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Abstract

We consider first exit times and their dependence on variations

of parameters for diffusion processes. Estimates of Lp-distances

and some other distances between two exit times are obtained via

parabolic Kolmogorov’s equations with infinite horizon.
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Introduction

It is known that first exit times from a region for smooth solutions of or-

dinary equations do not depend continuously on variations of the initial

data or the coefficients. However, first exit times for non-smooth trajec-

tories of diffusion processes have some path-wise regularity with respect

to these variations (some related results can be found in author’s papers

(1987),(1992)).
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We study path-wise dependence on variations of initial data and coef-

ficients for first exit times of diffusion processes from a domain D ⊂ Rn.

We present an effective estimate of distances between exit times via es-

timates for solutions v(x, t) of backward Kolmogorov’s parabolic equa-

tions in the unbounded cylinder D×[0, +∞), when the Cauchy boundary

condition is replaced by the condition supt≥0 ‖v(·, t)‖L2(D) < +∞. These

problems are sometimes called Fourier problems.
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1 Estimates of distances between first exit

times

Let (Ω,F ,P) be a standard probability space. Consider two n-dimensional

diffusion processes yi(t), i = 1, 2, such that





dyi(t) = fi(y(t), t)dt + βi(yi(t), t)dw(t), t > 0,

y(0) = ai.
(1.1)

Here w(t) is a standard n-dimensional Wiener process, fi : Q → Rn and

βi : Q → Rn×n are non-random functions, where Q = D × [0, +∞),

D ∈ Rn is a bounded domain. The random vectors ai with values in D̄

does not depend on w(·).
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Set b
∆
= βiβ

>
i .

We assume that

cb
∆
= sup(x,t)∈Q, i=1,2 |bi(x, t)| < +∞,

cf
∆
= sup(x,t)∈Q, i=1,2 |fi(x, t)| < +∞,

c̄b
∆
= ess sup(x,t)∈Q, i=1,2 |∂bi

∂x
(x, t)| < +∞,

δ
∆
= inf(x,t)∈Q, ξ∈Rn, i=1,2

ξ>bi(x,t)ξ
|ξ|2 > 0.

(1.2)

Set

P0
∆
= (n, D, cβ, c̄b, cf , δ).
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Let τi
∆
= inf{t ≥ 0 : yi(t) /∈ D} and

τ̃
∆
= τ1 ∧ τ2 = min(τ1, τ2).

Theorem 1.1 There exist λ0 > 0 such that for any λ < λ0 there exists

C(λ) = C(λ,P0) > 0 such that

E
1

λ

[
eλ|τ1−τ2| − 1

] ≤ C(λ)E|y1(τ̃)− y2(τ̃)|. (1.3)

Clearly, |τ1 − τ2|p ≤ p! λ−p
[
eλ|τ1−τ2| − 1

]
for p = 1, 2, . . ..

Corollary 1.1 For any p = 1, 2, ..,, there exists C = C(p,P) > 0 such

that

E|τ1 − τ2|p ≤ CE|y1(τ̃)− y2(τ̃)|. (1.4)
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Example Let n = 1, yi(t) = ai + wt, where ai are non-random,

ai ∈ D, and D ⊂ R is a given interval. We have that

E|y1(τ̂)− y2(τ̂)| = |a1 − a2|.

Then it follows that

1

λ
E{eλ|τ1−τ2| − 1} ≤ C(λ)|a1 − a2|

and

E|τ1 − τ2|p ≤ ĉ(p)|a1 − a2|

for all p ≥ 1.
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2 Calculation of constants via parabolic equa-

tions in unbounded cylinders

Let f(x, t) : Q → Rn and β(x, t) : Q → Rn×n be non-random uniformly

continuous functions such that all the components of the functions f and

β are continuously differentiable with respect x, Q
∆
= D × [0, +∞).

Introduce the differential operator

A(t)v(x)
∆
=

∂v

∂x
(x)f(x, t) +

1

2

n∑

k,m=1

b(km)(x, t)
∂2v

∂xk)∂x(m)
(x, t). (2.1)

Here x(k) and b(km) are the components of vector x and the matrix b
∆
=

ββ>.
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We assume that

cb
∆
= sup(x,t)∈Q |b(x, t)| < +∞,

cf
∆
= sup(x,t)∈Q |f(x, t)| < +∞,

c̄b
∆
= ess sup(x,t)∈Q | ∂b

∂x
(x, t)| < +∞,

δ
∆
= inf(x,t)∈Q, ξ∈Rn

ξ>b(x,t)ξ
|ξ|2 > 0.

(2.2)

Set

P ∆
= (n, D, cβ, c̄b, cf , δ).
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Let q(x, t) : Q → R be a measurable function.

Consider the boundary value problem in the semi-infinite cylinder Q





∂v
∂t

(x, t) +A(t)v(x, t) + q(x, t)v(x, t) = −ϕ(x, t),

v(x, t)|x∈∂D = 0,

ess sups≥0 ‖v(·, t)‖L2(D) < +∞.

(2.3)
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Let

Pq
∆
=

(
P0, sup

(x,t)∈Q

q(x, t)

)
, P|q| ∆

=

(
P0, sup

(x,t)∈Q

|q(x, t)|
)

.

Some definitions

Let D ⊂ Rn be a bounded domain with C1-smooth boundary ∂D.

Let H0 ∆
= L2(D), and let H1 ∆

=
0

W 1
2 (D). Let H−1 be the dual space

to H1.

Let `m denotes the Lebesgue measure in Rm, and let Bm be the

Lebesgue σ-algebra. Let

C0(0, T )
∆
= C([0, T ]; H0),

Xk
r (0, T )

∆
= Lr([0, T ],B1, `1; H

k), k = 0,±1.

Introduce spaces Y k(s, +∞) of functions u : [s, +∞) → Hk with finite

norm

‖u‖Y k(s,+∞) = sup
i=0,1,2...

(∫ s+i+1

s+i

‖u(·, t)‖2
Hkdt

)1/2

.

Let Xk
r,loc(0,∞) be the set of functions u(x, t) : D × (s1, s2) → R such

that u|D×[s,t] ∈ Xk
r (s, t) for all s, t.
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For γ ≥ 1, let W 2,1
γ (Q) be a Banach space of functions u : Q → R

that belong to Lγ(Q) together with all derivatives ∂u
∂t

, ∂u
∂xk

, ∂2u
∂xk∂xm

, k, m =

1, ..., n, with finite norm

‖u‖W 2,1
γ (Q)

∆
= ‖u‖Lγ(Q)+

∥∥∥∥
∂u

∂t

∥∥∥∥
Lγ(Q)

+
n∑

k=1

∥∥∥∥
∂u

∂xk

∥∥∥∥
Lγ(Q)

+
n∑

k,m=1

∥∥∥∥
∂2u

∂xk∂xm

∥∥∥∥
Lγ(Q)

.

Let α ∈ (0, 1) be a non-integer number. We will say that a function

u : Q → R belongs to the class H1+α,(1+α)/2(Q) if u and ∂u/∂x are

continuous, and

〈〈u〉〉(1+α)
Q

∆
= 〈u〉(α)

Q +
n∑

k=1

〈
∂u

∂xk

〉(α)

Q
< +∞,

where

〈u〉(α)
Q

∆
= max

(x,t)∈Q
|u(x, t)|+ sup

x,x′∈D, t∈[s,T ]

|u(x, t)− u(x′, t)|
|x− x′|α + sup

x∈D, t,t′∈[s,T ]

|u(x, t)− u(x, t′)|
|t− t′|α/2

.

This class is a special case of the Hölder space from Ladyzhenskaya et al

(1968)



13

Theorem 2.1 There exists λ > 0 such that if q(x, t) ≤ λ for all (x, t),

then

(i) For any ϕ ∈ Y −1(0, +∞) there exists the unique (up to equivalency)

solution v : D × (0, +∞) → R of the problem (2.3) in the class

X0
∞(0, +∞) ∩X1

2,loc(0, +∞);

(ii) v ∈ C0(0, +∞), and there exists a constant c = c(P , λ) such that

sup
t∈[0,+∞)

‖v(·, t)‖H0 + ‖v‖Y 1(0,+∞) ≤ c‖ϕ‖Y −1(0,+∞). (2.4)

Notice that the parabolic equation in (2.3) is in the sense of Sobolev gen-

eralized functions, and we assume that the boundary condition v(x, t)|x∈∂D =

0 is satisfied if v(·, t) ∈ H1 =
0

W 1
2 (D) for a.e. t. Definitions of spaces

ensure that the statement of the problem problem (2.3) has sense.



14

Theorem 2.2 Let q(x, t) ≤ λ for all (x, t), where λ is such as in Theo-

rem 2.1. Then

(i) If supt≥0 ‖ϕ|Qt‖Lγ(Qt) < +∞ for γ ≥ 2, then v|Qt ∈ W 2,1
γ (Qt) for

all t ≥ 0, and there exists a constant c = c(P|q|, γ) such that

sup
t≥0

‖v|Qt‖W 2,1
γ (Qt)

≤ c sup
t≥0

‖ϕ‖Lγ(Qt). (2.5)

(ii) If supt≥0 ‖ϕ|Qt‖Lγ(Qt) < +∞ for γ > n + 2, then the function

v(x, t) and its derivatives ∂v(x, t)/∂xk are continuous, bounded,

and belong to the Hölder class H1+α,(1+α)/2(Qt) for all t ≥ 0, where

α
∆
= 1 − (n + 2)/γ, k = 1, ..., n. Moreover, there exists a constant

c = c(P|q|, γ) such that

sup
t≥0
〈〈u|Qt〉〉(1+α)

Qt
≤ c sup

t≥0
‖ϕ‖Lγ(Qt). (2.6)
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2.1 Probabilistic interpretation and Krylov’s esti-

mates

Let (Ω,F ,P) be a standard probability space. Let n-dimensional diffu-

sion processes y(t) be solution of the Itô’s equation





dy(t) = f(y(t), t)dt + β(y(t), t)dw(t), t > s,

y(s) = a.
(2.7)

Here w(t) is a standard n-dimensional Wiener process. The random

vectors a with values in D̄ does not depend on w(t) − w(r) for all t >

r > s.

We denote by ya,s(t) the solution of (2.7). Let τa,s ∆
= inf{t : ya,s(t) /∈

D}.
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Theorem 2.3 If ϕ ∈ Y 0(0, +∞) is a Borel measurable function then

v(x, s) = E

∫ τx,s

s

ϕ(yx,s(t), t) exp
(∫ t

s

q(yx,s(r), r)dr
)
dt, (2.8)

and this equality holds for all s ≥ 0 for a.e. x ∈ D;

(ii) If ϕ(x, t) is uniformly Hölder and bounded then the function v(x, t)

and its derivative ∂v(x, t)/∂x are continuous and uniformly bounded.

Remark 2.1 The Krylov’s estimates give estimation of supx∈D |v(x, s)|
for λ ≤ 0 via the norm of ϕ in Ln+1(D × (s, +∞)) or via ‖ϕ‖Ln(D)

for independent on t functions ϕ(x, t) = ϕ(x) (see Theorem II.4.2 from

Krylov (1980)) .
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2.2 Quasi-periodic conditions

Consider now the boundary value problem with quasi-periodical condi-

tions in the cylinder D × [0, 1]





∂u
∂t

(x, t) +A(t)u(x, t) + q(x, t)u(x, t) = −ϕ(x, t),

u(x, t)|x∈∂D = 0,

µu(x, 0)− u(x, 1) = 0.

(2.9)

Theorem 2.4 Let µ 6= 0. There exists λ > 0 such that if q(x, t)+ln |µ| ≤
λ for all (x, t), then the following holds.

(i) For any ϕ ∈ X−1
2 (0, 1) there exists the unique (up to equivalency)

solution u : D × (0, 1) → R of the problem (2.9) in the class

C0(0, 1) ∩X1
2 (0, 1);

(ii) there exists a constant c = c(P , µ, λ) such that

sup
t∈([0,1]

‖u(·, t)‖H0 + ‖u‖X1
2 (0,1) ≤ c‖ϕ‖X−1

2 (0,1); (2.10)

(iii) If ϕ(x, t) is uniformly Hölder and bounded then the functions u(x, t)

and ∂u(x, t)/∂x are continuous and uniformly bounded.
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2.3 Constants for estimates of distances between

first exit times

In fact, the constant C(λ) is

C(λ) = max
i=1,2

sup
(x,t)∈Q

∣∣∣∣
dvi

dx
(x, t)

∣∣∣∣ (2.11)

where vi is the the boundary value problem in Q for i = 1, 2





∂vi

∂t
(x, t) +Ai(t)vi(x, t) + λv(x, t) = −1,

vi(x, t)|x∈∂D = 0,

ess supt>0 ‖vi(·, t)‖L2(D) < +∞,

(2.12)

where

Ai(t)v(x)
∆
=

∂v

∂x
(x)fi(x, t) +

1

2

n∑

k,m=1

b
(km)
i (x, t)

∂2v

∂xk)∂x(m)
(x, t). (2.13)

Here b
(km)
i are the components of the matrices bi

∆
= βiβ

>
i .
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Remark 2.2 We have assumed that the boundaries and coefficients are

smooth enough, the diffusion is non-degenerate, and the domain D is

bounded. In fact, we need these conditions only to ensure that the right

hand part of (2.11) is finite.



20

3 How to find the upper bound λ

Lemma 3.1 • Under assumptions of Theorem 2.1, there exists ν ∈
(0, 1) such that ν = ν(P) depends only on P and

P(τa,s > s + 1) ≤ ν

for any s > 0 and for any random vector a such that a ∈ D a.s., a

does not depend on w(t)− w(r) for all t > r > s.

• One can take

λ = − ln ν.
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4 Proofs

Proof of Lemma 3.1. LetM ∆
= Θ(P0)×D×[0, +∞). Let µ = (f, β, x, s) ∈

M be given.

Clearly, there exists a finite interval D1
∆
= (d1, d2) ⊂ R and a bounded

domain Dn−1 ⊂ Rn−1 such that D ⊂ D1 ×Dn−1.

Let τx,s
1

∆
= inf{t ≥ s : yx,s

1 (t) /∈ D1}, where yx,s
1 (t) is the first compo-

nent of the vector yx,s(t) = (yx,s
1 (t), ..., yx,s

n (t)). We have that

P(τx,s > s+1) ≤ P(τx,s
1 > s+1) = P(yx,s

1 (t) ∈ D1 ∀t ∈ [s, s+1]). (4.1)

Let Mµ(t)
∆
=

∫ t

s
β1(y

x,s(r), r)dw(r), t ≥ s, where β1 is the first row

of the matrix β. Let D̂1
∆
= (d1 + K1, d2 + K2), where K1

∆
= −d2 −

supx,t |f1(x, t)|, K2
∆
= −d1 + supx,t |f1(x, t)|. Clearly, D̂1 depends only on

n,D, and cf . It is easy to see that

P(yx,s
1 (t) ∈ D1 ∀t ∈ [s, s + 1]) ≤ P(Mµ(t) ∈ D̂1 ∀t ∈ [s, s + 1]). (4.2)

Further,

β1(y
x,s(t), t)>β1(y

x,s(t), t) = |β1(y
x,s(t), t)|2 ∈ [δ, cβ], (4.3)

where δ and cβ are such as defined in (1.2). Clearly, Mµ(t) is a martingale

vanishing at s with quadratic variation process

[Mµ]t
∆
=

∫ t

s

|β1(y
x,s(r), r)|2dr, t ≥ s.

Let θµ(t)
∆
= inf{r ≥ s : [Mµ]r > t − s}. Note that θµ(s) = s, and

the function θµ(t) is strictly increasing in t > s given (x, s). By Dambis–

Dubins–Schwarz Theorem (see, e.g., Revuz and Yor (1999)), the process

Bµ(t)
∆
= M(θµ(t)) is a Brownian motion vanishing at s, i.e., Bµ(s) = 0,

and Mµ(t) = Bµ(s + [Mµ]t). Clearly,

P(Mµ(t) ∈ D̂1 ∀t ∈ [s, s + 1]) = P(Bµ(s + [Mµ]t) ∈ D̂1 ∀t ∈ [s, s + 1])

≤ P(Bµ(r) ∈ D̂1 ∀r ∈ [s, s + [Mµ]s+1]).

(4.4)
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By (4.3), [Mµ]s+1 ≥ δ a.s. for all x, s. Hence

P(Bµ(r) ∈ D̂1 ∀r ∈ [s, s + [Mµ]s+1]) ≤ P(Bµ(r) ∈ D̂1 ∀r ∈ [s, s + δ]).

(4.5)

By (4.1)–(4.2) and (4.4)–(4.5), it follows that

supµ P(τx,s > s + 1) ≤ ν
∆
= supµ P(Bµ(r) ∈ D̂1 ∀r ∈ [s, s + δ]),

and ν = ν(n,D, cf , δ) ∈ (0, 1). This completes the proof. ¤
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Let A∗(t) be the operator formally adjoint to A(t), i.e.,

A∗(t)u = −
n∑

k=1

∂

∂xk

(
fk(x, t)u(x)

)
+

1

2

n∑

k,m=1

∂2

∂xk∂xm

(
bkm(x, t)u(x)

)
.

(4.6)

Consider the boundary value problem





∂p
∂t

(x, t) = A∗(t)p(x, t) + q(x, t)p(x, t) + ξ(x, t),

p(x, t)|x∈∂D = 0,

p(x, s) ≡ ρ(x).

(4.7)

Here t ≥ s, q : Q → R and ρ : D → R are some functions, the function

q(x, t) is measurable and bounded, ξ|D×[s,T ] ∈ X−1
2 (s, T ) for all T ≥ s.
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The following Proposition 4.1 presents some facts from Chapter III

from Ladyzhenskaya et al (1968) and from Chapter III from Ladyzhen-

skaya (1985). Estimate (4.8) is ”the energy inequality” (3.14) from La-

dyzhenskaya (1985).

Proposition 4.1 Let 0 ≤ s < T , T − s ≤ d, where d > 0 is given.

Assume that (f, β) ∈ Θ(P0), ρ ∈ H0, ξ ∈ X−1
2 (s, T ). Then there exists

the unique solution p ∈ X1
2 (s, T ) ∩ C0(s, T ) of the problem (4.7), and

there exists a constant C = C(Pq, d) such that

sup
t∈[s,T ]

‖p(·, t)‖2
H0 +

∫ T

s

‖p(·, t)‖2
H1dt ≤ C

(
‖ρ‖2

H0 +

∫ T

s

‖ξ(·, t)‖2
H−1dt

)

(4.8)

for all (f, β) ∈ Θ(P0).

In addition to Proposition 4.1, notice that p(s)(·, T ) = p(t)(·, T ) for

s < t < T if p(s)(·, t) = p(t)(·, t). Here p(s) denotes the corresponding

solution of (4.7) with ξ ≡ 0 given s.
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To proceed further, we need some auxiliary lemmas.

We assume below that conditions of Theorem 2.1 are satisfied for q,

i.e., we assume that sup(x,t)∈Q q(x, t) < − ln ν, and ν is the same as in

Lemma 3.1.

Lemma 4.1 Let p be the solution of (4.7) with ξ ≡ 0. Then

∫

D

|p(x, t)|dx ≤ C0 e−ω∗(t−s)‖ρ‖H0 ∀t ∈ [s, +∞), (4.9)

|p(x, t)| ≤ C1 e−ω∗(t−s)‖ρ‖H0 ∀t ∈ [s + 1, +∞), (4.10)

where ω∗
∆
= − ln ν− sup(x,t)∈Q q(x, t), and Ci = Ci(Pq) are constants that

do not depend on s, t, ρ and depend on Pq only, i = 0, 1.

Proof. By linearity of the problem, it suffices to consider ρ such

that ρ(x) ≥ 0 and
∫

D
ρ(x)dx = 1. Let p0(x, t)

∆
= p(x, t)e−λ(t−s) and

q0(x, t)
∆
= q(x, t) − λ, where λ

∆
= sup(x,t)∈Q q(x, t). Clearly, q0(x, t) ≤ 0

and 



∂p0

∂t
(x, t) = A∗(t)p0(x, t) + q0(x, t)p0(x, t),

p0(x, t)|x∈∂D = 0,

p0(x, s) ≡ ρ(x).

Therefore, p0(x, t) is the probability density function of the process ya,s(t)

under assumption that this process is absorbed at ∂D and is killed inside

D with the rate |q0(x, t)|, where a is a random vector independent on w(·)
with the probability density function ρ. Hence 0 ≤ p0(x, t) ≤ π(x, t),

where π(x, t) is the probability density function of the process ya,s(t)

under assumption that this process is absorbed at ∂D without being killed

inside D, i.e., 



∂π
∂t

(x, t) = A∗(t)π(x, t),

π(x, t)|x∈∂D = 0,

π(x, s) ≡ ρ(x).

Because of absorption at ∂D, we have

∫

D

π(x, t)dx ≤
∫

D

π(x, r)dx ∀r, t ∈ R : s ≤ r ≤ t.
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By Lemma 3.1, it follows that

∫

D

π(x, t + 1)dx ≤ ν

∫

D

π(x, t)dx ∀t ≥ s.

Hence

∫
D
|p0(x, t)|dx =

∫
D

p0(x, t)dx ≤ ‖π(·, t)‖L1(D)

≤ ‖π(·, s + bt− sc)‖L1(D)

≤ ν‖π(·, s + bt− sc − 1)‖L1(D)

≤ ν2‖π(·, s + bt− sc − 2)‖L1(D) ≤ · · · ≤ νbt−sc‖ρ‖L1(D) = ebt−sc ln ν‖ρ‖L1(D),

(4.11)

where btc denotes the integer part of t. Then (4.9) follows.

Let us prove (4.10). Let ∆
∆
= {(t, s) : t ≥ s ≥ 0}, and let g(·) :

D2 ×∆ → R be the Green’s function for the equation (4.7) such that if

ξ ≡ 0 then

p(x, t) =

∫

D

g(x, y, t, s)p(y, s)dy, t ≥ s ≥ 0. (4.12)

Let G(x, y, t, s) be the fundamental solution of problem (4.7) without the

boundary condition on ∂D (i.e., for D = Rn); the order of independent

variables for G is similar to (4.12). By Lemma 7 from Aronson (1968),

it follows that |g(x, y, t, s)| ≤ |G(x, y, t, s)| (∀x, y, t, s). Using estimates

from Aronson (1967), we obtain

|g(x, y, t + 1, t)| ≤ |G(x, y, t + 1, t)| ≤ c ∀x, y ∈ D, t ≥ 0, (4.13)

where c = c(Pq) is a constant. By (4.11) and (4.13), it follows (4.10).

This completes the proof of Lemma 4.1. ¤
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Let us introduce linear normed spaces Zk(s, +∞) of functions u :

(s, +∞) → Hk with finite norm

‖u‖Zk(s,+∞) =
+∞∑
m=0

(∫ s+m+1

s+m

‖u(·, t)‖2
Hkdt

)1/2

.

Lemma 4.2 Let s ≥ 0, let ρ ∈ H0, and let ξ ∈ X0
1 (s, +∞)∪X−1

2 (s, +∞)

be such that ξ(·, t) ≡ 0 for t > s + 1. Then there exists the solution

p ∈ X1
1 (s, +∞)∩C0(s, +∞) of problem (4.7). This solution is unique up

to equivalency, and

‖p‖X1
1 (s,s+1) + ‖p‖C0(s,s+1) ≤ c1(‖ρ‖H0 + ‖ξ‖X0

1 (s,s+1)), (4.14)

‖p‖X1
2 (s,s+1) + ‖p‖C0(s,s+1) ≤ c2(‖ρ‖H0 + ‖ξ‖X−1

2 (s,s+1)), (4.15)

‖p‖X1
2 (s+1,+∞) ≤ c3‖p(·, s + 1)‖H0 , (4.16)

‖p‖X1
1 (s+1,+∞) + ‖p‖C0(s+1,+∞) ≤ c4‖p(·, s + 1)‖H0 , (4.17)

‖p‖Z1(s+1,+∞) ≤ c5‖p(·, s + 1)‖H0 , (4.18)

where ci = ci(Pq) > 0 are constants that do not depend on s and depend

on Pq only, i = 1, . . . , 5.

Proof of Lemma 4.2. Let us prove (4.14). For any T ≥ s and any

ε ∈ (0, δ), we have

‖p(·, T )‖H0 − ‖p(·, s)‖H0 =
∫ T

s
‖p(·, t)‖−1

H0(p(·, t),A∗p(·, t) + q(·, t)p(·, t) + ξ(·, t))H0dt

=
∫ T

s
‖p(·, t)‖−1

H0

{
−1

2

∑n
i,j=1

[(
∂p
∂xi

(·, t), bij(·, t) ∂p
∂xj

(·, t)
)

H0

+ 1
2

(
p(·, t), ∂bij

∂xj
(·, t) ∂p

∂xi
(·, t)

)
H0

]

+
∑n

i=1

(
∂p
∂xi

(·, t), fi(·, t)p(·, t)
)

H0
+

(
ξ(·, t) + q(·, t)p(·, t), p(·, t)

)
H0

}
dt

≤ ∫ T

s
‖p(·, t)‖−1

H0

∑n
i=1

{
1
2
(ε− δ)

∥∥∥ ∂p
∂xi

(·, t)
∥∥∥

2

H0
+ c(ε)‖p(·, t)‖2

H0 + ‖p(·, t)‖H0‖ξ(·, t)‖H0

}
dt

(4.19)

Here the constant c(ε) = c(ε,Pq) > 0 depends only on ε and Pq
∆
=

(P0, sup q(x, t)). We had used elementary inequality 2αβ ≤ εα2 + ε−1β2

(∀α, β, ε ∈ R, ε > 0), and inequality

( ∂p

∂xi

(·, t), F (·)p(·, t)
)

H0
≤ ε

2

∥∥∥ ∂p

∂xi

(·, t)
∥∥∥

2

H0
+

1

2ε
‖F (·)‖L∞(D)‖p(·, t)‖H0 ,
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where F (·) : D → R is an arbitrary measurable bounded function.

By Poincaré - Friedrichs inequality (see, e.g., Yosida (1965)), it follows

that there exist a constant κ = κ(D) > 0 such that

‖p(·, t)‖−1
H0

n∑
i=1

∥∥∥ ∂p

∂xi

(·, t)
∥∥∥

2

H0
≥ κ‖p(·, t)‖H1 .

By (4.19), it follows that

‖p(·, T )‖H0 +c̄1

∫ T

s
‖p(·, t)‖H1 dt

≤ ‖ρ‖H0 + c̄2

(∫ T

s
‖p(·, t)‖H0dt +

∫ T

s
‖ξ(·, t)‖H0dt

)
∀T ≥ s.

(4.20)

Here c̄i = c̄i(Pq) are constants that do not depend on T ∈ [s, +∞) for i =

1, 2. By Gronwall’s inequality, inequality (4.20) applied for T ∈ [s, s + 1]

implies (4.14).

Similarly (4.19)-(4.20), one can derive

‖p(·, T )‖2
H0+ ĉ1

∫ T

s
‖p(·, t)‖2

H1dt

≤ ‖p(·, s)‖2
H0 + ĉ2

(∫ T

s
‖p(·, t)‖2

H0dt +
∫ T

s
‖ξ(·, t)‖2

H−1dt
)

∀T ≥ s.

(4.21)

Constants ĉi = ĉi(Pq) > 0 do not depend on T ∈ [s, +∞). By Gronwall’s

inequality again, inequality (4.21) with T ∈ [s, s + 1] implies (4.15) (In

fact, this is the estimate from Proposition 4.1, or a reformulation of ”the

energy inequality” (3.14) from Ladyzhenskaya (1985)).

Let us prove (4.16)-(4.18). Remind that ξ(x, t) ≡ 0 for t > s + 1. By

Lemma 4.1,

|p(x, t)| ≤ C1 e−ω∗(t−s−1)‖p(·, s + 1)‖H0 (∀t ≥ s + 1),

where C1 = C1(Pq) > 0 is a constant from (4.10), ω∗ = − ln ν −
max q(x, t). Then

‖p(·, t)‖H0 ≤ C1e
−ω∗(t−s−1)‖p(·, s + 1)‖H0 ,

∫ +∞
s+1

‖p(·, t)‖2
H0dt ≤ C2‖p(·, s + 1)‖2

H0 ,

∫ +∞
s+1

‖p(·, t)‖H0dt ≤ C3‖p(·, s + 1)‖H0 .

(4.22)
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Here Ci = Ci(Pq) > 0 are constants. Then (4.16) follows from (4.21) and

(4.22). Further, (4.17) follows from (4.20) and (4.22). By (4.21)-(4.22),

ĉ1

∫ s+m+1

s+m
‖p(·, t)‖2

H1dt ≤ ‖p(·, s + m)‖2
H0 + ĉ2

∫ s+m+1

s+m
‖p(·, t)‖2

H0dt

≤ C2
1

[
e−2ω∗(m−1) + ĉ2

∫ s+m+1

s+m
e−2ω∗(t−s−1)dt

]
‖p(·, s + 1)‖2

H0

≤ C∗e−2ω∗m‖p(·, s + 1)‖2
H0 ∀m = 1, 2, . . .

Here C∗ = C∗(Pq) > 0 is a constant that does not depend on m. Then

(4.18) follows. This completes the proof of Lemma 4.2. ¤

Note that (4.8) can be derived by the following way. Similarly (4.19)-

(4.20), one can derive (4.21). By Gronwall’s inequality, inequality (4.21)

implies (4.8).
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Let 0 ≤ s < T , let Q ∆
= D × (s, T ), and let γ ≥ 1. Introduce linear

normed spaces Wγ(s, T ) of functions u : [s, T ] → W 2
γ (D) that belong to

Lγ([s, T ], B̄1, `1,W
2
γ (D)) and such that ∂u

∂t
belong to Lγ([s, T ], B̄1, `1, Lγ(D)),

with finite norm

‖u‖Wγ(s,T ) =
(∫ T

s

‖u(·, t)‖γ
W 2

γ (D)dt
)1/γ

+
(∫ T

s

∥∥∥∥
∂u

∂t
(·, t)

∥∥∥∥
γ

Lγ(D)

dt
)1/γ

.

It is easy to see that Wγ(s, T ) ⊂ C([s, T ]; Lγ(D)), and this embed-

ding is continuous. Moreover, Wγ(s, T ) = W 2,1
γ (Q), meaning the natural

bijection such that the norms are equivalent.

The space W l
γ(D) with non-integer l will be used below. It is a Banach

space consisting of the elements of W
blc
γ (D) with finite norm

‖u‖W l
γ(D)

∆
= ‖u‖

W
blc
γ (D)

+
∑

j:|j|=blc

(∫

D

dx

∫

D

|Dj
xu(x)−Dj

yu(y)|γ dy

|x− y|n+γ(l−blc)

)1/γ

.

Here blc is the integer part of l, j = (j1, ..., jn), where jk ≥ 0 are integers,

|j| = ∑
k jk,

Dj
xu(x) =

∂|j|u

∂xj1
1 · · · ∂xjn

n

.

(See, e.g., Ladyzhenskaya et al (1968), p. 70, and Adams (1975), p. 214).
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Consider the boundary value problem in Q




∂u
∂t

(x, t) +A(t)u(x, t) + q(x, t)u(x, t) = −ϕ(x, t),

u(x, t)|x∈∂D = 0,

u(x, T ) ≡ Φ(x).

(4.23)

Here q : Q → R, ϕ : Q → R and Φ : D → R are some measurable

functions, the function q(x, t) is bounded.

Let θ ∈ (s, T ), and let Qθ
∆
= D × (s, θ).

Lemma 4.3 Let 0 ≤ s < θ < T and γ ≥ 2. Assume that (f, β) ∈ Θ(P0),

ϕ ∈ X−1
2 (s, T ), Φ ∈ H0, T − s ≤ d, and T − θ ≥ d0, where d > 0 and

d0 > 0 are given. Then

(i) There exists the unique solution u ∈ C0(s, T )∩X1
2 (s, T ) of problem

(4.23), and there exists a constant C = C(Pq, d) > 0 such that

‖u‖C0(s,T ) + ‖u‖X1
2 (s,T ) ≤ C

(
‖Φ‖H0 + ‖ϕ‖X−1

2 (s,T )

)
(4.24)

for all (f, β) ∈ Θ(P0).

(ii) Let ρ ∈ H0 be arbitrary, and let p be the solution of (4.7), where

ξ ≡ 0. Then

(u(·, T ), p(·, T ))H0 − (u(·, s), p(·, s))H0 = −
∫ T

s

(ϕ(·, t), p(·, t))H0dt.

(iii) If ϕ ∈ L2(Q) and Φ ∈ H1, then u ∈ C1(s, T ) ∩X2
2 (s, T ), and there

exists a constant C = C(P|q|, d) > 0 such that

‖u‖C1(s,T ) + ‖u‖X2
2 (s,T ) ≤ C

(‖Φ‖H1 + ‖ϕ‖L2(Q)

)
(4.25)

for all (f, β) ∈ Θ(P0).

(iv) If ϕ ∈ Lγ(Q) and Φ ∈ W
2−2/γ
γ (D) ∩ H1, then the solution u of

problem (4.23) belongs to Wγ(s, T ), and there exists a constant

C = C(P|q|, d, γ) > 0 such that

‖u‖Wγ(s,T ) ≤ C
(
‖Φ‖

W
2−2/γ
γ (D)

+ ‖ϕ‖Lγ(Q)

)
(4.26)

for all (f, β) ∈ Θ(P0).
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(v) If ϕ ∈ Lγ(Q), then the solution u is such that u|Qθ
∈ Wγ(s, θ), and

there exists a constant C = C(P|q|, d, γ) > 0 such that

‖u|Qθ
‖Wγ(s,θ) ≤ C

(‖Φ‖H0 + ‖ϕ‖Lγ(Q)

)
(4.27)

for all (f, β) ∈ Θ(P0).

(vi) If γ > n + 2 and ϕ ∈ Lγ(Q), then u(x, t)|Qθ
and ∂u

∂xk
(x, t)|Qθ

, k =

1, ..., n, are continuous and belong to Hölder class H1+α,(1+α)/2(Qθ)

for α = 1 − (n + 2)/γ. Moreover, there exists a constant C =

C(P|q|, d, d0, γ) > 0 such that

〈〈u|Qθ
〉〉(1+α)
Qθ

≤ C
(‖Φ‖H0 + ‖ϕ‖Lγ(Q)

)

for all (f, β) ∈ Θ(P0).

Remark 4.1 Under the assumptions of statement (iv) in Lemma 4.3,

u ∈ W 2,1
γ (Q), and ‖u‖W 2,1

γ (Q) ≤ const ‖u‖Wγ(s,T ), because there is a nat-

ural bijection between W 2,1
γ (Q) and Wγ(s, T ) such that the norms are

equivalent. Under assumptions of statement (v), u|Qθ
∈ W 2,1

γ (Qθ), and

‖u|Qθ
‖W 2,1

γ (Qθ) ≤ const ‖u‖Wγ(s,θ).

Proof of Lemma 4.3. Statement (i) follows from inequality (3.14)

from Ladyzhenskaya (1985). Statement (ii) follows from the fact that

the parabolic equations in (4.7) and (4.23) are adjoint, and from the

equations for ∂u/∂t and ∂p/∂t. Statement (iii) follows from Theorem 1.2

from Dokuchaev (1997). (Note that statement (iii) can be also derived

from Theorem 6.1 and Remark 6.3 from Ladyzhenskaya et al (1968))

(pp. 178-180). More precisely, this statement follows from the inequality

(6.25) from Ladyzhenskaya et al (1968), p. 180, and from the inequality

(6.29) from Ladyzhenskaya (1985). In fact, Theorem 6.1 from Ladyzhen-

skaya et al (1968) deals with a special case of (f, q), but it is not really

important).

Statement (iv) is a special case of Theorem 9.1, Chapter IV, from

Ladyzhenskaya et al (1968). Formally, this theorem requires that Φ ∈
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W
2−2/γ
γ (D) and Φ|∂D = 0. However, these conditions can be easily re-

placed by our condition Φ ∈ W
2−2/γ
γ (D) ∩ H1. Let us show this. Let

Φ ∈ W
2−2/γ
γ (D) ∩H1. Clearly, there exists a sequence {Φi}+∞

i=1 ⊂ C2(D)

such that Φi|∂D = 0 (∀i), and Φi → Φ in both spaces W
2−2/γ
γ (D) and

H1 as i → ∞. Let ui be the solution of problem (4.23) with Φ = Φi.

By Theorem 9.1, Chapter IV, from Ladyzhenskaya et al (1968), the con-

stant C in (4.26) does not depend on Φ = Φi. Therefore, the sequence

{ui}+∞
i=1 is a Cauchy sequence in Wγ(s, T ) and has a limit in this space.

By statement (iii), ui → u in C1(s, T ), where u ∈ C1(s, T ) ∩X1
2 (s, T ) is

the solution of (4.23) given Φ. Hence u ∈ Wγ(s, T ) and (4.26) is satisfied.

This completes the proof of statement (iv).

Let us prove statement (v). Consider the following sequences:

h1 = 2, hm
∆
= hm−1

n+2
n

,

χ1 = 2, χm = 2− 2
hm

, m = 2, 3, ....

It is easy to see that

χm = 2− n

hm−1

+
n

hm

, χm > 0, hm+1 > hm, hm →∞ as m → +∞.

Clearly, there exists N = N(n) such that hN ≥ γ and hm < γ for all

m < N . Let sm
∆
= T − (m − 1)(T − θ)/N , m = 1, . . . , N + 1. It is easy

to see that

θ = sN+1 < · · · < sm+1 < sm < · · · < s1 = T.

Let us prove that there exists a set {tm}N
m=1 ⊂ [θ, T ] such that

tm ∈ (sm+1, sm], u(·, tm) ∈ W 2
hm

(D) ∩H1,

‖u(·, tm)‖W 2
hm

(D) ≤ C
(‖Φ‖H0 + ‖ϕ‖Lγ(Q)

)
,

(4.28)

where C = C(P|q|, γ, d), m = 1, . . . , N . Note that we allow that {tm}N
m=1

can depend on (Φ, ϕ).

First, let us prove that (4.28) is satisfied for m = 1 for some t1.

Clearly, H2 ⊂ W 2
2 (D) = W χ1

h1
(D), and this embedding is continuous.
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Therefore, it suffices to prove that there exists t1 ∈ (s2, s1] = (s2, T ] such

that

u(·, t1) ∈ H2, ‖u(·, t1)‖H2 ≤ C
(‖Φ‖H0 + ‖ϕ‖L2(Q)

)
, (4.29)

where C = C(P|q|, d, d0).

Let h
∆
= (s2 + s1)/2 = (s2 + T )/2. By statement (i), it follows that

u ∈ C0(s, T ) ∩X1
2 (s, T ), and

∫ T

s

‖u(·, t)‖2
H1dt ≤ C1

(‖Φ‖2
H0 + ‖ϕ‖2

L2(Q)

)
,

where C1 = C1(Pq, d) > 0. Hence

infr∈[h,T ] ‖u(·, r)‖2
H1 ≤ 1

T−h

∫ T

h
‖u(·, t)‖2

H1dt ≤ C1

T−h

(
‖Φ‖2

H0 + ‖ϕ‖2
L2(Q)

)
.

By statement (iii), if r ∈ [h, T ] is such that u(·, r) ∈ H1, then u ∈
W2(s, r), and

∫ h

s

‖u(·, t)‖2
H2dt ≤

∫ r

s

‖u(·, t)‖2
H2dt ≤ C2

(‖u(·, r)‖2
H1 + ‖ϕ‖2

L2(Q)

)
,

where C2 = C2(P|q|, d, d0) > 0. Hence

infr∈[ŝ2,h] ‖u(·, r)‖2
H2 ≤ 1

h−ŝ2

∫ h

ŝ2
‖u(·, t)‖2

H2dt

≤ C3

(
infr∈[h,T ] ‖u(·, r)‖2

H1 + ‖ϕ‖2
L2(Q)

)
≤ C4

(
‖Φ‖2

H0 + ‖ϕ‖2
L2(Q)

)
,

where ŝ2
∆
= (s2 +h)/2, and where Ci = Ci(P|q|, d, d0) > 0, i = 3, 4. Thus,

there exists t1 ∈ (s2, s1] such that (4.29) is satisfied for m = 1. Hence

(4.28) is satisfied for m = 1.

Let us show that if there exists tk such that (4.28) is satisfied for

m = k with k ∈ {2, . . . , N − 1}, then there exists tk+1 such that (4.28) is

satisfied with m = k + 1.

Let us now assume that there exists tk ∈ (sk+1, sk] such that (4.28)

holds.

By the direct embedding theorem, if χ
∆
= ψ − n/g + n/h > 0 and

h > g, then Wψ
g (D) ⊂ W χ

h (D), and the embedding is continuous (see,

e.g., Theorem 7.58 from Adams (1975), p. 218; the case of bounded
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domain is covered by Theorem 4.26, on page 84 of the cited book; see

also related comments before Theorem 7.58 and Remark 7.49 there). We

have that

W 2
hm−1

(D) ⊂ W χm

hm
(D), m = 2, 3, . . . (4.30)

and the embedding is continuous. Thus, W 2
hk

(D) ⊂ W
χk+1

hk+1
(D), and

u(·, tk) ∈ W
χk+1

hk+1
(D). Moreover, ‖u(·, t)‖

W
χk+1
hk+1

(D)
≤ C‖u(·, t)‖W 2

hk
(D) for

any t such that u(·, t) ∈ W 2
hk

(D), where C = C(n,D, k, γ) > 0 is a

constant.

Let Rm
∆
= D × (s, tm) and Qsm

∆
= D × (s, sm), m = 1, . . . , N + 1. By

statement (iv),

‖u|Rk
‖Whk

(s,tk) ≤ C
(
‖u(·, tk)‖W

χk
hk

(D) + ‖ϕ‖Lγ(Q)

)
,

where C = C(P|q|, d, d0, hk) > 0 is a constant. By this estimate and

(4.30), we have

‖u|Qsk+1
‖Whk+1

(s,sk+1) ≤ C1

(
infr∈[sk+1,tk] ‖u(·, r)‖

W
χk+1
hk+1

(D)
+ ‖ϕ‖Lγ(Q)

)

≤ C2

(
infr∈[sk+1,tk] ‖u(·, r)‖W 2

hk
(D) + ‖ϕ‖Lγ(Q)

)

≤ C3

(
1

tk−sk+1

∫ tk
sk+1

‖u(·, t)‖W 2
hk

(D)dt + ‖ϕ‖Lγ(Q)

)

≤ C4

([∫ tk
sk+1

‖u(·, t)‖hk

W 2
hk

(D)
dt

]1/hk

+ ‖ϕ‖Lγ(Q)

)

≤ C5

(
‖u‖Whk

(s,tk) + ‖ϕ‖Lγ(Q)

)

≤ C6

(
‖u(·, tk)‖W

χk
hk

(D) + ‖ϕ‖Lγ(Q)

)

≤ C7

(‖Φ‖H0 + ‖ϕ‖Lγ(Q)

)
,

(4.31)

where Ci = Ci(P|q|, d, d0, hk, γ) > 0 are constants, i = 1, . . . , 7.

Further, we have

infr∈[ŝk+2,sk+1] ‖u(·, r)‖W 2
hk+1

(D) ≤ C1
1

ŝk+1−sk+2

(∫ sk+1

ŝk+2
‖u(·, t)‖hk+1

W 2
hk+1

(D)
dt

)1/hk+1

≤ C2‖u|Qsk+1
‖Whk+1

(s,sk+1),

(4.32)

where ŝk+2
∆
= (sk+2 + sk+1)/2, and where Ci = Ci(n,D, d, d0) > 0. By



36

statement (iii),

u(·, t) ∈ H1 ∀t ≤ t1. (4.33)

By (4.31)-(4.33), it follows that there exists tk+1 ∈ (sk+2, sk+1] such

that (4.28) is satisfied for m = k + 1.

Therefore, we have proved that (4.28) is satisfied for all m = 1, . . . , N .

Further, we have that W 2
h1

(D) = W χ1

h1
(D) and W 2

hm
(D) ⊂ W 2

hm−1
(D) ⊂

W χm

hm
(D), m = 2, 3, . . . , N + 1, and the embedding is continuous. By

statement (iv), (4.28) implies that u|Rm ∈ Whm(s, tm), and

‖u|Rm‖Whm (s,tm) ≤ C1

(
‖u(·, tm)‖W χm

hm
(D) + ‖ϕ‖Lγ(Q)

)

≤ C2

(
‖u(·, tm)‖W 2

hm
(D) + ‖ϕ‖Lγ(Q)

)
, m = 1, . . . , N,

where Ci = Ci(Pq, d, d0, hk, γ) > 0 are constants, i = 1, 2. Remind that

Qθ = QsN+1
⊂ RN and hN > γ. Thus, statement (v) follows from this

estimate with m = N . This completes the proof of statement (v).

Let us prove statement (vi). Note that u|Qθ
∈ Wγ(s, θ), and there

is the natural bijection between W 2,1
γ (Qθ) and Wγ(s, θ) such that the

norms are equivalent. Then statement (vi) follows from (v) and from

continuity of embedding of W 2,1
γ (Qθ) to the Hölder classH1+α,(1+α)/2(Qθ)

with γ > n + 2 (see, e.g., Lemma 3.3 of Chapter II from Ladyzhenskaya

et al (1968)). This completes the proof of Lemma 4.3. ¤
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Proof of Theorem 2.1. Let L∗s,t : H0 → H0 be the operator such that

p(·, t) = L∗s,tρ, where p is the solution of (4.7) with ξ ≡ 0, and where

ρ ∈ H0, 0 ≤ s ≤ t. By Lemma 4.2, this operator is continuous, and

‖p‖Z1(s,+∞) ≤ C‖ρ‖H0 for p = L∗s,·ρ, where C = C(Pq) is a a constant.

Given ϕ ∈ Y −1(0, +∞) and s ≥ 0, let v(s) ∈ H0 be defined such that

(v(s), ρ)H0 =

∫ +∞

s

(ϕ(·, t), L∗s,tρ)H0dt ∀ρ ∈ H0. (4.34)

Note that v(s) ∈ H0 is well defined for all s ≥ 0. This can be seen

from the following. Let BH0
∆
= {ρ ∈ H0 : ‖ρ‖H0 ≤ 1}. By (4.18), it

follows that

supρ∈BH0

∫ +∞
s

(ϕ(·, t), L∗s,tρ)H0dt

≤ ‖ϕ‖Y −1(s,+∞) supρ∈BH0
‖L∗s,tρ‖Z1(s,+∞) ≤ c‖ϕ‖Y −1(0,+∞),

where c = c(Pq) is a constant. Therefore,

sup
s≥0

‖v(s)‖H0 ≤ c‖ϕ‖Y −1(0,+∞). (4.35)

Let us show that the function v = v(·, s) is the unique solution of

problem (2.3), and v has all desired properties.

For s ≥ 0, set

Bs
∆
= {ξ ∈ Y 0(s, +∞) : ξ(·, t) = 0 if t ≥ s + 1, ‖ξ‖X−1

2 (s,s+1) ≤ 1}.

We have

‖v‖2
Y 1(0,+∞) = sup

s=0,1,2,...
sup
ξ∈Bs

∫ s+1

s

(v(·, t), ξ(·, t))H0dt.

Further, for ξ ∈ Bs, we have

∫ s+1

s
(v(·, t), ξ(·, t))H0dt =

∫ +∞
s

(v(·, t), ξ(·, t))H0dt

=
∫ +∞

s
dt

∫ +∞
t

(ϕ(·, t), L∗t,rξ(·, t))H0dr

=
∫ +∞

s
dr

∫ r

s
(ϕ(·, r), L∗t,rξ(·, t))H0dt =

∫ +∞
s

(ϕ(·, r), p(s)
ξ (·, r))H0dr,

where

p
(s)
ξ (·, r) ∆

=

∫ r

s

L∗t,rξ(·, t)dt



38

is the solution of (4.7) with this ξ and ρ = 0. By Lemma 4.2, it follows

that

‖v‖2
Y 1(0,+∞) = sups=0,1,2,... supξ∈Bs

∫ +∞
s

(ϕ(·, r), p(s)
ξ (·, r))H0dr

≤ sups=0,1,2,... supξ∈Bs
‖ϕ‖Y −1(s,+∞)‖p(s)

ξ ‖Z1(s,+∞) ≤ c‖ϕ‖Y −1(s,+∞),

(4.36)

where c = c(Pq) is a constant. By this estimate and (4.35), it follows

that estimate (2.4) holds for v.

By (4.35), v ∈ X0
∞(0, +∞). Let us show that v ∈ C0(0, +∞).

Set

ϕm(x, t) =

{
ϕ(x, t) t ≤ m

0 t > m
, m = 0, 1, 2, . . . .

Denote by vm(·, s) elements of H0 defined by (4.34) for ϕ = ϕm.

By (4.36), vm ∈ Y 1(0, +∞). Further, vm(x, s) = 0 for all s ≥ m for

a.e. x. By Lemma 4.3(ii), it follows that vm(x, s) is the solution of the

boundary value problem in D × (0,m)




∂vm

∂s
(x, s) +A(s)vm(x, s) + q(x, s)vm(x, s) = −ϕ(x, s)

vm(x, s)|x∈∂D = 0

vm(x,m) = 0.

(4.37)

Clearly, vm ∈ C0(0, +∞), since vm|D×(0,m) ∈ C0(0,m), and vm(·, s) =

0 for s ≥ m. For any ρ ∈ H0 and s ≥ 0, we have that

(v(s)− vm(·, s), ρ)H0 =
∫ +∞

m
(ϕ(·, t), L∗s,tρ)H0dt

≤ ‖ϕ‖Y −1(0,+∞)

∑+∞
k=m

(∫ k+1

k
‖L∗s,tρ‖2

H1dt
)1/2

→ 0 as m → +∞,

since
+∞∑

k=m

(∫ k+1

k

‖L∗s,tρ‖2
H1dt

)1/2

< +∞.

Hence vm(·, s) → v(s) weakly in H0 for all s ≥ 0.

Let us show that vm(·, s) → v(·, s) in H0 uniformly in s from any

finite interval.

Parabolic equations in (4.37) and (4.7) are adjoint. This means that

vm(x, s) =

∫ m

s

dt

∫

D

g(y, x, t, s)ϕ(y, t)dy, s ≤ m. (4.38)
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Here g(x, y, t, s) is the Green’s function for problem (4.7) such that

(4.12) holds. By semi-group properties of the solution of problem (4.7),

we have that g(·, y, t, s) = L∗s+1,tρy(·, s) for any y ∈ D and t > s +

1, where ρy(·, s) ∆
= g(·, y, s + 1, s). Similarly to (4.13), we have that

‖ρy(·, s)‖L∞(D) ≤ c for all y ∈ D, s > 0, where c = c(Pq) is a constant.

Therefore, ‖ρy(·, s)‖H0 ≤ c∗ for all y ∈ D, s ∈ (s1, s2), where (s1, s2) ⊂
[0, +∞) is an arbitrary finite interval, c∗ = c∗(Pq, s1, s2) is a constant that

does not depend on y ∈ D.

Let ϕ ∈ Y 0(0, +∞), and let k = 1, 2, . . .. By (4.38) and (4.37), we

have that

vm+k(y, s)− vm(y, s) =

∫ m+k

m

dt

∫

D

ϕ(x, t)g(x, y, t, s)dx.

Hence

‖vm+k(·, s) −vm(·, s)‖2
H0 =

∫
D

[∫ m+k

m
dt

∫
D

ϕ(x, t)g(x, y, t, s)dx
]2

dy

=
∫

D

[∫ m+k

m
(ϕ(·, t), L∗s+1,tρy(·, s))H0dt

]2

dy

≤ ∫
D

[∫ m+k

m
‖ϕ(·, t)‖H0‖L∗s+1,tρy(·, s)‖H0dt

]2

dy

=
∫

D

[∑m+k
i=m

∫ i+1

i
‖ϕ(·, t)‖H0‖L∗s+1,tρy(·, s)‖H0dt

]2

dy

≤ ∫
D

[∑m+k
i=m

{∫ i+1

i
‖ϕ(·, t)‖2

H0dt
}1/2 {∫ i+1

i
‖L∗s+1,tρy(·, s)‖2

H0dt
}1/2]2

dy

≤ ‖ϕ‖2
Y 0(0,+∞)

∫
D

[∑m+k
i=m

{∫ i+1

i
‖L∗s+1,tρy(·, s)‖2

H0dt
}1/2]2

dy.

By (4.10),

sup
y∈D

‖L∗s+1,tρy(·, s)‖H0 ≤ C1 sup
y∈D

‖ρy(·, s)‖H0 e−ω∗(t−s),

where C1 = C1(Pq) > 0 and ω∗ = − ln ν −max q(x, t) > 0. Hence

‖vm+k(·, s)−vm(·, s)‖H0 ≤ ‖ϕ‖Y 0(0,+∞)

m+k∑
i=m

(∫ i+1

i

C2
1 sup

y∈D
‖ρy(·, s)‖2

H0 e−2ω∗(t−s)dt
)1/2

→ 0

as m → +∞ uniformly in k and s ∈ [s1, s2], where [s1, s2] ⊂ [0, +∞) is

an arbitrary finite interval. Hence {vm|D×[s1,s2]}+∞
m=1 is a Cauchy sequence
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in C0(s1, s2), and it converges in this space. Remind that vm(·, s) → v(s)

weakly in H0 for all s ≥ 0. Hence vm|D×[s1,s2] → v|D×[s1,s2] in C0(s1, s2),

and v ∈ C0(0, +∞) for any ϕ ∈ Y 0(0, +∞). The set Y 0(0, +∞) is dense

in Y −1(0, +∞), the space C0(0, +∞) is complete, and (4.35) holds, i.e.,

sups≥0 ‖v(·, s)‖H0 ≤ const ‖ϕ‖Y −1(0,+∞). It follows that v ∈ C0(0, +∞)

for any ϕ ∈ Y −1(0, +∞).

Let us show that v(x, s) satisfies (2.3) in the desired sense. For an

arbitrary ζ(x) ∈ C∞(D), such that supp ζ ⊆ intD, for any θ > t > 0, we

have

(ζ, v(·, θ)− v(·, t))H0 = limm→+∞(ζ, vm(·, θ)− vm(·, t))H0

= limm→+∞(ζ,
∫ θ

t
(A(r)vm(x, r) + q(x, r)vm(x, r)− ϕm(x, r))dr)H0

= limm→+∞{
∫ θ

t
(A∗(r)ζ(x) + q(x, r)ζ(x), vm(x, r))H0dr − (ζ,

∫ θ

t
ϕm(x, r)dr)H0}

=
∫ θ

t
(A∗(r)ζ(x) + q(x, r)ζ(x), v(x, r))H0dr − (ζ,

∫ θ

t
ϕ(x, r)dr)H0 .

(4.39)

Thus, v satisfies (2.3) in the desired sense, i.e., as a generalized solution.

Let us prove uniqueness of the solution of (2.3). Let ṽ(x, t) be another

solution from X0
∞(0, +∞) ∩X1

2,loc(0, +∞). Let ρ ∈ H0 be arbitrary, and

let p(·, t) ∆
= L∗s,tρ, where t ≥ s. By Lemma 4.3(ii),

(ṽ(·, T ), p(·, T ))H0−(ṽ(·, s), p(·, s))H0 = −
∫ T

s

(ϕ(·, t), p(·, t))H0dt ∀s, T : 0 ≤ s ≤ T.

Remind that p ∈ Z1(s, +∞). It follows that

(ṽ(·, s), ρ)H0 =

∫ ∞

s

(ϕ(·, t), p(·, t))H0dt.

Since ρ was arbitrary, we have that ṽ(·, s) = v(·, s) in H0 (see (4.34)).

This completes the proof of statements of Theorem 2.1. ¤
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Proof of Theorem 2.3. For ϕ ∈ Y 0(0, +∞), the solution of problem

(4.37) can be presented as

vm(x, s) = Eξm(x, s), (4.40)

where

ξm(x, s)
∆
=

∫ τx,s
m

s

ϕ(yx,s(t), t) exp
{∫ t

s

q(yx,s(r), r)dr
}

dt, τx,s
m

∆
= τx,s∧m.

The equality (4.40) is satisfied for all s ≥ 0 for a.e. x. For ϕ|D×(0,m) ∈
Ln+1(D × (0,m)), it follows from the generalized Itô’s formula from

Krylov (1985), §II.10. If ϕ ∈ Y 0(0, +∞), then the generalized Itô’s

formula from Dokuchaev (1994) can be used.

Let us prove (2.8) for v(s) = v(·, s) defined by (4.34). We have

proved already that vm(·, s) → v(·, s) in H0 and, therefore, in L1(D), as

m → +∞ for any given s ≥ 0. By linearity of (2.3), it suffices to consider

the case of ϕ(x, t) ≥ 0. Then ξm(x, s) is non-decreasing in m (in the sense

of non-negativity in L1(D)). Then (2.8) follows for ϕ ∈ Y 0(0, +∞) and

for v(x, s) defined by (4.34) for all s ≥ 0 for a.e. x.
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Proof of Theorem 2.2.

Let us prove statement (i). Let Q∗
s

∆
= D × (s, s + 1/2), Qs

∆
= D ×

(s, s + 1). By Lemma 4.3 (v), we have that

‖v|Q∗s‖W 2,1
γ (Q∗s) ≤ C1‖v|Q∗s‖Wγ(s,s+1/2)

≤ C
(‖ϕ‖Lγ(Qs) + ‖v(·, s + 1)‖H0

) ≤ C sups≥0 ‖ϕ‖Lγ(Qs)

for all s ≥ 0, where Ci = Ci(Pq, γ) > 0 are constants. Then statement

(i) follows.

Let us prove statement (iv). By Lemma 4.3 (vi), we have that

〈〈u|Q∗s〉〉(1+α)
Q∗s

≤ C
(‖ϕ‖Lγ(Qs) + ‖v(·, s + 1)‖H0

) ≤ C sup
s≥0

‖ϕ‖Lγ(Qs)

for all s ≥ 0, where C = C(Pq, γ) > 0 is a constant. Then statement (ii)

follows. This completes the proof of Theorem 2.2. ¤
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Proof of Theorem 2.4. Consider first ϕ ∈ L2(Q0). Instead of (2.9),

consider boundary value problem (2.3) when

f(x, t) ≡ f(x, t+1), β(x, t) ≡ β(x, t+1), q(x, t) ≡ q(x, t+1), (4.41)

and when the parabolic equation is replaced by

∂v

∂t
(x, t) +A(t)v(x, t) + {q(x, t) + ln |µ|}v(x, t) = −ϕ̂(x, t),

where ϕ̂ is such that

ϕ̂(x, t) ≡ ϕ(x, t)e−t ln |µ|, t ∈ [0, 1], ϕ̂(x, t) ≡ µ

|µ| ϕ̂(x, t + 1).

We have that

v(x, s) = E

∫ τx,s

s

ϕ̂(yx,s(t), t) exp
(∫ t

s

{q(yx,s(r), r) + ln |µ|}dr
)
dt,

and this equality holds for all s ≥ 0 for a.e. x ∈ D. By (4.41), the

probability distribution of the vector yx,s(t) coincides with that of vector

yx,s+k(t + k) for all k = 1, 2, . . .. Then µ
|µ|v(x, 0) = v(x, 1).

Set V (x, t)
∆
= v(x, t)et ln |µ|. We have that

∂V
∂t

(x, t) +A(t)V (x, t) + q(x, t)V (x, t)

= ∂v
∂t

(x, t)et ln |µ| + ln |µ|V (x, t) +A(t)V (x, t) + q(x, t)V (x, t)

= −[A(t)v(x, t) + {q(x, t) + ln |µ|}v(x, t) + ϕ̂(x, t)]et ln |µ|

+ ln |µ|V (x, t) +A(t)V (x, t) + q(x, t)V (x, t) = ϕ(x, t).

Clearly, V (x, 0) ≡ v(x, 0), and V (x, 1) ≡ |µ|v(x, 1). Hence µV (x, 0) ≡
V (x, 1), and V is the solution of (2.9). Inequality (2.10) is satisfied with

a constant c defined by the estimate for v from Theorem 2.1 (i), and this

c does not depend on ϕ ∈ L2(Q0).

Therefore, statements (i)-(ii) are proved for all ϕ ∈ L2(Q0).

Let ϕ ∈ X−1
2 (0, 1). Clearly, L2(Q0) is dense X−1

2 (0, 1), and there

exists a sequence {ϕi}+∞
i=1 ⊂ L2(Q0) such that ϕi → ϕ in X−1

2 (0, 1) as

i → ∞. Let Vi be the solution of problem (2.9) with ϕ = ϕi. By

statement (i) that is proved already for ϕi ∈ L2(Q0), the sequence {Vi}+∞
i=1
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is a Cauchy sequence in X1
2 (0, 1) and in C0(0, 1). Hence this sequence

has the limit V ∈ X1
2 (0, 1) ∩ C0(0, 1). It is easy to see that this V

is a solution of problem (2.9). Uniqueness of V follows from (2.10).

Therefore, statements (i)-(ii) hold for all ϕ ∈ X−1
2 (0, 1).

Statement (iii) follows from Theorem 2.1(v) applied for v. This com-

pletes the proof of Theorem 2.4. ¤
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Proof of Theorem 1.1. Let e1 and e2 be the indicator functions of the

random events {τ1 ≥ τ2} and {τ2 > τ1} respectively.

Let Ft be the filtration generated by w(t) and a.

The random variables ei are measurable with respect to the σ-algebras

Fτ̃ , Fτi
, i = 1, 2, associated with the Markov times (with respect to the

filtration Ft) τ̃ and τi (see, e.g., Gihman and Skorohod (1975), Chapter

4, §2).

Set

ζi(t)
∆
= vi(yi(t), t), ξi(t)

∆
= ζi(t)e

λ(t−τ̃), t ∈ [τ̃ , τi].

Clearly, 1 ∈ Lγ(D) for all γ > 1. By Theorem 2.1 (iv)-(v), it follows

that vi(x, t) and ∂vi

∂xk
(x, t) are continuous and bounded, and the norms

‖∂vi

∂t
‖Lγ(Qs), ‖ ∂2vi

∂xk∂xm
‖Lγ(Qs) are bounded in s ≥ 0 for any γ > 1, where

Qs
∆
= D× (s, s+1), k, m = 1, . . . , n. Therefore, we can apply to ζi(t) the

generalized Itô’s formula given by Theorem II.10.1 from Krylov (1980),

p. 122. By this Itô’s formula and (2.12), we obtain

dζi(t) =
(
[∂vi

∂t
(yi(t), t) +Ai(t)vi(yi(t), t)

]
dt + ∂vi

∂x
(yi(t), t)βi(yi(t), t)dw(t)

= −[λvi(yi(t), t) + 1]dt + ∂vi

∂x
(yi(t), t)βi(yi(t), t)dw(t)

= −[λζi(t) + 1]dt + ∂vi

∂x
(yi(t), t)βi(yi(t), t)dw(t),

and

dξi(t) = eλ(t−τ̃)dζi(t) + λeλ(t−τ̃)ζi(t)dt

= eλ[t−τ̃ ] ∂vi

∂x
(yi(t), t)βi(yi(t), t)dw(t)− eλ(t−τ̃)dt.

Hence

E{e1{v1[y1(τ̃), τ̃ ]− v1[y2(τ̃), τ̃ ]}} = E{e1{v1[y1(τ2), τ2]− v1[y2(τ2), τ2]}}
= −E{e1{v1[y1(τ1), τ1]− v1[y1(τ2), τ2]}}
= −E{e1{ξ1(τ1)− ξ1(τ̃)}}
= E

{
e1

∫ τ1
τ̃

eλ(t−τ̃)dt
}

= 1
λ
E{e1{eλ(τ1−τ̃) − 1}}

= 1
λ
E{e1{eλ(τ1−τ2) − 1}}.

(4.42)
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Hence

1

λ
E{e1{eλ(τ1−τ2) − 1}} ≤ sup

(x,t)∈Q

∣∣∣∣
dv1

dx
(x, t)

∣∣∣∣E{e1|y1(τ̃)− y2(τ̃)|}. (4.43)

If we replaced the indices 1, 2 in (4.42) by 2,1, we get similarly that

1

λ
E{e2{eλ(τ2−τ1) − 1}} ≤ sup

(x,t)∈Q

∣∣∣∣
dv2

dx
(x, t)

∣∣∣∣E{e2|y1(τ̃)− y2(τ̃)|}. (4.44)

Clearly,

E[eλ|τ1−τ2| − 1] = E{e1{eλ(τ1−τ2) − 1}}+ E{e2{eλ(τ2−τ1) − 1}}. (4.45)

Now the desired estimate follows from (4.42)-(4.45). ¤

Remark 4.2 In fact, the condition in (1.2) that ∂f/∂x is locally bounded

can be lifted. Without this condition, equation (2.7) has an unique

weak solution for any given (s, a). More precisely, there exists a set(
Ω,F ,P, w(·), ya,s(·)

)
such that equation (2.7) holds and w(·) does not

depend on a; the distribution of ya,s(·) is uniquely defined (see, e.g.,

Chapter II from Krylov (1980), Section 3 of Chapter 3 from Gihman

and Skorohod (1975), and Theorems 4.1 and 4.3-4.4 from Dokuchaev

(1997)). In this case, the formulations of the results need to be adjusted

as the following. Lemma 3.1 holds for any ya,s(t) such as described here.

Theorem 2.1 (iii) holds for yx,s(t) defined in the conditional probability

space as ya,s(t) given a = x, where a is such that it has the probability

density function in H0. Theorem 2.1 (i)-(ii), (iv)-(v) and Theorem 1.1

hold in their present form. Remind that Theorem 1.1 requires that (1.1)

is satisfied for yi(t) with the same w(·) for i = 1, 2.

The author wishes to thank R. McEachin, A. Rodkina, T. Salisbury,

and W. Zhang for useful discussion. As it was mentioned earlier, T.

Salisbury suggested to the author the way how to simplify the proof of

Lemma 3.1. The author also wishes to thank the anonymous referee for

their insightful comments which greatly strengthened the paper.
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Further research plans in stochastic analy-

sis: SPDEs

(i) I study backward SPDEs.

(ii) I study stochastic partial differential equations of parabolic type.

First, I obtained an estimate being an analog of ”the second energy

inequality”, or ”the second fundamental inequality”. If the domain is

bounded, then this result is new even for the case of smooth coefficients

of the parabolic Itô’s equation.

(iii) I study also the difficult case of discontinuous coefficients for

SPDEs. Solvability, uniqueness, and a prior estimates similar to the

second fundamental inequality are obtained for bounded and unbounded

domains using the technique of backward stochastic partial differential

equations. For the case of discontinuous coefficients, some Cordes type

conditions that ensure solvability are suggested.


