Parabolic equations in unbounded cylinders
and estimates for distances between first

exit times

Nikolai Dokuchaev
Department of Mathematics and Statistics,
University of Limerick, Ireland.

email Nikolai.Dokuchaev@ul.ie

http://www.staff.ul.ie/nikolaid /

Seminar of School of Mathematical Sciences, Dublin City University

November 17th, 2004

Abstract

We consider first exit times and their dependence on variations
of parameters for diffusion processes. Estimates of L,-distances
and some other distances between two exit times are obtained via

parabolic Kolmogorov’s equations with infinite horizon.
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Introduction

It is known that first exit times from a region for smooth solutions of or-
dinary equations do not depend continuously on variations of the initial
data or the coefficients. However, first exit times for non-smooth trajec-
tories of diffusion processes have some path-wise regularity with respect
to these variations (some related results can be found in author’s papers

(1987),(1992)).



We study path-wise dependence on variations of initial data and coef-
ficients for first exit times of diffusion processes from a domain D C R".
We present an effective estimate of distances between exit times via es-
timates for solutions v(z,t) of backward Kolmogorov’s parabolic equa-
tions in the unbounded cylinder D x [0, +00), when the Cauchy boundary
condition is replaced by the condition sup;s ||v(:,t)||z,py < +00. These

problems are sometimes called Fourier problems.



1 Estimates of distances between first exit
times

Let (2, F, P) be a standard probability space. Consider two n-dimensional
diffusion processes y;(t), i = 1,2, such that

dyi(t) - fi(y(t>> t)dt + ﬁl(yl(t)v t>dw<t>> t> 07

y(0) = a;.

(1.1)

Here w(t) is a standard n-dimensional Wiener process, f; : Q — R™ and
B+ @ — R™" are non-random functions, where @ = D x [0, +00),
D € R" is a bounded domain. The random vectors a; with values in D

does not depend on w(-).



Set b= 3,8

We assume that

Cp = SUP(z.4)eQ, i=1,2 ‘bi@? t)‘ < +00,
cr = SUP (2 4)eQ, i=1,2 !fz(x,t)l < +0o0,

Gy = ess SUP(4,4)cQ, i=1,2 |%(1’7 t)| < 4o0,

gTb'(x’t)g > 0

A . :
0 = inf(; e, cern, i=1,2 €[2

Set
’Poé(n’ D, c3, 5b7 Ct, 5)



Let 7; = inf{t > 0: w(t) ¢ D} and

TE7 AT =min(m, ).
Theorem 1.1 There exist \g > 0 such that for any A < Ao there exists

C(N) = C(\,Py) > 0 such that

By [ 1] < COVBI(R) — )] (13)

Clearly, |7 — [P < p! AP [e’““‘”' —1] forp=1,2,....

Corollary 1.1 For any p = 1,2, ..,, there exists C' = C(p,P) > 0 such
that
E|lr — nff < CE[y(7) — y2(7)]- (1.4)



Example Let n = 1, y;(t) = a; + w;, where a; are non-random,

a; € D, and D C R is a given interval. We have that
Ely1(7T) — 12(7)| = |a1 — azl.
Then it follows that
;E{e“l_” 1y < CW)|ar — a

and

E|r — nl? <¢p)lar — as

for all p > 1.



2 Calculation of constants via parabolic equa-

tions in unbounded cylinders

Let f(x,t) : @ — R™ and f(x,t) : @ — R™" be non-random uniformly
continuous functions such that all the components of the functions f and
/3 are continuously differentiable with respect z, Q@ = D x [0, +00).

Introduce the differential operator

At)v(z) = @(x)f(x,t) + % Z b(km)(x,t)%(x,t). (2.1)

C Ox
k,m=1

Here z*) and 5*™ are the components of vector 2 and the matrix b =

BaT.



We assume that

Set

o 2 SUP(5.0)20 |b(x,t)] < 400,

A
e 2 SU.p (@, f {L’,t < ‘|‘OO7

Ch = ess SUP(z,4)eQ ‘ax(x Dl < +oo,
3

0 2 infppeq, cern & |(| >0

P=(n, D, cs &, c5 9).
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Let g(z,t) : @ — R be a measurable function.

Consider the boundary value problem in the semi-infinite cylinder @

(2, 1) + A(t)o(x,t) + gz, t)o(z,t) = —p(x, 1),
v(@,)]scon = 0, (2.3)

essSupq [[V(+, t) || Lo(p) < 400.
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Let

P, 2 (Po, sup q(a:,t)>, Py = <770, sup |q(x,t)\).

(z,t)eQ (z,t)eQ

Some definitions

Let D C R" be a bounded domain with C*-smooth boundary dD.

Let H® = Ly(D), and let H* éV[O/Ql (D). Let H™! be the dual space
to H'.

Let £, denotes the Lebesgue measure in R™, and let B,, be the
Lebesgue o-algebra. Let

Cc°(0,T) = C([0,T]; H°),

Xf(O,T) éLT([OvTLElaglka)v k:()?j:l

Introduce spaces Y*(s, +00) of functions u : [s,+00) — H* with finite

Jullvicosos = sup ([
i=0,1,2...

s+t

norm
s+i+1

1/2
e, ) 3pedt)

Let X*_(0,00) be the set of functions u(z,t) : D X (s1,s2) — R such

T,loc

that u|px(sg € XF(s,t) for all s,t.
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For v > 1, let W2'(Q) be a Banach space of functions u : @ — R,
that belong to L. (Q) together with all derivatives 2%, 2 Pu_ ooy =

ot 8_:%’ 0xR 0T’

1, ...,n, with finite norm

n n

2

Ly(Q) k,m=1

ou

0%u
A
liloca 2 Tl ot | 55

01,0,

ou
a{lfk

Ly(Q) k=1 L4(Q)

Let o € (0,1) be a non-integer number. We will say that a function
u : @ — R belongs to the class H**U+9/2(Q) if y and du/dx are

continuous, and

N N n o ()
() I+ 2 ()@ 4 <—“> < too,
1

k= Q
where
e ) 1) — /7 t ) t) — ) t
(u>(Q) = max |u(x,t)[+  sup [u(z, ! Qf(z ) +  sup [, t) Iu(/:g )
(z1)eQ z,2'€D, te[s,T) |3j - ’a z€D, t,t'€[s,T) |t —t ’a

This class is a special case of the Holder space from Ladyzhenskaya et al

(1968)



13

Theorem 2.1 There exists X\ > 0 such that if q(xz,t) < X for all (x,t),
then

(i) For any ¢ € Y10, +00) there exists the unique (up to equivalency)
solution v : D x (0,400) — R of the problem (2.3) in the class
Xoo(0,400) N X3,.(0, +00);

(ii) v € C°(0,+00), and there exists a constant ¢ = ¢(P,\) such that

sup |[v(-,t)[[ o + [[v]ly1(0,400) < cllplly=1(0,400)- (2.4)
te[0,+00)

Notice that the parabolic equation in (2.3) is in the sense of Sobolev gen-

eralized functions, and we assume that the boundary condition v(z, t)|,cop =
0

0 is satisfied if v(-,t) € H' =W, (D) for a.e. t. Definitions of spaces

ensure that the statement of the problem problem (2.3) has sense.
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Theorem 2.2 Let q(x,t) < X\ for all (z,t), where X is such as in Theo-
rem 2.1. Then

(Z) [f SUP;>q HSO‘QtHLw(Qt) < +00 fOT’ v > 2; then let € Wf?’l(Qt) fO’f’
all t > 0, and there exists a constant ¢ = c(Pyq,7y) such that

sup vl 2+, < ¢ 510 el @0 (25)

(i4) If supysg |¢lQ L @0 < +oo for v > n 4 2, then the function
v(x,t) and its derivatives Ov(z,t)/0xy are continuous, bounded,
and belong to the Hélder class H'T*0+)/2(Q,) for all t > 0, where
as1-— (n+2)/v, k=1,...,n. Moreover, there exists a constant
c=c(Py,7) such that

14+«
sup{(ulg.)) o < ¢ sup [|¢]l L, @0)- (2.6)
t>0 t>0
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2.1 Probabilistic interpretation and Krylov’s esti-

mates
Let (2, F,P) be a standard probability space. Let n-dimensional diffu-
sion processes y(t) be solution of the Itd’s equation

dy(t) = f(y(t),t)dt + By(t), )dw(t), t>s,

y(s) = a.

(2.7)

Here w(t) is a standard n-dimensional Wiener process. The random
vectors a with values in D does not depend on w(t) — w(r) for all ¢ >
r>s.

We denote by y®*(t) the solution of (2.7). Let 7%* = inf{t : y®*(t) ¢
D}.
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Theorem 2.3 If ¢ € Y°(0,+00) is a Borel measurable function then

T,s

v(x,s) = E/ST e(y™*(t),t) exp (/Stq(ym’s(r),r)dr> dt, (2.8)

and this equality holds for all s > 0 for a.e. x € D;

(11) If o(x,t) is uniformly Hélder and bounded then the function v(x,t)

and its deriwative Ov(x,t)/0x are continuous and uniformly bounded.

Remark 2.1 The Krylov’s estimates give estimation of sup,cp |v(z, s)|
for X < 0 wia the norm of ¢ in Ly (D x (s,400)) or via ||¢| L, )
for independent on t functions ¢(x,t) = @(x) (see Theorem 11.4.2 from
Krylov (1980)) .
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2.2 Quasi-periodic conditions

Consider now the boundary value problem with quasi-periodical condi-

tions in the cylinder D x [0, 1]

% (1) + A(t)u(w, t) + gz, hu(z, t) = —p(z, 1),
u($7t>’x€é9D =0, (2.9)
pu(z,0) —u(x, 1) = 0.

Theorem 2.4 Let u # 0. There exists A > 0 such that if ¢(x,t)+1n|p| <
A for all (z,t), then the following holds.

(i) For any ¢ € X5 '(0,1) there exists the unique (up to equivalency)
solution u : D x (0,1) — R of the problem (2.9) in the class
C°(0,1) N X5(0,1);

(i1) there exists a constant ¢ = c¢(P,u, ) such that

sup [u(-, t)[[mo + lull x30,0) < cllellxzr 0y (2.10)
te([0,1]

(iii) If p(x,t) is uniformly Hélder and bounded then the functions u(x,t)

and Ou(x,t)/0x are continuous and uniformly bounded.
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2.3 Constants for estimates of distances between

first exit times

In fact, the constant C'()\) is

dv;
C()\) = max sup |—(z,t
o =mas s |

where v; is the the boundary value problem in @ for ¢ = 1,2

86? (xyt) + Az(t)vz(x,t) + )\’U(gj’t) — _1’
’Ui<x>t)‘xeaD = 0,
esssupyg [|vi(+, 1) () < +00,

n
0%v

A@U

Astyo(e) 2 @ w0+ 3 0 5 ),

k,m=1

Here bz(-km) are the components of the matrices b; = BB

(2.11)

(2.12)

(2.13)
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Remark 2.2 We have assumed that the boundaries and coefficients are
smooth enough, the diffusion is non-degenerate, and the domain D is

bounded. In fact, we need these conditions only to ensure that the right

hand part of (2.11) is finite.
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3 How to find the upper bound )\

Lemma 3.1 o Under assumptions of Theorem 2.1, there exists v €

(0,1) such that v = v(P) depends only on P and
P(r** >s+1)<v

for any s > 0 and for any random vector a such that a € D a.s., a

does not depend on w(t) — w(r) for allt >r > s.

e One can take

A=—1Inv.
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4 Proofs

Proof of Lemma 3.1. Let M = O(Py)x Dx [0, +00). Let u = (f, 3, x,5) €
M be given.

Clearly, there exists a finite interval D; = (dy,dy) C R and a bounded
domain D,,_; € R" ! such that D C D; x D,,_;.

Let 7° = inf{t > s : y7*(t) ¢ D}, where y**(t) is the first compo-
nent of the vector y™*(t) = (y;°(¢), ..., y=*(t)). We have that

P(r%° > s+1) <P(17"° > s+1) =P(y;°(t) € Dy YVt € [s,s+1]). (4.1)

Let M*(t) = [ Bi(y™*(r),r)dw(r), t > s, where B, is the first row
of the matrix 6. Let D, é (dy + K1,dy + K3), where K 2 —dy —
sup, ;| fi(@, 1), Ko = —d; +sup, ;| fi(z,t)|. Clearly, D, depends only on

n, D, and c;. It is easy to see that
P(y;”(t) € Dy Vt € [s,s+ 1)) < P(M"(t) € Dy Vt € [s,s +1]). (4.2)

Further,

Buly™ (1), 1) Bu(y™ (1), 1) = [Bi(y™* (1), O)* € [0, cs], (4.3)

where § and cg are such as defined in (1.2). Clearly, M*(t) is a martingale

vanishing at s with quadratic variation process
[M“]té/\ﬁ ©5(r), r)Adr, t>s.

Let 6#(t) = inf{r > s : [M*], >t — s}. Note that #*(s) = s, and
the function 0% (¢) is strictly increasing in ¢ > s given (z, s). By Dambis—
Dubins—Schwarz Theorem (see, e.g., Revuz and Yor (1999)), the process

A

BH(t) = M(0"(t)) is a Brownian motion vanishing at s, i.e., B*(s) = 0,

and M*(t) = B*(s + [M*];). Clearly,

P(M*(t) e Dy Vte[s,s+1]) =P(B"(s+[M"),) € Di Vte s s+1])

< P(B“(r) € Dy Vr € [s,s+ [MM,]).
(4.4)
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By (4.3), [M*]s41 > § a.s. for all z,s. Hence

P(B*(r) € D; Vr€[s,s+ [M",]) <P(B*(r) € Dy Vr € [s,s+d]).
(4.5)
By (4.1)-(4.2) and (4.4)—(4.5), it follows that

sup, P(77° > s+ 1) <v = sup, P(B*(r) € Dy Vr € [s,s+4]),

and v = v(n, D, cy,0) € (0,1). This completes the proof. [
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Let A*(t) be the operator formally adjoint to A(t), i.e.,

. "0 1 < 0>
A (t)u = — Z B (fk(a:, t)u(x)) +3 FY (bkm(:v, t)u(:v))
k=1 k,m=1 m
(4.6)
Consider the boundary value problem
P (w,1) = A ()p(,1) + qla, )p(x, 1) + E(w, 1),
p(x,t)]zcop = 0, (4.7)

pla.s) = pla).

Heret > s, q: (@ — R and p: D — R are some functions, the function

q(x,t) is measurable and bounded, &|px(s7) € X5 '(s,T) for all T > s.
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The following Proposition 4.1 presents some facts from Chapter 111
from Ladyzhenskaya et al (1968) and from Chapter III from Ladyzhen-
skaya (1985). Estimate (4.8) is "the energy inequality” (3.14) from La-
dyzhenskaya (1985).

Proposition 4.1 Let 0 < s < T, T — s < d, where d > 0 s given.
Assume that (f,3) € O(Py), p € H°, £ € X;'(s,T). Then there exists
the unique solution p € Xa(s,T) NC%(s,T) of the problem (4.7), and
there exists a constant C = C(P,,d) such that

T T
sup [P+ Ol + / (- 0) |2t < C (npnzo T / ||s<-,t>|r%{-1dt)
te(s, T s s
(4.8)
for all (f,3) € ©(Py).

In addition to Proposition 4.1, notice that p®) (-, T) = p® (-, T) for
s <t < Tif p&(-,t) = p®(-,t). Here p'® denotes the corresponding
solution of (4.7) with £ = 0 given s.
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To proceed further, we need some auxiliary lemmas.
We assume below that conditions of Theorem 2.1 are satisfied for q,
i.e., we assume that sup, yeo ¢(7,t) < —Inv, and v is the same as in

Lemma 3.1.

Lemma 4.1 Let p be the solution of (4.7) with £ = 0. Then
/ Ip(z, t)|de < Co e |pllgo Yt € [s,+00), (4.9)
D

Ip(z,1)] < Cp eI pllgo YVt €[5+ 1, +00), (4.10)

=

where w, = —Inv —sup(, yeq ¢(7,t), and C; = Ci(P,) are constants that
do not depend on s,t, p and depend on P, only, i =0, 1.

Proof. By linearity of the problem, it suffices to consider p such
that p(z) > 0 and [, p(x)dz = 1. Let po(z,t) < plx,t)e %) and
gz, t) = g(z,t) — X, where \ = SUp(;.neq ¢(x,t). Clearly, go(z,t) < 0
and

o (a,t) = A ()po(, 1) + ol )po(x, 1),
po(z,t)|zeop = 0,
polz,s) = p(x).
Therefore, po(z,t) is the probability density function of the process y®*(t)
under assumption that this process is absorbed at D and is killed inside
D with the rate |qo(x,t)|, where a is a random vector independent on w(-)
with the probability density function p. Hence 0 < po(z,t) < w(x,t),
where 7(z,t) is the probability density function of the process y®*(t)
under assumption that this process is absorbed at 9D without being killed
inside D, i.e.,
G (,t) = A () (a,1),
7(2,t)|zeop = 0,
m(x,s) = p(z).

Because of absorption at 0D, we have

/W(x,t)dxg/w(x,r)da: VriteR: s<r <t
D D
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By Lemma 3.1, it follows that
/ m(z,t+ 1)de < V/ m(x,t)de VYt > s.
D D

Hence

o oz, t)ldz = [}, po(x, t)dw < |7 (-, )|, (D)
<|lw(s + 18 = sDllzw)
<vx(s+ [t =s] = Do)
<VrCs+ 1t —s] = 2Dlnwy) < <ol = e pllLy o),
(4.11)
where |¢] denotes the integer part of ¢. Then (4.9) follows.
Let us prove (4.10). Let A = {(t,s) : t > s > 0}, and let g(-) :
D? x A — R be the Green’s function for the equation (4.7) such that if
¢ =0 then

P ) = / ooyt )y, s)dy, £ > 5> 0. (4.12)
D

Let G(x,y,t,s) be the fundamental solution of problem (4.7) without the
boundary condition on 9D (i.e., for D = R™); the order of independent
variables for G is similar to (4.12). By Lemma 7 from Aronson (1968),
it follows that |g(z,y,t,s)| < |G(z,y,t,s)| (Vz,y,t,s). Using estimates

from Aronson (1967), we obtain

where ¢ = ¢(P,) is a constant. By (4.11) and (4.13), it follows (4.10).
This completes the proof of Lemma 4.1. [J
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Let us introduce linear normed spaces Z*(s,+o00) of functions u :
(s,400) — H* with finite norm

+00 s+m—+1

Jull s = >

m=0 YSstm

, 1/2
e, ) 3t
Lemma 4.2 Lets >0, letp € H°, and let £ € X(s, +00)UX; (s, +00)
be such that £(-,t) = 0 for t > s+ 1. Then there exists the solution

p € X{(s,4+00)NCOs,+00) of problem (4.7). This solution is unique up

to equivalency, and

pllx3 5,541) F IPlleos.s1) < calllollme + 1Elxpssany),  (414)
Dl x3s.501) + Plleos,s+1) < calllpllae + 16l 2 s40))s (415)
IPlx3 (s 100) < csllpC s + Do, (4.16)

Ipllx3 (s 1,400) + IPleo(s41.400) < Callp(s + Dllgo,  (417)

1Pl 21 (s 1,400) < C5llP(C 8 + Do, (418)

where ¢; = ¢;(P,) > 0 are constants that do not depend on s and depend

on Py only, 1=1,...,5.

Proof of Lemma 4.2. Let us prove (4.14). For any 7' > s and any
€ (0,6), we have

IpC Dl = lIpCo )l = L 12 D00 ) APC) 4+ gl O 1) + EC 1) od
= [T IpC O {5 S [ (B0 22 (1)

+g(p< t>,‘3355< 2 () |
(260, 60p00) |+ (660 +alDpC0.p00)

< Tl S e = D220+ el el D + I, Dlloll€C )l o fa
(4.19)

Here the constant c¢(¢) = c(e,P,) > 0 depends only on ¢ and P, =
(Po,sup q(z,t)). We had used elementary inequality 2a0 < ea? + 7132
(Va, B,e € R,e > 0), and inequality

(0.2 00t0),, < 550l

1
| F(- ot
+ o IFOlzwm)llpC e,
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where F(-) : D — R is an arbitrary measurable bounded function.
By Poincaré - Friedrichs inequality (see, e.g., Yosida (1965)), it follows
that there exist a constant x = k(D) > 0 such that

e ||HOZH Lo, >

By (4.19), it follows that

> KpC )|

_ T
IpC D)o 41 [ lIpC )l dt

< lipllo + & (S IpCOllmdt + [ 1€ Hlmdt) VT = s.

(4.20)
Here ¢; = ¢;(P,) are constants that do not depend on T € [s, +00) for i =
1,2. By Gronwall’s inequality, inequality (4.20) applied for T € [s, s + 1]
implies (4.14).
Similarly (4.19)-(4.20), one can derive

~ T
IpC D)o+ @ f; PG, DIl di

< W 5) o + @ (S IpC O odt + LT 116C, 613t
(4.21)

Constants ¢; = ¢;(P,) > 0 do not depend on 7" € [s, +00). By Gronwall’s
inequality again, inequality (4.21) with 7" € [s, s + 1] implies (4.15) (In
fact, this is the estimate from Proposition 4.1, or a reformulation of "the
energy inequality” (3.14) from Ladyzhenskaya (1985)).

Let us prove (4.16)-(4.18). Remind that &(x,t) =0 for t > s+ 1. By

Lemma 4.1,
|p(l’,t)‘ <Ci e_w*(t_s_l)Hp("S + 1)||H0 (Vt > 5+ 1)’

where C; = Ci(P,) > 0 is a constant from (4.10), w, = —Inv —
max ¢(x,t). Then

(-, )|[go < Cre=* ==V Ip(-, 5 + 1) | g0,
ST I )]20dt < Collp(-, s + 1)1, (4.22)

JET PG )| odt < Cslp(-, s + 1) -

VT > s.
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Here C; = C;(P,) > 0 are constants. Then (4.16) follows from (4.21) and
(4.22). Further, (4.17) follows from (4.20) and (4.22). By (4.21)-(4.22),

o pstmAl
PG

& D2adt < (s +m)|Zo + 2 [5 p(, 0| %0dt
s+m

< 02 —2wy (m— 1)+ fs—f—m-‘rl —2w*(t—s—1)dt ||p(',3

< Cee 2™ p(-, s + 1) |50 Vm=1,2,...

Here C, = C.(P,) > 0 is a constant that does not depend on m. Then
(4.18) follows. This completes the proof of Lemma 4.2. [

Note that (4.8) can be derived by the following way. Similarly (4.19)-
(4.20), one can derive (4.21). By Gronwall’s inequality, inequality (4.21)
implies (4.8).

+ Dz
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Let 0 < s <T,let Q=D x (s,T), and let v > 1. Introduce linear
normed spaces W, (s, T) of functions u : [s,T] — W2(D) that belong to
L+([s,T], By, 1, W2(D)) and such that % helong to L, ([s, T}, By, (1, L, (D)),

with finite norm

T 1/~ T 1/v
fubwsior = ([ I 0ntt) ar) '
S S

It is easy to see that W,(s,T') C C([s,T]; L,(D)), and this embed-

ding is continuous. Moreover, W, (s,T) = W2'(Q), meaning the natural

Y

ou
E(at)

Ly(D)

bijection such that the norms are equivalent.
The space Wé(D) with non-integer [ will be used below. It is a Banach

space consisting of the elements of WWL” (D) with finite norm

A ; . dy
el 2 eyt 3= ([ do [ p2ute) = Dt ity

J:lil=11)
Here |1] is the integer part of I, j = (j1, ..., Jn), Where ji > 0 are integers,

. Alily,
Daulz) =
$1 e axn

(See, e.g., Ladyzhenskaya et al (1968), p. 70, and Adams (1975), p. 214).

1/
)
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Consider the boundary value problem in Q

%z t) + A(t)ul(z, t) + q(z, (e, t) = —p(x, 1),
u(@,t)]zeop =0, (4.23)
w(z,T) = ().

Here ¢ : Q@ - R, p: @ — R and ® : D — R are some measurable
functions, the function ¢(x,t) is bounded.

Let 6 € (s,T), and let Qy = D x (s,6).

Lemma 4.3 Let0 < s <60 <T and~y > 2. Assume that (f, ) € O(Py),
<,0€X2_1(3,T), S®cH, T—s<d, and T — 60 > dy, where d > 0 and

dy > 0 are given. Then

(i) There exists the unique solution u € C°(s, T)N X1 (s,T) of problem
(4.23), and there exists a constant C' = C(P,,d) > 0 such that

ooy + gy < © (19lo + el my)  (428)
for all (f,B) € O(Py).

(ii) Let p € H® be arbitrary, and let p be the solution of (4.7), where
§=0. Then

(u(, T), p(,T)) o — (ul- 5), p(-, 8)) o = —/ (0 (1), p(-, 1)) prodlt.

(iii) If o € Ly(Q) and ® € H', then u € C'(s,T) N X3(s,T), and there
exists a constant C = C(Pjq,d) > 0 such that

lullersz) + lullxzs.m) < C (1@l + llellzao)) (4.25)

for all (f,3) € ©(Py).

(iv) If ¢ € L(Q) and ® € W *7(D) N H', then the solution u of
problem (4.23) belongs to W,(s,T), and there exists a constant
C = C(Py,d,v) > 0 such that

lullwsomy < € (@02 + lellin@)  (4:26)

for all (f,3) € ©(Py).
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(v) If ¢ € L,(Q), then the solution u is such that u|g, € W,(s,0), and
there exists a constant C' = C(P,d,v) > 0 such that

lul gy v, s.0) < C (1210 + [l 2llz,(2)) (4.27)

for all (f,3) € ©(Py).

(vi) If vy > n+2 and ¢ € L,(Q), then u(xz,t)|g, and %(w,t)lge, k=
1,...,n, are continuous and belong to Hélder class HT1+)/2(Qy)

for a = 1 —(n+2)/y. Moreover, there ezists a constant C' =

C(Pyg,d,do,v) > 0 such that

(ulo) 5™ < C (18]l g0 + ll¢llz, (o))

for all (f,3) € ©(Py).

Remark 4.1 Under the assumptions of statement (iv) in Lemma 4.3,
u € W>'(Q), and ||u||W3,1(Q) < const |[ul|yw, (s,r), because there is a nat-
ural bijection between W2'(Q) and W, (s,T) such that the norms are

equivalent. Under assumptions of statement (v), ulg, € W2'(Qy), and

lul gy llwz1(g,) < comst [[ullw,(s0)-

Proof of Lemma 4.3. Statement (i) follows from inequality (3.14)
from Ladyzhenskaya (1985). Statement (ii) follows from the fact that
the parabolic equations in (4.7) and (4.23) are adjoint, and from the
equations for du/dt and dp/0t. Statement (iii) follows from Theorem 1.2
from Dokuchaev (1997). (Note that statement (iii) can be also derived
from Theorem 6.1 and Remark 6.3 from Ladyzhenskaya et al (1968))
(pp. 178-180). More precisely, this statement follows from the inequality
(6.25) from Ladyzhenskaya et al (1968), p. 180, and from the inequality
(6.29) from Ladyzhenskaya (1985). In fact, Theorem 6.1 from Ladyzhen-
skaya et al (1968) deals with a special case of (f,q), but it is not really
important).

Statement (iv) is a special case of Theorem 9.1, Chapter IV, from

Ladyzhenskaya et al (1968). Formally, this theorem requires that & €
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W3_2/ 7(D) and ®|sp = 0. However, these conditions can be easily re-
placed by our condition ¢ € Wa?_?/V(D) N H'. Let us show this. Let
® € W27*7(D) N H'. Clearly, there exists a sequence {®;}> C C%(D)
such that ®;|sp = 0 (Vi), and ®; — P in both spaces WVZ_Q/W(D) and
H' as i — oo. Let u; be the solution of problem (4.23) with ® = ®,.
By Theorem 9.1, Chapter IV, from Ladyzhenskaya et al (1968), the con-
stant C' in (4.26) does not depend on & = ®;. Therefore, the sequence
{u;};1% is a Cauchy sequence in W, (s,T) and has a limit in this space.
By statement (iii), u; — w in C'(s,T), where u € C1(s,T) N X;(s,T) is
the solution of (4.23) given ®. Hence u € W, (s,T) and (4.26) is satisfied.
This completes the proof of statement (iv).

Let us prove statement (v). Consider the following sequences:

hl - 2, hm = hm—ln—"—2

n

X1:2’ Xm:2—m’ m:2,3,.--.

It is easy to see that

n n
h +h_7 Xm>0, hm+1>hm, hm—>OO as m — +00.
m—1 m

Xm:2_

Clearly, there exists N = N(n) such that hy >~ and h,, < v for all
m< N. Let s, =T — (m —1)(T —0)/N, m=1,...,N +1. It is easy

to see that
0=sy11< - <Spp1<Sp<---<s51="1T.
Let us prove that there exists a set {t,,}¥_, C [0, T] such that

tm € (Smat, Sml,  u(-,tm) € W2 (D)NH,
(Smt1sSml,  ulstm) € Wi (D) (4.28)

lul,tw)llwz oy < C (12]1m0 + llellz, () -
where C' = C(P)y,7,d), m =1,..., N. Note that we allow that {t,,}2_,
can depend on (9, ¢).

First, let us prove that (4.28) is satisfied for m = 1 for some t;.
Clearly, H* C W(D) = W' (D), and this embedding is continuous.
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Therefore, it suffices to prove that there exists t; € (sq, $1] = (52,7 such

that
u(-ty) € H?, [u(-, t) [ g2 < C (19]a0 + [[@lla0) 5 (4.29)

where C' = C(Pyq, d, do).
Let h = (sy + 51)/2 = (so + T)/2. By statement (i), it follows that
uels,T)NX,(s,T), and

T
/ luC, )3t < Cy (12130 + 2113, 0) -

where Cy = C1(P,,d) > 0. Hence

infre[h,T} ||U( H1 = T h fh H 1dt

< 2 (19130 + el o))

By statement (iii), if r € [h,T] is such that u(-,r) € H', then u €
Wi(s,r), and

h r
/HW@%MS/HMM%MSQWMwWwWMQM,

where Cy = C5(Pyy, d, dy) > 0. Hence

infre[gz,h] H'LL( HH2 — h So f HHth

S@GmWMMwmwme@s&0w%+w&@y

where 5, = (so+ h)/2, and where C; = Ci(Pyg,d,dy) > 0, i = 3,4. Thus,
there exists t; € (s2,s1] such that (4.29) is satisfied for m = 1. Hence
(4.28) is satisfied for m = 1.

Let us show that if there exists ¢, such that (4.28) is satisfied for
m =k with k € {2,..., N — 1}, then there exists t;,1 such that (4.28) is
satisfied with m = k 4 1.

Let us now assume that there exists ¢ € (sgy1,Sk| such that (4.28)
holds.

By the direct embedding theorem, if y = ¢ — n/g+n/h > 0 and
h > g, then WY(D) € W)(D), and the embedding is continuous (see,
e.g., Theorem 7.58 from Adams (1975), p. 218; the case of bounded
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domain is covered by Theorem 4.26, on page 84 of the cited book; see
also related comments before Theorem 7.58 and Remark 7.49 there). We

have that

W; (D) Cc W (D), m=2,3,... (4.30)
and the embedding is continuous. Thus, W7 (D) C W,i‘::l(D), and
u(- tk) € WyiH(D). Moreover, [|uf-, Dllwysi oy < Cllut Bllwy o) for

any t such that u(-,t) € W} (D), where C - C(n,D,k,y) > 0 is a
constant.
Let Ry = D X (s,tp) and Q, = D x (s,8,), m=1,...,N + 1. By

statement (iv),

v s < € (s llwaeco) + Il )

where C' = C(Pyq.d,do,hx) > 0 is a constant. By this estimate and
(4.30), we have

[u

Qspt1 HthJrl(s,sk_,_l) < <1nf7~e[5k+1,tk] HU(, T)HWZ:J-? (D) + HQOHL—Y(Q))

inf e, 607wz o) + 1911, ) )

<Gy (
t
=G < 1 f$:+1 Hu(’t)HW;% (D)dt + ||90||L7(Q)

tk—Sk+1

)
g@<@mu<>n ]/3wwm@>

< Cs (J[ullwiy () + 1011100
< Cis (It lws oy + 1l
< (

@]l m0 + [l (2)
(4.31)
where C; = Ci(Pyq|, d, do, hi,¥) > 0 are constants, i = 1,...,7.

Further, we have

infre[§k+27sk+1} ||U(7 )HVV2

S 02||U|st+1 ||1/th_"_1 (5,5k+1)7
(4.32)

where S 9 = (Ska2 + Sk+1)/2, and where C; = Cy(n, D,d,dy) > 0. By

N 1/hgt1
1 Sk
o < Ot (B IO o)
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statement (iii),

u(-,t) € H' VYt <t. (4.33)

By (4.31)-(4.33), it follows that there exists tx11 € (Ski2, Sky1] such
that (4.28) is satisfied for m = k + 1.

Therefore, we have proved that (4.28) is satisfied for allm = 1,..., N.

Further, we have that W7 (D) = W) (D) and W (D) Cc W7 (D) C
Wym(D), m = 2,3,...,N + 1, and the embedding is continuous. By
statement (iv), (4.28) implies that u|g,, € Wh,, (s,tm), and

ol Ity < Cr (Bl ) + 1l )

< (Y (Hu(.,tm)ngm(D) + ”SOHLW(Q)) ., m=1,...,N,

where C; = C;(P,, d, dy, hi;,y) > 0 are constants, ¢ = 1,2. Remind that
Qp = Qsy,, C Ry and hy > 7. Thus, statement (v) follows from this
estimate with m = N. This completes the proof of statement (v).

Let us prove statement (vi). Note that u|g, € W,(s,0), and there
is the natural bijection between W2>'(Qp) and W, (s,6) such that the
norms are equivalent. Then statement (vi) follows from (v) and from
continuity of embedding of W21(Qy) to the Hélder class H!+(12)/2(Qy)
with v > n + 2 (see, e.g., Lemma 3.3 of Chapter II from Ladyzhenskaya
et al (1968)). This completes the proof of Lemma 4.3. [
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Proof of Theorem 2.1. Let L%, : H® — H° be the operator such that
p(,t) = L%,p, where p is the solution of (4.7) with { = 0, and where
p € H° 0 < s < t. By Lemma 4.2, this operator is continuous, and
[Pl 21(s,400) < Cllpllgo for p = L% _p, where C' = C(P,) is a a constant.

Given ¢ € Y71(0,+00) and s > 0, let v(s) € H° be defined such that

+oo
0o = [ (et Ll Vo€ B (430

Note that v(s) € H? is well defined for all s > 0. This can be seen
from the following. Let Bpo = {p € H® : ||p|lgo < 1}. By (4.18), it
follows that

SuppEBHo f:_oo(go(‘u t)v L:,tp)HOdt
< HSOHY*I(SﬁOO) SUDyeB 0 HL:,tpHZl(&JrOO) < C’|90HY*1(0,+00)7

where ¢ = ¢(P,) is a constant. Therefore,
sup [[v(s)lzr0 < elllly-10.420) (4.35)

Let us show that the function v = w(-,s) is the unique solution of
problem (2.3), and v has all desired properties.
For s > 0, set

B, 2{€ €Y (s, 400): £(,) = 0ift 25+ 1, [€llx;(opim < 1

We have

s+1
[l 0my = SUP  sUP / (0(-1£), £, 1)) st
s=0,1,2,... €€Bs J s

Further, for £ € By, we have

f58+1 (U<'7t)7€<'7t))H0dt = f:OO (U('vt)a g(’vt»Hodt
= f:‘OO dt ft+oo(90<'v t)v Lr,ré('v t))HOdT
= [ dr 1o r) LG ) modt = [ (1) pg) () adr,

where

péS)('ar)é/ L:,rf(at)dt
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is the solution of (4.7) with this £ and p = 0. By Lemma 4.2, it follows
that

—+o00 S
||U||§/1(0,+oo) = SUPg=0,1,2,... SUP¢eB, fs (o, T)vpé )('7 7)) godr

Olly-1(5.100) 1P 11 215100y < €lllly—1(5.400):
(4.36)
where ¢ = ¢(P,) is a constant. By this estimate and (4.35), it follows
that estimate (2.4) holds for v.
By (4.35), v € X2 (0,400). Let us show that v € C°(0, +00).
Set

< SUPg—g 12, SUP¢cp,

r,t) t<m
@m(m,t)—{g)( Jotsmo 1
0 t>m

Denote by v,,(+, s) elements of H° defined by (4.34) for ¢ = ..
By (4.36), v, € Y1(0,+00). Further, v,,(z,s) = 0 for all s > m for
a.e. x. By Lemma 4.3(ii), it follows that v,,(z,s) is the solution of the

boundary value problem in D x (0,m)

2o (1, 5) + A(s)0m (1, 5) + ¢, )vm (2, 5) = —p(x, 5)
Un(, 8)|seop = 0 (4.37)
U (2, m) = 0.

Clearly, vy, € C°(0, +00), since vm|px(0,m) € C°(0,m), and v, (-, s) =
0 for s > m. For any p € H° and s > 0, we have that

(0(5) = (-, 8), p)ro = [7 7 (0(, 1), L p) ot

k41 1/2
< lelly- om)Z ( | L% tpHHldt> — 0 as m — +oo,

400 k+1 1/2
> (/ L tpHH1dt> < +o0.
k

k=m

since

Hence vy, (-, 8) — v(s) weakly in H° for all s > 0.
Let us show that v,,(-,s) — v(-,s) in H° uniformly in s from any
finite interval.

Parabolic equations in (4.37) and (4.7) are adjoint. This means that

m (T, ) / dt/ (y, x,t,8)p(y, t)dy, s <m. (4.38)
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Here g(z,y,t,s) is the Green’s function for problem (4.7) such that
(4.12) holds. By semi-group properties of the solution of problem (4.7),
we have that g(-,y,t,8) = L ,py(,s) for any y € D and t > s+
1, where p,(-,s) = g(-,y,5 + 1,s). Similarly to (4.13), we have that
10y, $)|| oo(py < cfor ally € D, s > 0, where ¢ = ¢(P,) is a constant.

Therefore, || py (-, s)||mo < ¢, forally € D, s € (sq1,s2), where (s1,52) C
[0, +00) is an arbitrary finite interval, ¢, = ¢.(P,, s1, S2) is a constant that
does not depend on y € D.

Let ¢ € Y°(0,400), and let k = 1,2,.... By (4.38) and (4.37), we
have that

m-+k
Ot (85 5) — Um(y, 5) = / dat / (s )g(w,y. 1, 8)da.
D

m

Hence

2

Fomin(5) —tmCo )0 = f [0 dt [ (w009, t, )] dy
= L[ 0. B apy e ) o]y
< S [ e o L1 )l ]y

2
m 1+1
= Lo |0 L e Dol Ly ) modt| dy

[—m i+1 it1 1/272
</ _Zi;f{f* e >||zodt} I o)t} ]
m k i+1 1/292
< ela0 o S [ St (I W n a9 Bt} .
By (4.10),
sup ”L:+1,tpy<'>5)||H0 < Cysup ||py(-, )| mo e_w*(t_s),
yeD yeD

where Cy = C1(P,) > 0 and w, = —Inv —maxq(z,t) > 0. Hence
1/2

m—i—k
[Vmrk (5 8)=0m (-, 8)[[go < HSOHYO(O,Jroo / Ct SUP 12 (5 ) [0 ¢ Bl dt) —0

as m — oo uniformly in k£ and s € [sl, So|, where [s1, 52| C [0, 4+00) is

an arbitrary finite interval. Hence {vm|px(s;.s0] frny 18 & Cauchy sequence
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in C°%(sy, s2), and it converges in this space. Remind that v,,(-,s) — v(s)
weakly in H? for all s > 0. Hence vy|pxs;,ss] = UlDx[sr,5] 10 CO(81, 82),
and v € C%(0, +00) for any ¢ € Y°(0, +00). The set Y°(0, +00) is dense
in Y1(0, +00), the space C°(0,+00) is complete, and (4.35) holds, i.e.,
SUPgsq [[0(-, 8)|[ o < const [|¢]|y-1(0,400). It follows that v € C°(0,+00)
for any p € Y710, +00).

Let us show that v(x,s) satisfies (2.3) in the desired sense. For an
arbitrary ((z) € C*°(D), such that supp ¢ C intD, for any 6 > ¢ > 0, we

have

(G v(,0) —o( 1)) go = Ty, oo (G, Um(+ 0) = (-, )) o
= lim,, 400 (C, fte(.A(r)vm(x, )+ q(x, r)vm(z, 1) — @m(z,7))dr) go
= Ty, oo { [ (A*(F)C(2) + g, 7)C(@), v (2, 7)) rodr — (G, [ oo (@, 7)dr) o}
= fte(A*(r)((x) + q(z,r)¢(x),v(z,r))godr — (C, ft (2, 7)dr) go.
(4.39)
Thus, v satisfies (2.3) in the desired sense, i.e., as a generalized solution.
Let us prove uniqueness of the solution of (2.3). Let v(z,t) be another
solution from X2 (0, +o00) N X,

2,loc

let p(-,t) = L} p, where t > s. By Lemma 4.3(ii),

(0, +00). Let p € H be arbitrary, and

@G, T),pC 1)) o —=(0(:, 8),p(5 8)) o = —/ (0(o ), p( ) modt Vs, T: 0<s<T.
Remind that p € Z'(s, +00). It follows that
(0(+,5), p)Ho = /Oo(go(-,t),p(-,t))Hodt.

Since p was arbitrary, we have that v(-,s) = v(-,s) in H® (see (4.34)).
This completes the proof of statements of Theorem 2.1. [J
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Proof of Theorem 2.3. For ¢ € Y°(0,+00), the solution of problem
(4.37) can be presented as

vm(z, 8) = E&(z, s), (4.40)

s
3
—
\_5%
NP
(>
N
3
3B
S

¢
(y™*(t),t) exp{/ q(y™*(r), r)dr}dt, TS 2 175 Am.

The equality (4.40) is satisfied for all s > 0 for a.e. . For ¢|pxom) €
L,1(D x (0,m)), it follows from the generalized It6’s formula from
Krylov (1985), §I1.10. If ¢ € Y°(0,+o0), then the generalized Itd’s
formula from Dokuchaev (1994) can be used.

Let us prove (2.8) for v(s) = wv(-,s) defined by (4.34). We have
proved already that v,,(-,s) — v(-,s) in H® and, therefore, in L;(D), as
m — oo for any given s > 0. By linearity of (2.3), it suffices to consider
the case of p(x,t) > 0. Then &,,(x, s) is non-decreasing in m (in the sense
of non-negativity in L;(D)). Then (2.8) follows for ¢ € Y°(0, +00) and
for v(z, s) defined by (4.34) for all s > 0 for a.e. x.
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Proof of Theorem 2.2.
Let us prove statement (i). Let Q% = D x (s,5 4+ 1/2), Qs = D x
(s,s +1). By Lemma 4.3 (v), we have that

lvlQs w21 gz < Crllv

Qs Qs 1IWy (s,5+1/2)

< C ([l Qo) + lv(- s + Dlmo) < Csupgsg llollz@.)
for all s > 0, where C; = C;(P,,y) > 0 are constants. Then statement

(i) follows.

Let us prove statement (iv). By Lemma 4.3 (vi), we have that

{{u

1+a
@Nor” < C(I¢ln@) + v(ss + D) < Csup e, @,

for all s > 0, where C'= C(P,,~) > 0 is a constant. Then statement (ii)

follows. This completes the proof of Theorem 2.2. [
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Proof of Theorem 2.4. Consider first ¢ € Ly(Qg). Instead of (2.9),

consider boundary value problem (2.3) when
fla,t) = fla,t41), Bla,t) = Blet+1), qle.t) = qla,t+1), (441)

and when the parabolic equation is replaced by

20 1)+ Ao, 1) + (g, 1)+ n ol 1) = — (1),

where @ is such that
Bl t) = plat)e ™, ¢ e[0,1], ﬂmwz#@w»+u
1
We have that

Z,

m%w:E[”@wwmwm{[wwwmm+mwwﬁw

and this equality holds for all s > 0 for a.e. o € D. By (4.41), the
probability distribution of the vector y™*(¢) coincides with that of vector
Yootk (t + k) for all k = 1,2,.... Then tiv(@,0) = v(z, 1).

Set V(x,t) = v(x, t)e!™. We have that

Sz, t) + AV (z, 1) + q(z, 1)V (z,1)

= %(x, t)e!™ I+ In ||V (z,t) + A()V (2, t) + q(z, )V (z, 1)

= —[A®)v(z,t) + {q(@,t) + In|p|}v(z,t) + G, t)]e! W
+1In|p|V(z,t) + AV (z,t) + q(z, )V (z,t) = p(z,1).

Clearly, V(z,0) = v(z,0), and V(z,1) = |p|v(x,1). Hence uV(z,0) =
V(z,1), and V is the solution of (2.9). Inequality (2.10) is satisfied with
a constant ¢ defined by the estimate for v from Theorem 2.1 (i), and this
¢ does not depend on ¢ € Ly(Qo).

Therefore, statements (i)-(ii) are proved for all ¢ € Ly(Qy).

Let ¢ € X;'(0,1). Clearly, Ly(Qp) is dense X, '(0,1), and there
exists a sequence {;}:>° C Ly(Qo) such that ¢; — ¢ in X, '(0,1) as
i — oo. Let V; be the solution of problem (2.9) with ¢ = ¢;. By
statement (i) that is proved already for ¢; € Lo(Qy), the sequence {V;}25



44

is a Cauchy sequence in X3(0,1) and in C°(0,1). Hence this sequence
has the limit V' € X1(0,1) N C°(0,1). Tt is easy to see that this V
is a solution of problem (2.9). Uniqueness of V follows from (2.10).
Therefore, statements (i)-(ii) hold for all ¢ € X;(0, 1).

Statement (iii) follows from Theorem 2.1(v) applied for v. This com-

pletes the proof of Theorem 2.4. [
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Proof of Theorem 1.1. Let e; and ey be the indicator functions of the
random events {73 > 7o} and {7, > 7} respectively.

Let F; be the filtration generated by w(t) and a.

The random variables e; are measurable with respect to the o-algebras
Fs, Fr, i = 1,2, associated with the Markov times (with respect to the
filtration F;) 7 and 7; (see, e.g., Gihman and Skorohod (1975), Chapter
4, §2).

Set

G(t) 2 uilyi(0), 1), &) =GO, te 7).

Clearly, 1 € L,(D) for all ¥ > 1. By Theorem 2.1 (iv)-(v), it follows

that v;(x,t) and ‘%i L(z,t) are continuous and bounded, and the norms
Ha“

L,(Qs) ||8xk8xm |z (q,) are bounded in s > 0 for any v > 1, where
Q.= Dx(s,s+1), k,m=1,...,n. Therefore, we can apply to (;(t) the
generalized It6’s formula given by Theorem I1.10.1 from Krylov (1980),
p. 122. By this It6’s formula and (2.12), we obtain

dGi(t) = ([5 (wi(t), 1) + Ai(t)i (1), 1)] dt + G (wilt), 1) Biya(t)., t)dw(t)
~[Ai(yi(), ) + 1]dt + G2 (yi(1), 1) Bi(wi(t), ) dw (t)
= —[AG(t) + 1dt + G2 (i(t), 1) Biys(t), ) dw(t),

and
d&i(t) = eM=DdG(t) + AN (1) de
= MG (y;(8), 8) By (t), ) dw (t) — ATt
Hence
E{e{vi[n1(7),7] = ni[y2(7), 71}} = E{ei{vi[y1(m2), 7] — v1lya(72), 2]} }

= —E{ei{vi[y1(11), 1] — vi[y1(72), 72|} }
= —E{e1{&i(n) — &(7)}}
=E{e, [[' tDat}
= 1E{e;{e*™) —1}}

= sE{ei{eX™™™ —1}}.
(4.42)
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Hence

1 dv
XE{el{eMTrm) —1}} < sup d_a:l

(z,t)€Q

(.0 Blerln(7) - m(P}. (1)
If we replaced the indices 1,2 in (4.42) by 2,1, we get similarly that

1
TE{ef ™ — 11 < swp

(zt)eQ | AT

@t Bean®) - M. (140
Clearly,

E[MN ™ 1] = B{e) {7 — 1}} + E{ea{M™™™) — 1)} (4.45)
Now the desired estimate follows from (4.42)-(4.45). O

Remark 4.2 In fact, the condition in (1.2) that df/0z is locally bounded
can be lifted. Without this condition, equation (2.7) has an unique
weak solution for any given (s,a). More precisely, there exists a set
<Q,}", P,w(.), ya’s(-)> such that equation (2.7) holds and w(-) does not
depend on a; the distribution of y®*(-) is uniquely defined (see, e.g.,
Chapter II from Krylov (1980), Section 3 of Chapter 3 from Gihman
and Skorohod (1975), and Theorems 4.1 and 4.3-4.4 from Dokuchaev
(1997)). In this case, the formulations of the results need to be adjusted
as the following. Lemma 3.1 holds for any y**(¢) such as described here.
Theorem 2.1 (iii) holds for y**(¢) defined in the conditional probability
space as y**(t) given a = z, where a is such that it has the probability
density function in HY. Theorem 2.1 (i)-(ii), (iv)-(v) and Theorem 1.1
hold in their present form. Remind that Theorem 1.1 requires that (1.1)
is satisfied for y;(t) with the same w(-) for i =1, 2.

The author wishes to thank R. McEachin, A. Rodkina, T. Salisbury,
and W. Zhang for useful discussion. As it was mentioned earlier, T.
Salisbury suggested to the author the way how to simplify the proof of
Lemma 3.1. The author also wishes to thank the anonymous referee for

their insightful comments which greatly strengthened the paper.
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Further research plans in stochastic analy-

sis: SPDEs

(i) I study backward SPDEs.

(ii) I study stochastic partial differential equations of parabolic type.
First, I obtained an estimate being an analog of "the second energy
inequality”, or "the second fundamental inequality”. If the domain is
bounded, then this result is new even for the case of smooth coefficients

of the parabolic It6’s equation.

(iii) I study also the difficult case of discontinuous coefficients for
SPDEs. Solvability, uniqueness, and a prior estimates similar to the
second fundamental inequality are obtained for bounded and unbounded
domains using the technique of backward stochastic partial differential
equations. For the case of discontinuous coefficients, some Cordes type

conditions that ensure solvability are suggested.



