1, U(x) = ln(x), S(0) = 1.6487,r = 0,
X(0) = 1, T = 1, σ = 0.5,

h1(x) ≡ (S(0)− x)+, h2(x) =
{
(2S(0)− x)+ if x ≤ 1.8S(0)

0.2S(0) if x > 1.8S(0),

PPP (a(t)≡α1) = PPP(a(t)≡α2) = 1/2, whereα1 = 0.2,α2 = log(2 − e0.2).
With these parameters, we haveEEEh1(S∗(T )) = 0.3255, EEEh2(S∗(T )) = 1.717, and the

optimal claimf (λ̂, x) given by the formula

Fig. 2. Optimal claimf (λ̂, x) andH(x, 0) for replication of put option with gap. (· · · ): values ofh1(x), h2(x);
(–––): values ofH(x, 0); (- - -): values off (λ̂, x) = H(x, T ).



302 N. Dokuchaev, X. Y. Zhou / Journal of Mathematical Economics 35 (2001) 289–309

f (λ̂, x) =




h1(x), if
ψ(x)

λ̂
≤ h1(x)

ψ(x)

λ̂
, if h1(x) <

ψ(x)

λ̂
< h2(x)

h2(x), if
ψ(x)

λ̂
≥ h2(x)

with λ̂ = 0.8923. The functionψ(x) is defined in Theorem 3.2:

ψ(x) = 1

2

2∑
i=1

(
x

S(0)

)4αi

exp
(αi

2
− 2α2

i

)
.

Therefore, the strategy can be calculated by virtue of (3.5).
Fig. 2 depictsH(x,0) and the optimal claimf (λ̂, x) = H(x, T ).

6. Conclusions

In this paper we established an optimal investment/hedging model for a multi-stock
market that incorporates an additional constraint of bounded risks and a general utility
function, and derived a general optimal strategy. It is assumed that the appreciation rates
of the stocks are random processes that are independent of the underlying Wiener process.
Interestingly, the estimations of appreciation rates were shown to be not a part of the optimal
strategy. As a special case, the solution of a goal achieving problem was obtained. This
solution was shown to have an interesting feature that the goal can not be achieved before
the expiration time.

It seems from the proofs in this paper (see Appendix below) that estimations of volatilities
should be included in the optimal strategy for a model with random volatilities. Moreover,
for a case when the appreciation rates do depend on the underlying Wiener process in (2.2),
estimations of the appreciation rates also should be included in the optimal strategy. Studies
on these problems are currently being carried out.

7. Appendix: proofs

In this Appendix, we supply proofs of all the results of this paper.

Proof of Lemma 3.1. Suppose there exists an admissible self-financing strategy (β(·), g(·))
such thatX(T , γ (·)) = f (S(T )) a.s. We now show thatX(0) = e−rTEEEf (S∗(T )). Denote
X(·) = X(·, γ (·)), and let

X̃(t) , er(T−t)X(t), S̃(t) , er(T−t)S(t), B̃(t) , er(T−t)B(t).

It follows from the Girsanov theorem (see, e.g. Gihman and Skorohod (1979)) that there
exists a probabilistic measurePPP ∗ such that̃S(t) is a martingale. LetEEE∗ be the corresponding
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expectation. Clearly,̃X(0) = erTX(0), X̃(T ) = f (S(T )), and

dX̃(t) = −rX̃(t)dt + er(T−t)(γ (t)dS(t)+ β(t)dB(t))

= −rX̃(t)dt + γ (t)dS̃(t)+ rγ (t)S̃(t)dt + rβ(t)B̃(t)dt = γ (t)dS̃(t).

The process̃S(t) is a martingale under the probability measurePPP ∗. HenceX̃(0) =
EEE∗f (S(T ))andX(0) = e−rTEEE∗f (S(T )).

Let X(0) = e−rTEEEf (S∗(T )). We need to show that the strategy defined in the lemma
does exist and is admissible.

Consider the following Cauchy problem:

∂V

∂t
(y, t)+ 1

2

n∑
i,j=1

∂2V

∂yi∂yj
(y, t)

n∑
k=1

σik σjk −
n∑
i=1

∂V

∂yi
(y, t)

n∑
k=1

σik = 0, (A.1)

V (y, T ) = f (ey1, . . . ,eyn), y = (y1, . . . , yn) ∈ RRRn. (A.2)

First, we assume thatf(x) has a finite support inside the open domain
◦
RRRn+, and f(x) is

smooth enough. Then the problem (A.1) and (A.2) has a classical solution. It can be seen
thatH(x, t) , V (ln x1, ..., ln xn, t) is a classical solution of (3.1). Applying Ito’s formula,
one has

dX(t) = r × (t)dt + er(t−T )

×

∂H
∂t
(S̃(t), t)+ 1

2

n∑
i,j=1

n∑
k=1

(σik σjk)S̃i(t)S̃j (t)
∂2H

∂xi∂xj
(S(t), t)

−r
n∑
i=1

∂H

∂xi
(S̃(t), t)Ŝi(t)

)
dt + er(t−T )

n∑
i=1

∂H

∂xi
(S̃(t), t)dS̃i (t)

= γ (t)′ dS(t)+ β(t)dB(t). (A.3)

Furthermore,X(T ) = f (S(T )). DenoteZ(t) , σ ′SSS(t)γ (t). For anyα ∈ A, consider
the conditional probability space given thata = α. By (A.3), we have in this space that

dX(t) = Z(t)′ dw(t)+ Z(t)′σ−1α dt + r(X(t)− Z(t)′σ−1Ee)B(t)dt, (A.4)

X(T ) = f (S(T )). (A.5)

The solution of the Eqs. (A.4) and (A.5), which constitute a backward stochastic differ-
ential equation, is a square integrable process pair (X(·), Z(·)), and there exists a constant
c0 such that

sup
t
EEE
{
| X(t)|2

∣∣∣ a = α
}

+EEE
{∫ T

0
|Z(t)|2 dt

∣∣∣∣ a = α

}
≤ c0EEE

{
f (S(T ))2|a = α

}
for all f(·) and all non-randomα ∈ A (see, e.g. Yong and Zhou (1999), Chapter 7, Theorem
2.2). Hence

sup
t
EEE|X(t)|2 +EEE

∫ T

0
|Z(t)|2 dt ≤ c0EEEf (S(T ))

2. (A.6)
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Now, let f(x) be just a measurable function as given in the lemma. Letf (i)(x), i =
1,2, . . . , be sufficiently smooth functions having finite supporters inside the open domain
◦
RRRn+ such that

EEE|f (i)(S(T ))− f (S(T ))|2 → 0 as i → ∞.

LetX(i)(·), γ (i)k (·), β(i)(·),H (i)(·)be the corresponding processes and functions. Then there
exists a solutionH(·) of (3.1) as a limit ofH(i)(·) in Y1

By (A.6) and the linearity of (A.4), we have

sup
t
EEE|X(i)(t)−X(j)(t)|2 +EEE

n∑
k=1

∫ T

0
|Sk(t)(γ (i)k (t)− γ

(j)
k (t))|2 dt

≤ c0EEE|f (i)(S(T ))− f (j)(S(T ))|2 → 0 as i → ∞.

Hence{X(i)(·)}, {Sk(·)γ (i)k (·)} and{β(i)(·)} are Cauchy sequences in the space of square
integrable processes, and have the corresponding limitsX(·), Sk(·)γk(·)andβ(·) that are
square integrable processes. This completes the proof. �

Now we turn to the proof of Theorem 3.1. To do this we need a series of lemmas.
For anα ∈ A, introduce the following random number

z(α) , exp

(∫ T

0
(σ−1(α − Er))′ dw(t)− 1

2

∫ T

0
|σ−1(α − Er)|2 dt

)
.

Furthermore, let

Z ,
∫
A

dν(α)z(α).

Lemma A.1. The following holds:

Z = p(S∗(T ), T )
p∗(S∗(T ), T )

. (A.7)

Proof. First of all, it is easily seen thatz(α) = φ1(α,W(T )), whereφ1 : RRRn ×RRRn → RRR is
a measurable function. Also,W(T ) = σ−1v, wherev = (v1, . . . , vn)

′, vi = ln(S∗i (T ))/
Si(0)) − rT + T

∑n
j=1σ

2
ij /2.Hencez(α) = φ2(α, S∗(T )), whereφ2 : RRRn × RRRn → RRR is

measurable. This leads toZ = ψ0(S∗(T )) for some measurableψ0 : RRRn → RRR.
Now,

dS(t) = SSS(t)a dt + SSS(t)σ dw(t), dS∗(t) = SSS∗(t)Er dt + SSS∗(t)σ dw(t).

By the Girsanov theorem, for any measurable bounded functionφ(·) : RRRn → RRR, we
have
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RRRn+
p(x, T )φ(x)dx =

∫
A

dν(α)EEE{φ(S(T ))|a

= α} =
∫
A

dν(α)
∫
RRRn+
EEE {z(α)φ(S∗(T ))| a = α, S∗(T ) = x}p∗(x, T )dx

=
∫
A

dν(α)
∫
RRRn+
EEE {z(α)| S∗(T ) = x}φ(x)p∗(x, T )dx

=
∫
RRRn+
ψ0(x)φ(x)p∗(x, T )dx.

It follows

ψ0(x) = ψ(x) = p(x, T )

p∗(x, T )
, ∀x. (A.8)

This completes the Proof of Lemma A.1. �

Lemma A.2. For k = 0,1, we havesupα∈AEEEz(α)kZc < +∞, ∀c ∈ RRR.

Proof. First of all, it is clear that

sup
α∈A

EEEz(α)c < +∞, ∀c ∈ RRR,

and

sup
α∈A

EEEz(α)kZc = sup
α∈A

EEEz(α)k
(∫

A
dν(α1)z(α1)

)c
< +∞, ∀ c > 0.

Now, for anyc < 0, the functionyc is convex overy > 0. Hence

sup
α∈A

EEEz(α)kZc = sup
α∈A

EEEz(α)k
(∫

A
dν(α1)z(α1)

)c

≤ sup
α∈A

EEEz(α)k
∫
A

dν(α1)z(α1)
c < +∞.

This completes the proof of Lemma A.2. �

To proceed, consider a class of random numbers (claims)Φ̄ that areFST -measurable. By
definition, for aξ ∈ Φ̄, there exists a measurable functionφ : C([0, T ];RRRn) → RRR such
thatξ = φ(S(·)). We denoteξ∗ , φ(S∗(·)), corresponding to eachξ ∈ Φ̄.

Let Φ be a subset ofΦ̄ consisting of all claimsξ ∈ Φ̄ such thatE|ξ∗|2 < +∞ and
EEEU+(ξ) < +∞, whereU+(x) , max(U(x),0). Further, for anyλ > q0, define the
random number

η(λ) , f (λ, S(T )), (A.9)

wheref(·) is defined by (3.2).
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Now, introduce the following functionalsJi : Φ → RRR, i = 0,1 :

J0(ξ) , EEEU(ξ), j1(ξ) , EEEξ∗ − erTX(0),

and set

Φ0 , {ξ ∈ Φ : J1(ξ) = 0, h1(S(T )) ≤ ξ ≤ h2(S(T )), a.s.}.
Consider an auxiliary optimization problem

MaximizeJ0(ξ)over classΦ0. (A.10)

Lemma A.3. The optimization problem(A.10) has an optimal solution̂ξ , η(λ̂) ∈ Φ0
whereλ̂ ∈ (q0,+∞)\{0} is a number such that

EEEξ̂∗ = erTX(0), (A.11)

namely, (3.4)holds. Moreover, if(3.7)holds, then̂ξ is determined uniquely:η(λ̂1) = η(λ̂2)

a.s. whenever̂λ1 andλ̂2 satisfy(A.11).

Proof. Let ξ ∈ Φ with ξ = φ̄(S(·)),whereφ̄ : C([0, T ];RRRn) → RRR is a measurable
function. By the Girsanov theorem, we have

J0(ξ) = EEEU(ξ) =
∫
A

dν(α)EEE{U(ξ)|a = α}

=
∫
A

dν(α)EEE{z(α)U(ξ∗)|a = α} = EEEZU(ξ∗).

Introduce a functionL(ξ, λ) , J0(ξ) − λJ1(ξ), whereξ ∈ Φ̄, λ ≥ q0, λ > −∞. By
Lemma A.l, we haveZ = ψ(S∗(T )), and

L(ξ, λ) = EEE(ψ(S∗(T ))U(ξ∗)− λξ∗)+ λerTX(0). (A.12)

By definition,η∗(λ) = f (λ, S∗(T )). In view of Assumption 2.2, for anyω ∈ Ω andλ > q0
such thatλ/ψ(S∗(T )) ∈ I , the random numberη∗(λ)provides the maximum of the function
ψ(S∗(T ))U(ξ∗)−λξ∗ over the interval(h1(S∗(T )), h2(S∗(T ))). It then follows from (3.3)
thatPPP(λ/ψ(S∗(T )) ∈ I ) = 1. By Lemma A.2 and Assumption 2.2,

|f (λ, S∗(T ))| ≤ c1

(∣∣∣∣ψ(S∗(T ))
λ

∣∣∣∣
c

+
∣∣∣∣ψ(S∗(T ))

λ

∣∣∣∣
−c

+ 1

)

= c1

(∣∣∣∣Zλ
∣∣∣∣
c

+
∣∣∣∣Zλ
∣∣∣∣
−c

+ 1

)
, a.s..

By Lemma A.2,EEE|f (λ, S∗(T ))|c < +∞(∀ λ 6= 0, ∀ c > 0), and

EEE|f (λ, S(T ))|c =
∫
A

dν(α)EEE{z(α)|f (λ, S∗(T ))|ca = α} < +∞, ∀λ 6= 0,∀c > 0.
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This yieldsEEE|ξ̂∗|c < +∞,EEE|ξ̂ |c < +∞ (∀ c > 0). It follows thatEEEU+(ξ̂ ) < +∞.
Thus,ξ̂ (λ̂) ∈ Φ and, by definition,̂ξ(λ̂) ∈ Φ0. Now,

L(ξ, λ̂) ≤ L(ξ̂(λ̂), λ̂), ∀ξ ∈ Φ0. (A.13)

Let ξ ∈ Φ0 be arbitrary. SinceJ1(ξ̂ (λ̂)) = 0, we have

J0(ξ)− J0(ξ̂ (λ̂)) = J0(ξ)− J0(ξ̂ (λ̂))− λ̂J1(ξ̂ (λ̂))

= J0(ξ)+ λ̂J1(ξ)− J0(ξ̂ (λ̂))− λ̂J1(ξ̂ (λ̂)) = L(ξ, λ̂)− L(ξ̂(λ̂), λ̂) ≤ 0.

Consequently,̂ξ(λ̂) is an optimal solution of the problem (A.10).
To prove the uniqueness of solution under (3.7), letξ ′ ∈ Φ0 be an optimal solution of

the problem (A.10) and̂λ be any number such that (3.4) holds. Then,

L(ξ ′, λ̂) = J0(ξ
′) ≥ J0(ξ̂ ) = L(ξ̂ , λ̂).

By Assumption 2.2, for anyω ∈ Ω andλ > q0 such thatλ/ψ(S∗(T )) ∈ I0, there exists
a unique random number achieving the maximum of the functionψ(S∗(T ))U(ξ∗)−λξ∗ over
the interval (h1(S∗(T )), h2(S∗(T ))). Thus, ξ ′ = η(λ̂) a.s.. This completes
the proof. �

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. It has been shown in the Proof of Lemma A.3 thatEEE|f (λ, S∗(T ))|2 <
+∞ andEEE|f (λ, S(T ))|2 < +∞ ∀ λ 6= 0. Moreover, it follows from Lemma 3.1 that the
Eq. (3.1) admits a solution for any terminal conditionf = f (λ, x) with λ 6= 0. Further-
more, it follows from Lemma A.3 that̂ξ , f (λ̂, S(T )) ∈ Φ0. The self-financing strategy
that replicateŝξ is uniquely defined byf (λ̂, x) as stipulated in Lemma 3.1. In addition by
Lemma A.3, it is an optimal strategy, which is unique ifξ̂ is unique. This completes the
proof of Theorem 3.1. �

Proof of Lemma 3.2. By the definition off(·), we haveh1(x) ≤ f (λ, x) ≤ h2(x). More-
over,EEE|hi(S∗(T ))| < +∞. It then follows from Dominate Convergence Theorem that
either

EEEf (λ, S∗(T )) → EEEh1(S∗(T )) asλ → +∞,

EEEf (λ, S∗(T )) → EEEh2(S∗(T )) asλ → q0,

or

EEEf (λ, S∗(T )) → EEEh2(S∗(T )) asλ → +∞,

EEEf (λ, S∗(T )) → EEEh1(S∗(T )) asλ → q0.

Hence by Assumption 2.1 there existsλ̂ > q0 such that (3.4) holds. �

Proof of Thorem 3.2. For any fixeda ∈ A, letp(i)a (xi, t)be the probability density function
for the stock priceSi(t). Furthermore, letp(i)∗ (xi, t) be the probability density function for
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the stock priceSi(t) with ai(·) ≡ r. It can be easily seen thatSi(T ) = Si(0)exp{µi +
rT − σ̄ 2

i /2 + ξi}, whereµi, σ̄i are defined in (3.9), and,ξi, i = 1,2, · · · , are independent
Gaussian random numbers such thatEEEξi = 0, EEEξ2

i = σ̄ 2
i . Hence

p(i)∗ (xi, T ) = 1

xi
√

2πσ̄i
exp

−(ln(xi)− ln(Si(0))− rT + σ̄ 2
i /2)

2

2σ̄ 2
i

, (A.14)

p(i)a (xi, T ) = 1

xi
√

2πσ̄i
exp

−(ln(xi)− ln(Si(0))− µi − rT + σ̄ 2
i /2)

2

2σ̄ 2
i

. (A.15)

Denote

εi , ln(xi)− ln(Si(0))− rT + σ̄ 2
i

2
.

We have

exp
−((εi − µi)

2 − ε2
i )

2σ̄ 2
i

= exp
εiµi

σ̄ 2
i

exp
−µ2

i

2σ̄ 2
i

=
(

xi

Si(0)

)µi/σ̄2
i

exp
µi(σ̄

2
i − 2rT)− µ2

i

2σ̄ 2
i

.

It then follows that

p
(i)
a (xi, T )

p
(i)
∗ (xi, T )

=
(

xi

Si(0)

)µi/σ̄2
i

eθi , (A.16)

whereθi is defined in (3.9). Furthermore, we have

pa(x, t) =
n∏
i=1

p(i)a (xi, t), p∗(x, t) =
n∏
i=1

p(i)∗ (xi, t), x = (x1, . . . , xn). (A.17)

From (A.15)–(A.17), we obtain (3.11). The proof is completed. �

Proof of Theorem 4.1. LetG′ be the set of admissibleγ (·) such that the constraints in (2.6)
hold. Denote byJ′(γ (·)) andJ′′(γ (·)) the functionals to be maximized in (2.6) and (4.1),
respectively.

Supposeγ (·) is an optimal strategy for the Problem (4.1) and (4.2). Construct the fol-
lowing strategy:γ̂ (t) = γ (t) for t ≤ τ, andγ̂ (t) = 0 for t > τ,whereτ , τ1 ∧ τ2. Clearly
γ̂ (·) ∈ G′ andJ ′(γ̂ (·)) = J ′′(γ (·)). Hence

sup
γ (·)∈G′

J ′(γ (·)) ≥ sup
γ (·)

J ′′(γ (·)).

On the other hand, let̄γ (·) be the optimal strategy for the problem (2.6). This strategy
is unique and is given by (3.8), (3.5), and (4.4). The corresponding optimal wealth process
X(t) is given by (3.6) and (4.5). It can be easily seen from these equations that er(T−t)X(t) ∈
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(k1, k2), ∀ t < T , a.s., whereX(t) is the corresponding optimal wealth process. Hence
J ′(γ̄ (·)) = J ′′(γ̄ (·)), leading to

sup
γ (·)∈G′

J ′(γ (·)) ≤ sup
γ (·)
J ′′(γ (·)).

This completes the proof. �
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