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Abstract: A system of ‘telegrapher’s’ equations for
a number of long lines joined into a network is
studied. Explicit formulas for Fourier transforms
of current and voltage are derived. These formulas
are very suitable for computer application as well
as for the analytical study of processes on net-
works. As an example, the availability of formulas
aids the derivation of explicit formulas for maxima
of current amplitude over the given class of admis-
sible external influences. These values may be used
to indicate the characteristic of network robust-
ness to excess voltage or electromagnetic impulse.
The approach is based on the operational solution
already proposed by the author for more general
partial differential equations on graphs.

1 Introduction

The classical ‘telegrapher’s’ equation describes the evolu-
tion of current in a long line [1]. There are a lot of tech-
nical and physical objects that are modelled by a system
(network) of a number of jointed long lines (a network of
underground pipes, a system of groundings, an ordinary
electrical network of two-wire transmission lines with
consumers and sources etc.). In this case the ‘telegraph
equations’ are joined into a system with corresponding
boundary value conditions. All the existing methods of
calculating the currents in these systems are based on the
finite-dimensional approximation of the continuous long
lines (finite-elements methods, etc.), and so there is a loss
of precision in this approximation. These methods
usually need a prior manual analysis of the network
topology. For some particular kinds of problem (when
interaction between the processes at the different
branches is realised only in a form of Kirchhoff’s law at
the nodes where branches are connected), we obtain a
new method based on the approach [2] for the partial
differential equations on graphs. We derive explicit
formulas for the Fourier transforms of the currents and
voltages in the branches of the branching network. These
formulas give an exact solution of the system of
‘telegrapher’s equations’; the corresponding algorithm is
suitable for computer applications. The input data are
provided directly by the network topology, without the
necessity for prior manual analysis to obtain additional
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equations for boundary-value descriptions. The avail-
ability of the formulas for the currents is used to derive
the explicit formulas for current amplitude maximum
being achieved over all the external influences (inputs)
satisfying the constraints for input energy or input value
at every point. This maximum may be used as a charac-
teristic of network robustness to excess voltage.

Let us consider a system of n long lines with lengths
l,, ..., 1, that are connected to a network (graph with
branches and nodes). The equation for the current and
voltage in each branch with number k = 1,..., nis [1]
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In eqn. 1, [y, w), Uy, w) are the Fourier transforms of
current and voltage in the kth branch, y € [0, ] is a lon-
gitudinal co-ordinate (we have chosen the orientation for
every branch), » is an angular frequency, w = R. The
constants R,, I, are the series resistance and inductance
per unit length. The constants Y,, C, are the parallel con-
ductance and capacitance per unit length. The action of
the external electric field is characterised by the functions
ey, ); I{w) are the external currents flowing into the
given points y, € [0, /,]; and d is a delta function.

We assume that interaction between the processes at
the different branches is realised only at the nodes where
branches are connected, and so all the eqns. 1 for k =1,
..., n are joined into the system with supplementary
boundary-value conditions in the form of the Kirchhoff’s
current and voltage laws at joining nodes. Ohm’s law
holds at the terminal nodes that belong to only one
branch, so that (0, w)= % U0, w) or L, w)=
Y, Uy(l,, ), where the constants ¥, are the terminating
admittances.

We suppose that

(i) Nonzero R, or Y, exist for some k.

(i) | ey, w)| < ¢ for some constant ¢ > 0 for every k,

y, w.

2 Formulas for currents and voltages

Our method is taken from Reference 2. The main idea is
to describe the current and voltage distribution by the
complex 2n-vector

2(x, w) = col {U (I, x, w), I,(;x, ©), ...,
U, x, o), Lil,x, w)] (2)
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defined for every x € [0, 1], @ € R. This vector is conven-
ient because we can write the boundary value problem
for it:

Z (x, w) = A(x, w)z(x, ©) + E(x, o),
0x

By z(0, w) + Byz(1, ) =0 (3)
Here the external influence is
E(x, w) = col [l e,(l,x, w), 8(I,x — y ) (®), ...,
ellyx, @), 8L, x — L {w)] (4)

In eqn. 3, A(w) = diag [A,(®), ..., A {w)] is a complex
2n x 2n-matrix, where 2 x 2 matrices

0 — R, — iwL,
= =1,...
Aw) lk( —Y, — ioC, 0 )» k PRERES

This means that the matrices A, are placed on the main
diagonal of A and all the remaining elements of A are
Zero.

The 2n x 2n-matrices B, and B, contain complete
information about the topology of our network; we shall
give the algorithm for their construction below:

The explicit final formula for the Fourier transform of
the current and voltage is

1
2(x, w) = L G(x, p, w)E(p, w) dp )

together with eqn. 2.

In eqn. 5, G(x, p, w) is the Green’s function for the
problem of eqn. 3 defined [3] for x € [0, 1], p € [0, 1],
w € R as a complex 2n x 2n matrix

G(x, p, 0)

—O(x, 0)[Bo + By, )] "B, (1 — p, w)

_ for0<x<p )
~ | ®(x, w)[B, + B, (1, )] By ®(—p, ©)

forp<x<l1

Note that the 2kth component of eqn. 5 is undefined at
the point x = I3, J,,, and has a jump discontinuity at this
pointfor k =1,..., n(see eqn. 1).

The matrix ®(x, w) = exp [4(w)x] is the fundamental
matrix of the first eqn. 3: ®(x, w) = diag [®,(x, w), ...,
D (x, w)], where

cosh (y,x) — ? sinh (y, x)
Dx, w) = *
— —é— sinh (y, x) cosh (y, x)
k

&= LRy + ioLy), & = WY +i0Cy), v =) (we
take the principal value for the root and assume that
sinh 0/0 = 1).

The topology of the network is defined by the ordered
SCt {Sps Poms T> (15 <5 ip)s Uts -+ o0 Jr)J =1 Here g is the
number of nodes, p,, is the number of branches with
numbers iy, ..., i, exiting from the mth nodes, r,, is the
number of the branches with numbers j,, ..., j, entering
into the mth nodes, s,, = p,, + 7,,.

We construct the matrices B, and B, by joining all the
strings of s, x n-matrices Q, = Q,,,(z, i P, =Py, j),

m=1,...,qi=1..5,,j=1,.
Pl Ql
By=|: By =|:
P, 9,
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where Q,, and P, are constructed by the following algo-
rithm.

(i) Let s, = 1. If p,, =1, then P (1, 2i; — 1) = ¥; and
P,(1, 2i)= —1; if r,, =1 then Q,(1, 2j, — 1) = ¥, and
Q.(1, 2j;) = —1. All the remaining components of P,
and Q,, must be zero.

(i) Let S, > 1. If r,, >0, then Q,(p,, + d, 2j,— 1) =
—Qupm +d;s 2jgy, — 1) =1 for d=1, rm— 1, and

QS 2y = 1) = Qplsn, 23) =" = Qulsp, 2jp,) =1L If
Pm >0, then P(s, 2i,— 1)= —P,(s, 2i;,;, —1)=1 for
ST s o — 1 aNd Py(sp, 200) = Pl 2iy) =+ =

Po(Sp, 20, ) =11 r,>1 and P> 1, then P (p,,,, o
-1)= ~Q,,,(pm, 2j; — 1) = 1. All the remaining com-
ponents of P, and Q,, must be zero.

Let us discuss the correctness of our formulas. The
existence of nonzero R, or Y, is sufficient for matrix
[By + B, ®(1, w)] to be invertible, and for the problem of
eqn. 3 to be well posed [3]. Let us show this. Let z, € C"
and [By + B,®(1, w)]zy =0, then z(x, w)=Px, w)zy
satisfies eqn. 3 with E(x, w) = 0. There is an energy dissi-
pation in eqn. 1 for k with nonzero R, or Y, and so the
corresponding evolution system is stable in the temporal
domain. Thus z, = 0, and the problem in eqn. 3 is well
posed.
Integral eqn. 5 exists because of supposition (ii).

3 Maximum of current amplitude

Having obtained explicit formulas for currents, we can
derive the explicit formulas for the maximum current
amplitude at a branching network. This problem is
important for applications, because we can use this value
for the characterisation of the robustness to excess
voltage or electromagnetic impulse. We think that this
problem has no explicit solution other than our explicit
formulas for currents.

In eqn. 1, the external influences are characteris_tised

for every w € R by the ordered set F(w) = {ey., w), [i(w),
AT
Fix ¢, 20, b, 20, 0< Bk\lkfork—l

Let us introduce the sets F

of admissible external mﬂuences
(i) For 1 € p < + o0, class Fp(w) is the set of such

F(w) = {e(., w), I(w), yi}7~, that

e 1/p _ _
(J‘ | ey, o) |? dY> < ay, | Tf@)| < by, Ji € [, Bid
o

= {F(w)} being the classes

foreveryk=1,...,n

(i) Class F_(w) is the set of such F(w) = {e(., w),
Iw), yk}kAl that

sup | ey, )] <

yel0, k]

a, |T(@)| < by, Ji€ [, Bid
forevery k =1,...,n

Our aim is to obtain the value

sup [ 1(y, w)|
Hlw) e Fplw)
foreveryk=1,...,n,ye[0,[,],1<p< + .
The result is that, for p € (1, + 00], we have

sup | I(y, w)|
F(w) € Fp(w)
n 1 1/
= Z {ak[f [Gok, 2m— 10/ ls o, @I dp]
m=1 o
+b, sup |Gy 2w/, 0 w)l} (0]
p € [ak/l, Bic/lk)
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where g =p(p —1)"! for every pe(l, ®), g=1 for
p = +oo.Forp=1,wehave

sup | Ly, )|
o) & Fple)

= Z {ak sup | Gax, 2m—10/kcs 0, @)

pelo, 1]

m=1

+ b, sup
p € la/li, Busli]

VG ok, 2V s 5 @) t} ()

Here, G,, are the components of matrix G defined by
eqn. 6.

Eqns. 7 and 8 are very suitable for computer applica-
tion. Analogous results may be obtained for

sup | Uiy, @)

F(w) € Fp(w)
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(the corresponding changes in eqns. 7 and 8 are obvious).

To prove eqns. 7 and 8, we have to remark that the
right-hand part of eqn. 7 or eqn. 8 is the functional norm
of the 2kth string of G(y/l,, ., w) being presented as an
element of Banach space [4], which is dual to such space
of function e,(., w) that Fw)eF () defines a ball there.
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