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Abstract

This paper investigates an investment/hedging problem in a multi-stock financial market with
random appreciation rates. Only those strategies with bounded risks (i.e. they guarantee that a given
claim will be replicated with an error not exceeding a given level) are considered. Moreover, admis-
sible strategies are based upon observations of market prices rather than those of the appreciation
rates. An optimal strategy, which does not depend on the current estimation of the appreciation
rates of the stocks, is obtained for a model with a general utility function. The result is further
shown to cover some important special cases, especially the so-called goal achieving problem.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper investigates an investment/risk-hedging problem for a stochastic diffusion
model of a security market consisting of a risk-free bond and a finite number of risky
stocks. Associated with a given contingent claim, an investment strategy is said to have
bounded risk if the claim is replicated with an error not exceeding a given level. In a
broad sense, a bounded risk investment strategy is also called a hedging strategy. The most
well-known hedging strategies for this model were obtained by Black and Scholes (1973)
and Merton (1969, 1973). For the Black and Scholes model, the strategies were used to
hedge given claims exactly (without any error). For the Merton model, the strategies were
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obtained for an optimization problem of maximiziBdJ(X(T)), whereX(T) is the wealth at

the expiration tim& andU(-) is a utility function. For various variants and extensions, see,
e.g. Samuelson (1969), Hakansson (1971), Perold (1984), Karatzas et al. (1987), Dumas
and Liucinao (1991), Zhou (1998), and Khanna and Kulldorff (1999). However, in the
literature explicit formulae for optimal strategies have been established only for the cases
when appreciation rates of the stocks are non-random and knowtJ(@ndas quadratic

form, log form or power form. In the general case of random appreciation rates, solution of
the optimal investment problem calls for using the so-called backward stochastic differential
equations (for a most updated account of this theory see Chapter 7 of Yong and Zhou (1999)),
which unfortunately is difficult to solve explicitly and computationally.

Another problem of wide interest is a mean—variance hedging, or a problem of minimizing
E|X(T) — £|?, wheret is a given random claim. For this problem, explicit solutions were
obtained for the case of observable appreciation rates, see, e.g. Féllmer and Sondermann
(1986), Duffie and Richardson (1991), Pham et al. (1998), Kohlmann and Zhou (1998),
Pham et al. (1998), and Laurent and Pham (1999). The resulting optimal hedging strategies
are combinations of the Merton strategy and the Black and Scholes strategy, which depend
on the direct observation of the appreciation rates. Unfortunately, as well known the appre-
ciation rates are usually hard to observe in real-time market, especially when the volatility
coefficients are larger than the average deviations of the appreciation rates per unit time.
Moreover, in these studies the error between the terminal wealth and the claim is bounded
in the mean—variance sense, rather than in the almost-surely one.

In this paper, we consider an investment/hedging model with several new features. First of
all, in our model we do not assume that the appreciation rates of the stocks are non-random
and observable; we only assume that the distributions of the appreciation rates are known
based on the observation of the stock prices. The finally derived strategy depends only on
the current stock prices, the distributions of the appreciation rates, and one scalar parameter
which can be calculated numerically. Second, our model involves the replication of a given
claim with a guaranteed error bound (gap). More precisely, our admissible strategies ensure
that the replication errors do not exceed a given level almost surely. Note that in the classical
problem (for a complete market) of an exact replication, the strategy is uniquely determined
by the claim. In an incomplete market, where an exact replication is no longer generally
possible, itis sensible to consider replications with some gap, which in turn makes it possible
to choose among many possible strategies. Finally, the utility function under consideration
in our model is a fairly general one, covering the mean—variance criterion, non-continuous
functions, and nonlinear concave functions as special cases. In particular, our general utility
function incorporates the so-called goal achieving problem. A goal achieving problem is to
maximize the probability that the event of reaching a prescribed goal happens before the
event of a failure. Specifically, it is to maximiZ&(r1 > 1), wheret; is the first time that
the discounted process(r) £ &7~ X (¢) reaches the levéd, i = 1, 2. Herer is the risk
free interest rateks is the goal level whilé; is a level considered to be a failure (certainly,
k1 < kp).

The goal achieving problem is interesting in its own right. The problem for a single-stock
market model with only additive stochastic disturbances was first solved by Karatzas (1997),
where the constructed optimal strategy depends only on the distribution of the stock appreci-
ation rate. In the present paper, using an approach completely different than that of Karatzas
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(1997), we are able to derive optimal strategies that are independent of the appreciation rate
estimations, for a general model with multiple, correlated stocks and additional constraints
of bounded risks. In particular, it is concluded that for an optimal strategy the leveisd

ko will never be achieved before the expiration time.

It should also be noted that for a general problem with non-random appreciation rates,
Khanna and Kulldorff (1999) showed that the so-called Mutual Fund Theorem holds,
namely, the optimum can be achieved on a set of Merton type strategies. But, this the-
orem does not hold for the case of random and non-observable rates that is being studied
here, nor does the method of Khanna and Kulldorff (1999) apply.

The rest of this paper is organized as follows. In Section 2, the general model under
consideration is formulated and necessary preliminaries are given. In Section 3, an optimal
solution to the general problem is presented. Section 4 discusses several important special
cases of the general problem, including the goal achieving problem. Numerical results are
reported in Section 5. In Section 6, some concluding remarks are given. Finally, in Appendix,
proofs of the results are supplied.

2. Problem formulation and preliminaries

Consider a diffusion model of a security market consisting of a risk-free bond with the
priceB(t), ¢t > 0, andnrisky stocks with price§ (t),z > 0,i = 1, 2,...,n,wheren < 400
is given. Throughout this paper all random processes are defined on a standard probability
space (2, F, P). The price of the bond is given by the following

B(1) = €' By, (2.2)

wherer > 0 andBg are given constants. On the other hand, the prices of the stocks evolve
according to the following stochastic differential equations

ds; (1) = Si () (al- dr + 3" y05 dwj(t)> >0
$i(0) = Sio,

2.2)

wherew(t) = (w1(?), ..., w,(¢)) isastandard-dimensional Wiener process (with 0) =
0), &; is the (random) appreciation rate of thik stock, andr;; the volatility coefficient.
The initial priceS;o > 0 is a given non-random constant. We get (as, ..., a,) and
St) = (S1(2), ..., S,(®)). In addition, we introduce an auxiliary proceSgt) which is
defined as the price proceS&) under the assumption that the appreciation rates of all the
stocks coincide with the bond rate, ice(w)=r, Vi. Note that, we choose to use this process
rather than a risk-neutral probability measure because it is more convenient for our aims,
as evident from the sequel.

Remark that in practice, the volatility coefficients; can be effectively estimated from
S(b). In contrast, it is more difficult to estimate the appreciation aatén fact, an estimator
of g; is not satisfactory when the volatility is sufficiently large. In view of these, we assume
thato £ (0jj) is a known, deterministie x » matrix such thato’ > 0; yetais random and
not directly observable. Moreover, we assume thatindependent ofv(-), andP (la| <
¢) = 1 for a constant > 0.
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Let F5 C F be the right-continuous monotonically increasing filtration of complete
o-algebras generated I${t), r > 0.
Let X(t) be the wealth of an agent at timhvith X (0) > 0 being the initial wealth. Then

X(1)=BOB®) + Y yi)Sit), =0, (2.3)
i=1
whereg(t) is the quantity of the bond, and (t) the quantity of theth stock in the portfolio.
Lety () = (y1(2), ... ., yu(2)). Itis clear that the pairs5(t), v (t)) describe the state of the
portfolio at timet. We call them strategies.

Definition 2.1. A pair (B8(-), ¥(*)) is said to be an admissible strategysift), v;(t), and
yi)S@t),i = 1,..., n, are random processes that are progressively measurable with
respect to the filtratiotFS and satisfy

T n T
E/ B2 dr < +o0, ZE/ lvi (1) Si ()12 dt < +00, VT > 0.
0 = Jo
Definition 2.2. An admissible strategys(t), y (1)) is said to be self-financing, if

dX (1) = B(1)dB(1) + Y _yi(1) dS; (1) (2.4)

i=1
By definition, any self-financing admissible strategy has the form

(OEDWAGMNIO!
B(1) ’

wherel'(t,-) : C([0,]; R") — R" is afunctionaly > 0, andX(t) is defined through the
closed system (2.4) and (2.5). Notice that the random proceg&@s)(t)) with a same
(-, ) in (2.5) may be different with differera(-).

Let the initial wealthX(0) be fixed. For a self-financing admissible strateg)( y(-)),
B(t) and X(t) are uniquely determined by(:). We shall then denote b¥((t, y(-)) the
corresponding total wealth at tinhe

X
y(@) =TI SOl B(1) = (2.5)

Definition 2.3. Letthe initial wealtiX(0) and atimg” > Obefixed,an§ = ¢ (S()l:epo,7)):
whereg : C([0, T]; R") — Risameasurable functional. A self-financing admissible strat-
egy (B(-), y () is said to replicate the claighwith the initial wealthX(0) if

X(T,y()=¢§, as

Definition 2.4. Let X(0) andT > 0 be fixed, anc 1, £2 be random numbers such that
—00 < &1 < & < +00, a.s.. An admissible strategg((), ¥ (-)) is said to be a bounded risk
strategy with bounds$y, & if

§<X([T,y()) <&, as

Let R"} £ (x = (xp,x2,...,%,) € R" : x;

{x = (x1, x2, ..., x)ER"  x;>0,i=12,...,n}.

v
o
I
P
N
=
Q
>
o
=yo
+=
[>



N. Dokuchaev, X. Y. Zhou/ Journal of Mathematical Economics 35 (2001) 289-309 293

Definition 2.5. A function C(.): Ioe’jr — R is said to be of polynomial growth if there exist
constantg; > 0 andc > 0 such that

n
|IC(x)| < c1 <|x|" +Y X+ 1) . ¥x=(x1,...,%) € R".
i=1

Now we formulate the problem to be studied in this paper.ZLet 0 andX(0) be fixed,
&1 andé, be given random numbers, abid): R — R be a given utility function such that
there exist constantg > 0 andc > 0 satisfying

Ux) <ca(lx|°+1), VxeR.

The problem is to find a self-financing admissible strategfy)( y(-)) that solves the
following optimization problem:

Maximize EUX(T,y(")),
X0, y() = X(0), (2.6)
§&1<X(T,y(’) <&, as

Throughout this paper we impose the following assumptions.

Subjectto :

Assumption 2.1. The given random boundg andé satisfy the following:

1. & = n(S(T)), i = 1,2, where the functions;: f!’i — [—o0, +00] are such that
whenevelh: iti — R is a function of polynomial growth, so are max(x), h(x)) and
min(hz(x), h(x)).

2. —00 < h1(x) < ha(x) < +oo forall x.

3. Eh1(S«(T)) < €TX(0) < Eha(S4(T)).

Assumption 2.2. There exist constanty € {—o0, 0}, c1 > 0, ¢ > 0, measurable sets

I C (qo, +o0) andlp C I, and a functionF (-, ) : R x IO("jr — R such that the following
hold:

1. mes(qo, +00)\1) = 0.
2. Foranyx € R™ andq € I, the optimization problem

Maximize U(y) —ay,

Subjectto y € [h1(x), ha(x)] @7

has a solutiory = F(q, x) > qo, and

n
|F(g,x)| < c1 (W S CURE Y 1) . Vx=(x1....,x) € R
i=1

Moreover, ifg € Ig then the solution of (2.7) is unique.

It is shown below that Assumptions 2.1 and 2.2 are satisfied in many important special
cases.
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3. Main results

First we need to introduce some notation. Define theset {« € R" : |a| < c},
wherec is a constant such th&(|a] < ¢) = 1. Without loss of generality, we may take
the probability space as follow2 = A x £2., where2, = C([0, T]; R"). Let B be the
o-algebra of subsets a2, generated by the cylinder sets. Furthermore, we assume that
there arer-additive probability measureg-) andP. on A ands2., respectively, such that
P=vxP,.

Lete2£(1,....,1) eR",F2recR", a=a—r.LetS@) £ diag(S1(t), ..., Su(?))
be the diagonal matrix with the diagonal elements defined by (2.2). Furthermd&g(zlee
diag(S.1(1), ..., S« (¢)) be the diagonal matrix with the diagonal elements defined by (2.2)
witha = r.

Finally, introduce the Banach spa¥ of functionsu(-, -) : R x[0, T] — R satisfying

2
dr < 400,

T

ou
a—(S(t), 1) Sk (1)
Xk

SUPEIu(S(0). 12+ Y E |
! k=1 v0
with the norm

u
—k(S(t),t)Sk(t)

T
0 ax

" 2 1/2
llut, )T £ (supE|u(S<t),r>|2+ZEf dt) :
! k=1

Actually, the above space is a weighted Sobolev space. Hence the derivatives involved
are in the sense of distributions.

The following lemma is an adaptation of the standard result in the Black and Scholes
theory of replicating claims (see Black and Scholes (1973)) to the clagy @fdapted
strategies introduced above. For the case wheru(¢) is adapted to the filtration generated

by w(t), a corresponding result is presented in Karatzas (1996), Theorem 1.2.1. However,
in our case the assumption of that theorem is not satisfied, aiisc@dependent ofv(-).

Lemma 3.1. Let f(-) : 103{1F — R be a measurable function such thtf (S,(T))? <
+o00 andE f(S(T))? < 4+o0. Then a self-financing admissible strategy-), (-)) which
replicates the claim(§(T)) exists if and only if f (S.(T)) = ' X (0). Moreover, when the
replication(B8(-), y (-)) exists y (t) and the corresponding(R are given by

a

yilt) = 3—H<e’<T—’>S(r),t>, X)) = €D EET D50, 1),
xi

where the functiorH (-, -) : it’i x [0, T] — R is the solution to the following Cauchy
problem

oH 1 | v 3°H
E(x’t)dl—éz [Z(Gikﬁjk)xixjm(xﬁ) =0,

i,j=1Lk=1
Hx, T)= f(x).

(3.1)
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In addition, the problen{3.1) admits a solution in the class?, and the corresponding
processes;®&)y;(t), S(t), and Xt) are all square integrable

Note that Eq. (3.1) is in the sense of Sobolev generalized functions.

It is easy to see that

n n n n
! 2 ! 2
In8;(t) = ait — EJZ;”"‘ + jZlou Wi, NSiu(t) =1t = 5 o + ) ojuw;(0).

=1 =1

From these formulas, it follows th&t) has a conditional log-normal probability density
function givena, while S, (¢) has an unconditional log-normal probability density function.
In fact, St) also has a probability density function.

Letp(x, t) andp. (x, ) be the probability density functions 8ft) andsS. (r), respectively.

Define the functiongr (x) : 102{; — R andf(x, X): (o, +00) x Ioe’}r — R as follows

A p('xaT) é L
v s ey WO EF (wx)’x) ' (3:2)
Clearlyy (x) > 0, Vx.

Let H(x, t, A): 1031 x R x Ioe+ — R be the solution of the Eq. (3.1) with the following
terminal condition (parameterized hy:.

Hx, T,x) = f(,,x).

Theorem 3.1. We haveE| f (i, S+(T))|? < +ooandE| f(x, S(T))|? < +oo forall » #
0, and the Eq/(3.1) admits a solution for the terminal conditiofi = f (&, x) with any
A # 0. Furthermore, assume that

° A
mes{x eER? : ——

RERTIES!

and there exist& > go, A # 0, such that

¢1}=o, Vi >qo, A#DO, (3.3)

Ef(h, S.(T)) = €TX(0). (3.4)

_ Then the self-financing admissible stratégy-), A(-)) that replicates the claim(§T),
A) is an optimal solution of the problem (2.6). The corresponding strategy is

X(1) = YOS (@)

oH N
(1) = 2 g (-0 — _
where X(t) is the corresponding wealth given by
X@t) = DHE@ETD81), 1, 1), (3.6)

Moreover, any optimal solution must be represented(8i&) and (3.6), where’ > go.
A # 0,is such tha(3.4) holds. Furthermore, if

° A
mes{x €ER: W ¢ 10} =0, Vi>gqo, A#0, 3.7)
X
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then the optimal solution is unique in the sense that all optimal processes/¥jtand
B(t) are the same (equivalent) even for possibly diffekesatisfying(3.4).
Notice that

H(x,1,4) = /R” px(y, T, x, 1) f(A, y)dy = E{f (&, $x(T))/S:(T) = x}, (3.8)
+

wherep,(x, t, y, T) is the conditional probability density function for the vecsott) given
the conditionS,(r) = y,0 < t <t < T. In particular,p,(x, t) = p«(x, 1, S(0), 0), and
(3.4) has the form

/ pe(x, T) f(A, x)dx = €7 X(0).
R}

Remark 3.1. We can see from Theorem 3.1 that the optimal strategy depends only on the
distribution of the appreciation rates, not these rates themselves.

Remark 3.2. Karatzas (1997) studied a simpler model where= 1, dS(tr) = adt +

o dw(t), with o being a constant, analbeing a random number independentugf). A

problem of maximizing the probability of achieving a certain level was solved. It was shown
that for this simplest model, the optimal strategy does not depend on the current estimation
of the appreciation rata. In the next section we will demonstrate that the goal achieving
problem is a special case of the problem (2.6), and the independence on the estimation of
the appreciate rates is indeed a property possessed by an optimal strategy even for more
general model.

Next, we give a sufficient condition for the critical Eq. (3.4) to have a solutiengo.
Lemma 3.2. Leth; (") : 1031 — R, i = 1, 2, be functions of polynomial order of growth,
and let @ and F(q, x) be as specified in AssumptA. If either

F(g,x) — hi(x) asq — qo, and F(q,x) — ha(x) asq — +o0, Vx
or
F(q,x) — ha2(x) asq —qo, and F(q,x) — hi(x) asq — +oo, Vx,

then there exists > go such that(3.4) holds
Notice that for the most important special cases to be discussed below,
fRn+ p«(x, T) f(A, x)dx is a monotonically decreasing function of Hence as long as

¥(x) is known, A can be numerically determined from (3.4). On the other hand, an ex-
plicit formula for v/ (x) is derived below in the case of non-correlated stocks gjje= 0,

Vi # j).
Tothisend, foi =1, ...,n,let
(52— 2rT) — p?
&2 VToi,  pi=(-nt. g2 il (3.9)

2572
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Itis easy to see thatifj =0 Vi # j, then

n
Py Tox ) =[[p i T xi 1), (3.10)
i=1

wherex = (x1...,x,),y = (y1,...., yn), and
PO T, xi, 1) = —1
* X;0iiA/2m(t — 1)
Xp—(ln(m —In(x;) —r(zx — 1) + 02t — 1)/2)?

xe

202(t — 1)
Theorem 3.2. If oy =0 Vi # j then
, T . i uilaf .
w(x)z%zE[n <S-x(0)> e@] X = (X1 e ey Xn). (3.11)
% ’ i=1 1

4. Special cases

In this section, we study some important special cases of the general model presented in
the previous section.

4.1. Goal achieving problem

Letks, ko be suchthat-co < k1 < k2 < +00. For any admissible self-financing strategy
(B(), v (), introduce the goal achieving stopping times
2T Ainflr: T DX, y() = ki), 2 infir: €TDX1, y() = ko).

Let X(0) be an initial wealth withk; < €7X(0) < k».
Consider the following goal achieving problem:

Maximize P(r1 > 12) over(B(-), y(-)) (4.2)
Subjectto X (0, y(-)) = X(0). 4.2)

We now show that this problem is a particular case of the problem (2.6).

Proposition 4.1. Lethy(x) = ky, ha(x) = k2, U(x) = xk,<x} Wherey is the indicator
function. Then Assumptio@sl and2.2 hold with
go=0, I=(0,+00), Ip={g>0:1-qak # —qgki},
ka, if 1— gk > —qki,
F(q,x)= ) (4.3)
k1, if 1—qgke < —qks.

Furthermore, the assumptions of Theorgrhold.
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Thus, by definition,

) k2 i Y(x) = Alk2 — k1)
S0 = { ki i Y 00) < Az — k) @

and
H(x,t,)) =ki+ (kg — k) P(Y (S:(T)) = Ak — k1)[S«(t) = x)

=k1+ (ko — kl)/ Py, T, X, )X (»)=htka—kp)} AV (4.5)
R

wherep.(y, T, x, t) is the probability density function f&,(T) conditional onS, () = x.
For the case whenjj = 0 fori # j, the functionsy () and p«(y, T, x, t) are defined
explicitly in (3.10) and (3.11).

The proof of Proposition 4.1 is straightforward, hence omitted here.

Theorem 4.1. The problem(2.6) with parameters specified in Propositiehl and the
Problem(4.1) and (4.2) have the same optimal value of the functionals to be maximized.
More-over, an optimal strategy (as given in Theorem 3.1) for the Prolfg6) with pa-
rameters specified in Proposition 4.1 is also optimal for the prokiérh) and (4.2).

The above proof also leads to the following result immediately.
Corollary 4.1. Under the assumptions of Propositidnl, any optimal strategy for the
Problem(4.1)and(4.2) must satisfyP (11 A 72 < T) = 0.

Corollary 4.1 shows that for an optimal strategy the first time when the wealth achieves
ki ork occurs only at = T'. In other words, stopping the investment before the expiration
time T cannot be optimal.

4.2. Mean-variance criteria
The following proposition is devoted to the problem which is close to the Markowitz

formulation of mean-variance optimal portfolio selection (see Markowitz (1952)), where the
expectation of areturn is to be maximized and the dispersion of the return is to be minimized.

Proposition 4.2. Let& = —o0, & = +oo, U(x) = —kx2 + cx, wherec € R, k €
R, k > 0, ¢ > 0. Then Assumptiord.1and 2.2 hold with
c—
go=—00, [ =1Ip=(-00,+00), F(q,x)= Tq.

In this case, the E(3.4) has an unique solution

-1
~ px(x, T)?
=2 (- o) ([, 56T )

. c T 1 -1
= 2k <Z ¢ X(O)) <Em) . (4.6)
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Again, the above result can be verified directly. Moreover, it is shown in Lemma A.2 in
Appendix that the integrand in (4.6) is integrable.

4.3. Nonlinear concave utility functions

Proposition 4.3. Let U (x) : Ioe+ — R be a concave differentiable function such that
U'(x) : (0, +00) — (0, +00) is a bijection (i.e. a one-to-one mapping), and there exist
constantsC > 0,0 < ¢1 < 1,andc, > 0 satisfying

[UX)| < CxT+x24+D, [V@)|<Cx?+x?24+1, Vx>0, 4.7)
where V(x) is the converse function dfXJ. Then Assumptio2.2 holds with

hi(x), if V(g) < ha(x),
q0=0, I =1Io=(0,+00), F(g,x)=1V(g), ifhi(x)<V(g) <h2(x),

ha(x), if V(g) = ha(x).
(4.8)

In this case, the Eq(3.4) has a unigue solution. Furthermore, A (x) < 0, Vx,
ho(x)=+ 00, and V (x) = Kx %, wherek > 0,k > 0 are constants, then

1/k
A= (€Tx(0) Yk (K/ p*(x,T)lkp(x,T)kdx> ) (4.9)

R+
The proof is omitted here as it can be checked directly.
Notice if U (x) = In(x), thenV (x) = x~L;if U(x) = x¥/%, § > 1, thenV (x) = (6x)~°,
wheres’ = §(5 — 1)~ 1.
Also, it is a direct consequence of Lemma A.2 in Appendix that the integrand in (4.9) is
integrable.

5. llustrative examples

Example 5.1. We present a numerical solution of the goal achieving problem (4.1) and
(4.2), with the following parameters: = 1, S(0) = 1.6487,r = 0, X(0) = 1,T = 1,

o0 =05k =12,k = 1/1.2 = 0.8333,P(a(t)=a1) = P(a(t)=a2) = 1/2, where

a1 = 0.2, a0 = log(2 — €°2) (under this assumptio® S(7) = S(0)).

With these parameters, optimal clajfit, x) is given by the formula

N 1—12 if x € (1.107Q 2.3490
f()\w -x) - :

1.2 ifx ¢ (1.107Q 2.3490

with A = 2.5915
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Furthermore, by (3.6) and (3.8), we have

X() = H(S(),1), (5.1)
where
1
H(x,t) = + (1.2— E)

1

12
1.1070 +o0

x (/ 5.0, T,r,x>dy+/ 50y, T,t,x)dy),
0 2.3490

_ B 1 —(n(y) —In(x) — r(T —t) + (T — 1)/2)?
P T ) = o= &P 2T — )02 :
(5.3)

The strategy can be easily calculated from (3.5), (5.2) and (5.3).

1.5 T T T T

1.2__ _____________ I I I T T T — -

0.9
0.8 4

0.7 .

0.6 1 L 1
0.5 15 2 25 3

stock price attime T

-

Fig. 1. Optimal clgimf(i, x) andH(x, 0) for goal achieving witht; = 1/1.2,k, = 1.2. (—): values oH (x, 0);
(---): values off (A, x) = H(x, T).



N. Dokuchaev, X. Y. Zhou/ Journal of Mathematical Economics 35 (2001) 289-309 301
The wealth process associated with the optimal strategy is given by the following:
X (1) =0.840.3666[1— P(S.(T) € (1.107Q 2.3490|S())].
Fig. 1 showsH(x,0) and the optimal clainf (A, x) = H(x, T).

Example 5.2. Consider a problem of optimal replication of a European put option with a
possible gap. This problem is a particular case of the problem (2.6). We present a numerical
solution with the following parametera: = 1, U(x) = In(x), S(0) = 1.6487,r = 0,

X0 =1,T=1,0 =05,

(25(0) — x)* if x < 1.85(0)

hi(x) = (SO) —x)F,  ho(x) =
10 =3O~ 2x) {O.ZS(O) if x > 1.85(0).
P(a()=a1) = P(a(t)=ar) = 1/2, wheren; = 0.2, > = log(2 — €°2).

With these parameters, we hallé1(S.(T)) = 0.3255 Eho(S«(T)) = 1.717, and the
optimal claimf (%, x) given by the formula

3.5 T T T T T T T T

25

1.5 -

0.5F

0 L I T 1 1 1 1 L

0 0.5 1 15 2 25 3 35 4 45
stock price at time T

Fig. 2. Optimal claimf(i, x) andH(x, 0) jor replication of put option with gap: {-): values ofhy(x), ha(X);
(—): values oH(x, 0); (---): values off (A, x) = H(x, T).
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ha(x), if '/’;x) < h1(x)
P =YY e < 29 e
A A
ha(x), it ””;x) > ha(x)

with A = 0.8923. The functiony (X) is defined in Theorem 3.2:

2 4oy )
V(x) = %Z (%) exp(a—Z’ — Zaiz) )
i—1

Therefore, the strategy can be calculated by virtue of (3.5).
Fig. 2 depictH(x,0) and the optimal clainf (, x) = H(x, T).

6. Conclusions

In this paper we established an optimal investment/hedging model for a multi-stock
market that incorporates an additional constraint of bounded risks and a general utility
function, and derived a general optimal strategy. It is assumed that the appreciation rates
of the stocks are random processes that are independent of the underlying Wiener process.
Interestingly, the estimations of appreciation rates were shown to be not a part of the optimal
strategy. As a special case, the solution of a goal achieving problem was obtained. This
solution was shown to have an interesting feature that the goal can not be achieved before
the expiration time.

It seems from the proofs in this paper (see Appendix below) that estimations of volatilities
should be included in the optimal strategy for a model with random volatilities. Moreover,
for a case when the appreciation rates do depend on the underlying Wiener process in (2.2),
estimations of the appreciation rates also should be included in the optimal strategy. Studies
on these problems are currently being carried out.

7. Appendix: proofs
In this Appendix, we supply proofs of all the results of this paper.

Proof of Lemma 3.1. Suppose there exists an admissible self-financing straggdy{(-))
such thatX (T, y (-)) = f(S(T)) a.s. We now show that (0) = e "TE f(S,(T)). Denote
X()=X(,y(),and let

X2 T Dxw), So2eTIs1w), B@) 2 T IBw).

It follows from the Girsanov theorem (see, e.g. Gihman and Skorohod (1979)) that there
exists a probabilistic measuPs, such thafS(r) is a martingale. LeE . be the corresponding
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expectation. ClearlyX (0) = €7X(0), X(T) = f(S(T)), and

dX (1) = —rX(0)dr + €T (y (1) dS(r) + (1) dB(1))
= —rX@®)dt + y (@) dS@) + ry(t)S(t) dt + rB(t)B(t) dt = y (1) dS(1).
The processS(¢) is a martingale under the probability measite. HenceX (0) =
E.f(S(T))andX (0) = e "E, f(S(T)).
Let X(0) = e "TE f(S.(T)). We need to show that the strategy defined in the lemma

does exist and is admissible.
Consider the following Cauchy problem:

a—(y, )+228 e L, t)Zo.ka,k—Z (y,r)Zo.k— (A1)

i,j=1

Vi, T)= fE",....,e"), y=01,...,y) € R". (A.2)

First, we assume thdfx) has a finite support inside the open domﬁm, andf(x) is
smooth enough. Then the problem (A.1) and (A.2) has a classical solution. It can be seen
thatH (x, 1) £ V(Inxy, ..., Inx,, 1) is a classical solution of (3.1). Applying Ito’s formula,
one has

dX (1) =r x (1)dr + €~ 1)

1
(—(S(r) n+ = ZZ(a.ka,k)s,(t)S,m

1] =1lk=1

7 (s n
]

—rZ—(S(t) H)S; (t)) dr + e~ T>Z (S(t) 1) dS; (1)

=)/(f) dS(t)+ﬂ(t)dB(l)- (A.3)

Furthermore X (T) = f(S(T)). DenoteZ(r) £ o'S(t)y(t). For anya € A, consider
the conditional probability space given thiat «. By (A.3), we have in this space that

dX () = Z(t) dw(t) + Z@t) o tadt + r(X (1) — Z(t) o ~1é)B(r) dt, (A.4)
X(T) = f(S(T)). (A.5)

The solution of the Egs. (A.4) and (A.5), which constitute a backward stochastic differ-
ential equation, is a square integrable process p&i),(Z(-)), and there exists a constant
Co such that

T
SUpE [| X(t)|2‘a — a} tE {f \Z(6)2 dt
t 0

a =a} < coE {f(S(T))2|a =a]

for all f(:) and all non-randora € A (see, e.g. Yong and Zhou (1999), Chapter 7, Theorem
2.2). Hence

T
SUREIX ()2 + E / \Z()2dr < coE F(S(T))2. (A6)
t 0
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Now, let f(x) be just a measurable function as given in the lemma.fletx), i =
1, 2, ..., be sufficiently smooth functions having finite supporters inside the open domain

Iot’jr such that
E|fOS(T)) — f(S(T))?—>0 as i — oo.

LetX@(.), )/,c(i)(-), BD (), H®(-) be the corresponding processes and functions. Then there
exists a solutiom(-) of (3.1) as a limit oH®(-) in 1
By (A.6) and the linearity of (A.4), we have

n T . .
SupE|XO(0) - XD+ EY /O kO @) — v )1 e
! k=1
< coE|fO(S(T)) = fP(S(T)P -0 as i— oc.
Hence{X® ()}, {Sk(-)yk(i)(~)} and{8® (.)} are Cauchy sequences in the space of square
integrable processes, and have the corresponding lixiits S (-)yx () andB(-) that are
square integrable processes. This completes the proof. O

Now we turn to the proof of Theorem 3.1. To do this we need a series of lemmas.
For ana € A, introduce the following random number

T 1 T
z2(a) & exp(f (o Yo — 7)) dw(t) — -/ lo ™Yo — 7)|2dt> .
0 2Jo

Furthermore, let

Zéfdv(a)z(a).
A

Lemma A.1. The following holds:

z_ PG T) (A7)
p«(Sx(T), T)

Proof. Firstof all, it is easily seen thata) = ¢1(a, W(T)), wherep; : R” x R" — R is
a measurable function. Alsé¥ (T) = o~ 1v, wherev = (v1, ..., v,), v; = IN(S,i(T))/
Si(0) — T + Tzf}zla"?/z. Hencez(a) = ¢a(a, S,(T)), whereg, : R* x R" — R is
measurable. This leads 8 = (S« (T)) for some measurablg¢y : R” — R.

Now,

dS() = S(t)adt + S(t)o dw(r), dS.(t) = Sx()r dr + S, (t)o dw(r).

By the Girsanov theorem, for any measurable bounded fun¢tion: R" — R, we
have
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/ p(x,T)¢(x)dx=f dv()E{¢(S(T))la
R A
=a}=/ dV(a)/ E{z(0)¢(S«(T))la = a, Sx(T) = x} ps(x, T) dx
A R,
=/ dv(oof E (2(0)] Su(T) = x) $(x)ps(x. T) dr
A R"

= / Yo()¢ (x) pu(x, T) d.
R.

It follows
(x,T)
Yoo = Y(x) = L (A.8)
px(x, T)
This completes the Proof of Lemma A.1. O
Lemma A.2. Fork = 0, 1, we havesup,. 4 Ez(a)¥Z¢ < 400, Vc € R.
Proof. First of all, itis clear that
SUPEz(a)¢ < +00, Vc eR,
acA
and
.
SupEz(a)*Z¢ = supEz(a)* (/ dv(al)z(a1)> <400, Ve>0.
acA acA A
Now, for anyc < 0, the functiony“ is convex over > 0. Hence
c
SupEz(oz)kZ" = supEz(a)k </ dv(al)z(a1)>
acA acA A
< supEz(@)" [ dviapzian’ < +oo.
acA A
This completes the proof of Lemma A.2. O

To proceed, consider a class of random numbers (cladntbjt are?—“ﬁ—measurable. By
definition, for a¢ € @, there exists a measurable function C([0, T]; R") — R such
thaté = ¢(S(-)). We denoté, £ ¢(S,(-)), corresponding to eache &.

Let @ be a subset of consisting of all claimg € & such thatE|,]2 < +oo and
EUT(£) < 400, whereU™T(x) £ maxU (x), 0). Further, for any» > go, define the
random number

n) £ f(x, S(T)), (A.9)
wheref(.) is defined by (3.2).
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Now, introduce the following functional : @ — R, i =0,1:
Jo) 2 EU).  ju) 2 E& — €7X(0),
and set

PoL{Ecd: J1(§) =0, h1(S(T)) <& < ha(S(T)), as}.
Consider an auxiliary optimization problem

Maximize Jo(&) over clasbg. (A.10)

Lemma A.3. The optimization problerfA.10) has an optimal solutio§ £ n(k) € P
wherel € (go, +00)\{0} is a number such that

EE, = €7X(0), (A.11)

namely (3.4)holds. Moreover, if3.7)holds, therf is determined uniquely;(A1) = n(i2)
a.s. whenevex; and iy satisfy(A.11).

Proof. Leté € @ with ¢ = ¢(S(-)), wherep : C([0, T]; R") — R is a measurable
function. By the Girsanov theorem, we have

Jo(§) = EU$) = /AdV(a)E{U(&)Ia =a
= Adv(a)E{z(a)U(S*)la =a} =EZU&,).

Introduce a functior. (£, 1) £ Jo(&) — AJ1(£), whereé € &, A > go, A > —o0. By
Lemma A.l, we haveZ = ¢ (S.(T)), and

L(E, 1) = E(W(S(T)U (&) — A&x) + 1 €TX(0). (A.12)

By definition,n. (1) = f (A, Sx(T)). In view of Assumption 2.2, for any € 2 andi > qo
suchthak /v (S4(T)) € I,the random numbey, (1) provides the maximum of the function
Y (Sx(T))U (&) — L&, over the intervalh1(S«(T)), h2(S«(T))). It then follows from (3.3)
thatP (A /¥ (S«(T)) € I) = 1. By Lemma A.2 and Assumption 2.2,

If(?»,S*(T))Ifq( +1)

= z _C+1 as.
_Cl )\‘ ’ .

By Lemma A.2.E|f (A, S«(T))|¢ < +oo(VA #0, V¢ > 0),and

‘WS*(T))
A

¢ Y (S(T))
+[

C+ Z
A

E|f O, S(TY)I = / v (@E{z(@)| f 0., Se(T))[a = ) < +00, Vi # 0, Ve > 0,
A
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This yieldsE|£,|° < +o0, E[|° < +oo (Yc > 0). It follows that EU*(§) < +oo.
Thus,&(A) € @ and, by definitiong (A) € @g. Now,
L. 3) < LER). L), V& € do. (A.13)
Let& € @ be arbitrary. Sincg1(€ (1)) = 0, we have

Jo(&) — Jo(E(R) = Jo(&) — Jo(E (X)) — AJ1(E(R))
= Jo(&) + AJ1(&) — Jo(E(M) — AJ1(E(R) = L(&, %) — L(E(A), ») < 0.

Consequenthé (1) is an optimal solution of the problem (A.10).
To prove the uniqueness of solution under (3.7)let &g be an optimal solution of
the problem (A.10) and be any number such that (3.4) holds. Then,

LX) = Jo€) > JoE) = L(E, &).

By Assumption 2.2, for any € 2 andx > go such that. /v (S.(T)) € Io, there exists
aunique random number achieving the maximum of the funeatic®). (7)) U (¢,) — A&, over
the interval (h1(S«(T)), h2(S«(T))). Thus, & = n(i) as.. This completes
the proof. O

Now we are ready to prove Theorem 3.1.

Proofof Theorem 3.1. Ithas been showninthe Proof of LemmaA.3tBaf (A, S«(T))|? <
+ooandE| f(x, S(T))|? < 400 Vi # 0. Moreover, it follows from Lemma 3.1 that the
Eqg. (3.1) admits a solution for any terminal conditign=_f(x, x) with A # 0. Further-
more, it follows from Lemma A.3 that £ (i, S(T)) € ®o. The self-financing strategy
that replicateg is uniquely defined by (i, x) as stipulated in Lemma 3.1. In addition by
Lemma A.3, it is an optimal strategy, which is uniqué ifs unique. This completes the
proof of Theorem 3.1. O

Proof of Lemma 3.2. By the definition off(-), we haveh1(x) < f(A, x) < ha(x). More-
over, E|h;(Sx(T))| < +oo. It then follows from Dominate Convergence Theorem that
either

Ef(A, S«(T)) — Eh1(S«(T)) asi — +o0,

Ef(x, Sx(T)) — Eh2(5«(T)) asr — qo,

or

Ef(x, Sx(T)) — Eho(S.(T)) ash — +oo,
Ef(x, S«(T)) - Eh1(S«(T)) asr — qo.
Hence by Assumption 2.1 there exits- g such that (3.4) holds. O
Proofof Thorem 3.2. Foranyfixed: € A, Ietp,ﬁi)(xi, t) be the probability density function

for the stock prices (t). Furthermore, Iepii)(xi, t) be the probability density function for
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the stock priceS (t) with a;(-) = r. It can be easily seen th&t(T) = S;(0O)exp{u; +
Im— 5i2/2+ &}, wherey;, o; are defined in (3.9), and;,i = 1, 2, - - - , are independent
Gaussian random numbers such tB§t = 0, E£? = 2. Hence

. 1 —(n(x;) = In(S; (0)) — T +62/2)2
@) x;, T) = ex ! s A.14
, 1 —(n(x;) = In(S;i (0)) — i — 1T+ 52/2)2
D(x;, T) = ex i ) A.15
Pa (i ) x,‘\/gt},‘ P 26i2 ( )
Denote
_2
A O'i
g =In(x;)) —In(S; (0)) —rT + ?
We have
—((&i — 1i)? — €2 i i —u?
exp — = exp—5 eXp——5
20’l» o} 2‘71'
152 _
__< X )MM% expti07 = 2T —uif
S; (0) 2&i2 '
It then follows that
(@) wi /52
. T . i
p?n(x“ ) - ( 5 ) e, (A.16)
p (i, Ty \Si(0O

whereg; is defined in (3.9). Furthermore, we have

n n
pae, ) =[PP o0, pute, =T]pP i, x =1, x0). (ALT)
i=1 i=1

From (A.15)-(A.17), we obtain (3.11). The proof is completed. d

Proof of Theorem 4.1. Let G’ be the set of admissible(-) such that the constraints in (2.6)
hold. Denote byd'(y(-)) andJ’(y(-)) the functionals to be maximized in (2.6) and (4.1),
respectively.

Supposey (-) is an optimal strategy for the Problem (4.1) and (4.2). Construct the fol-
lowing strategyy (t) = y (t) fort < r, andy(¢) = Ofort > t, wherer £ 11 A 1. Clearly
y() e G'andJ'(p()) = J"(y(-). Hence

sup J'(y(-)) = supJ"(y (-)).
y()eG’ 140)
On the other hand, let(-) be the optimal strategy for the problem (2.6). This strategy
is unique and is given by (3.8), (3.5), and (4.4). The corresponding optimal wealth process
X(t) is given by (3.6) and (4.5). It can be easily seen from these equation§#at & (1) €
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(k1,k2), VYt < T, a.s., whereX(t) is the corresponding optimal wealth process. Hence
J' (7 () =J"(7(-), leading to

sup J'(y()) = SU)FJ/”(V(-))-

y(HEG’ 7 (
This completes the proof. O
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