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Abstract

Mathematical finance is a relatively new mathematical field. It was in a phase

of explosive growth last 10-15 years, and there is very indication it will continue

growing for a while yet. The growth is due to a combination of demand from

financial institutions and a breakthrough in the mathematical theory of option

pricing. The talk will outline basic mathematical theorems and ideas used here,

some unsolved problems, and author’s results for optimal investment problem in

maximin setting.
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The main parts of MF are

(1) Option pricing based on Black-Scholes concept, i.e., on the principle of ”No Ar-

bitrage”, on attainability of contingent claims, and on assumptions about the

stochastic stock price process.

Related mathematical fields: stochastic processes (martingales, Itô’s calculus),

PDEs (nonlinear Bellman equations, Stefan problem, numerical methods), opti-

mal stopping.

(2) Optimal portfolio selection.

Related mathematical fields: stochastic optimal control, optimization, game the-

ory, Bellman equations, filtering and parameters estimation.

(3) Statistical finance and parameters estimation.

Related fields: statistics, econometrics, filtering and parameters estimation.

(4) Modelling of financial instruments and markets.

(5) Problems related to mathematical economics (equilibrium, agents behavior, demand-

supply relationship)
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1 Stochastic market models

Consider a risky asset (stock, bond, foreign currency unit, etc.) with time series of

prices s1, s2, s3, . . ., for example, daily prices.

1.1 Discrete time model

Consider historical discrete time prices sk at times tk, where sk = S(tk), k = 1, 2, ..., n.

Let

ξk+1
∆
=

sk+1

sk

− 1.

Clearly,

sk+1 = sk(1 + ξk+1)

Bachelier (1900) was first who discovered the Square Root Law: the prices of real

stocks are such that

Var ξk ∼ const /n,

i.e.,

ξk ∼ const
√

1/n ∼ const
√

tk − tk−1.

Therefore,

Var (S(t2)− S(t1)) ∼ const |t2 − t1|,
i.e.,

S(t2)− S(t1) ∼ const
√

t2 − t1.

This property of {sk} matches with the one for the Ito’s processes.

Clearly, the discrete time model does not reqiure such advanced theory as the

continuous model, and it describes the real market immediately, hence much better.

However, it is not really popular in Mathematical Finance. The reason is that theoret-

ical results are more difficult for discrete time. Some powerful theorems are not valid

for a general discrete-time model. For example, the discrete time market is incomplete

if ξk can have more than two values.
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1.2 Continuous time model

The premier model of price evolution is such that sk = S(tk), where

S(t) = S(0)e
∫ s
0 µ(s)ds+ξ(t), (1.1)

where ξ(t) is a continuous time martingale, i.e., E{ξ(T )|ξ(·)|[0,t]} = ξ(t) for any t and

T > t. For the simplest model, ξ(t) is a Gaussian process such that ξ(t + ∆) − ξ(t)

does not depend on ξ(·)|[0,t] for any t ≥ 0.,

E{ξ(t + ∆t)|ξ(·)|[0,t]} = ξ(t),

Var [ξ(t + ∆t)− ξ(t)] ∼ σ2 ·∆t ∀t > 0, ∆t > 0,

σ ∈ R is a parameter.

Eq. (1.1) can be replaced for the following Itô’s equation :

dS(t) = S(t)[a(t)dt + σ(t)dw(t)], (1.2)

where

a(t) − appreciation rate

σ(t) − volatility



 market parameters

Here w(t) is a Brownian motion (Wiener process).

Let us discuss some basic properties of Itô’s equation (1.2). The solution S(t) of

this equation is such that

• sample paths maintain continuity;

• paths are non-differentiable;

• paths are not absolutely continuous, and any path forms a fractal of a fractional

dimension;

• if a, σ are deterministic, then the relative-increments [S(t)−S(τ)]/S(τ) are inde-

pendent of the σ-algebra σ(S(·)|[0,τ ]), 0 ≤ τ < t.

• if a, σ are deterministic and constant, then

log
S(t + ∆t)

S(t)
∼ N(a∆t, σ2∆t).
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It will be shown below that the diffusion model is the only possible continuous

model for the risky asset prices.

For a multistock market model, S(t) = {Si(t)}, a = {ai}, w = {wi} are vectors,

and σ = {σij} is a matrix.

There are the following key problems:

• Optimal investment problem: To find a strategy of buying and selling stocks

• Pricing problem: To find a “fair” price for derivatives (i.e. options, futures, etc.)

There is an auxiliary problem:

• To estimate the parameters (a(t), σ(t)) from market statistics.

In fact, σ(t)σ(t)> is an explicit function of S(·). The estimation of a(·) is much more

difficult.

If a and σ are constant and deterministic, then the process S(t) is log-normal

(i.e., the process log S(t) is Gaussian). Empirical research has shown that the real

distribution of stock prices is not exactly log-normal. The imperfection of the log-

normal hypothesis on the prior distribution of stock prices can be taken into account by

assuming that a and σ are random processes. This more sophisticated model is much

more challenging: for example, the market is incomplete (i.e., an arbitrary random

claim cannot be replicated by an adapted self-financing strategy).



6

2 Stochastic calculus

2.1 Itô’s integral

We are given a standard complete probability space (Ω,F ,P), Ω = {ω}.
Let w(t) be a Wiener process (or Brownian motion). Let Ft be the filtration

generated by w. Let L22(0, T ) be the (Hilbert) space of Ft-adapted functions f such

that ‖f‖2 = E
∫ T

0
|f(t, ω)|2dt < +∞.

Let I : L22 → L2(Ω,FT , Ω) be such that

I(f) =
∑

f(ti)[w(ti+1)− w(ti)]

for piece-wise constant f (with jumps at ti only). Then Itô’s integral

I(f)
∆
=

∫ T

0

f(t, ω)dw(t)

is defined as continuous mapping

I : L22 → L2(Ω,FT ,P).

This mapping is isometric (up to affine transform):

EI(f) = 0, EI(f)2 = E

∫ T

0

f(t, ω)2dt.

Warning: Itô’s integral I(f) = I(f, T ) is not defined as function of T for a given ω ∈ Ω!

2.2 Itô’s formula

Let

y(t) = y(s) +

∫ t

s

a(r)dr +

∫ t

s

b(r)dw(r),

i.e.

dy(t) = a(t)dt + b(t)dw(t).

Then

dtV (y(t), t) =
[∂V

∂t
(y(t), t) + LV (y(t), t)

]
dt +

∂V

∂y
(y(t), t)b(t)dw(t),

where

LV =
∂V

∂y
(y(t), t)a(t) +

1

2

∂2V

∂y2
(y(t), t)b(t)2.
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Proof is based on Teylor series and the estimate

∆y
∆
= y(t + ∆t)− y(t) ∼ a∆t + b∆w,

where (∆w)2 ∼ ∆t.

2.3 Most important theorems

Clark-Haussmann formula

Let F : C([0, T ];R) → R be a mapping, then there exists a w(t)-adapted process

f(t) = f(t, ω) such that

F (w(·)) = EF (w(·)) +

∫ T

0

f(t)dw(t).

One may say that this theorem claims that the mapping I : L22(0, T ) → L
(0)
2 (Ω,FT ,P)

is an isometric bijection, where L
(0)
2 (Ω,FT ,P) = {ξ ∈ L2(Ω,FT ,P) : Eξ = 0}.

There is no analog of this in the deterministic calculus!

Girsanov’s Theorem

Any Ito’s process

y(t) = y(s) +

∫ t

s

a(r)dr +

∫ t

s

b(r)dw(r)

with drift a is an Ito’s process with zero drift (i.e, a marttingale) for some another

probability measure. In other words,

dy(t) = b(t)dw∗(t),

where w∗(t) is a process such that it is a Wiener process and some new probability

measure P∗ and such that

b(t)dw∗(t) = a(t)dt + b(t)dw(t).

There are many other amazing results without analogs of this in deter-

ministic calculus. They looks unusual, but in fact these properties ensures

that Itô’s processes represent the ultimate model for stock prices.
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Ito’s processes and PDE

If a(t) = f(y(t), t), b(t) = β(y(t), t), then y(t) is a Markov diffusion process. Let

H(x, s) be the solution of Cauchy problem for the backward parabolic equation





∂H
∂s

(x, s) + ∂H
∂x

(x, s)a(x, s) + 1
2

∂2H
∂y2 (x, s)b(x, s)2 = 0,

H(x, T ) = Φ(x).

Let ξ = Φ(y(T )). In this case, Clark-Haussmann formula can be rewritten as the

following.

Theorem 2.1

ξ = Eξ +

∫ T

0

∂H

∂x
(y(t), t)b(t)dw(t),

and H(x, s) = E{Φ(y(T ))|y(s) = x}.

Proof. Let y(s) = x. By Ito’s formula,

EΦ(y(T ))−H(x, s) = EH(y(T ), T )−H(y(s), s)

= E
∫ T

s
[∂H

∂t
+ LH](y(t), t)dt + E

∫ T

s
∂H
∂y

(y(t), t)b(t)dw(t) = 0.

¤
Remark. It follows that the diffusion process y(t) can be considered as charac-

teristics of the parabolic equation. It is known from physical models that the speed

of heat propagation is infinite, and that the wave propagation described by the first

order hyperbolic equations has bounded speed. That means that ”physical” diffusion

processes has unlimited speed.

In particular, if f ≡ ay(t), b(t) ≡ σy(t), then the equation for y(t) is the equation

for the stock price dS(t) = S(t)[adt + σdw(t)].
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3 Market model: wealth and portfolio strategies

Assume that there are n stocks with prices S1, ..., Sn. We usually assume also that

there is a riskless asset (bond, or bank account) with price

B(t) = B(0) exp
(∫ t

0

r(s)ds
)
,

where r(t) is a process of risk-free interest rates.

The portfolio is a process (γ(·), β(·)) with values in Rn×R, γ(·) = (γ1(t), . . . , γn(t)),

where γi(t) is the quantity of the ith stock; and β(t) is the quantity of the bond.

A portfolio (γ(·), β(·)) is said to be self-financing if there is no income from or

outflow to external sources. In that case,

dX(t) =
n∑

i=1

γi(t)dSi(t) + β(t)dB(t).

It can be seen that

β(t) =
X(t)−∑n

i=1 γi(t)Si(t)

B(t)
,

and the equation for the self-financing X(t) became given γ(t).

Let

π0(t)
∆
= β(t)B(t),

πi(t)
∆
= γi(t)Si(t), π(t) = (π1(t), . . . , πn(t))> .

By the definitions, the process π0(t) is the investment in the bond, and πi(t) is the

investment in the ith stock. We have shown above that the vector π alone suffices

to specify the self-financing portfolio. We shall use the term self-financing strategy

for a vector process π(·) = (π1(t), . . . , πn(t)), where the pair (π0(t), π(t)) describes the

self-financing portfolio at time t:

X(t) =
n∑

i=1

πi(t) + π0(t).
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3.1 Why the diffusion model is the only

meaningful continuous model

Let n = 1, r(t) ≡ 0, i.e., dB(t) ≡ 0, then it follows that

X(T ) = X(0) +

∫ T

0

γ(t)dS(t).

Suppose that there exists t1 < t2 such that there exists dS
dt

(t) on [t1, t2]. Then one can

take

γ(t)
∆
=

{
MSign dS

dt
(t) t ∈ [t1, t2]

0 otherwise

and

X(T ) = X(0) +

∫ t2

t1

γ(t)dS(t) = M

∫ t2

t1

∣∣∣∣
dS

dt
(t)

∣∣∣∣ dt.

Thus, one can have a risk free positive gain (which can be arbitrarily large for large

enough M). Therefore, continuous time functions can model price effectively only if

they are nowhere differentiable.

3.2 A paradox

Consider a diffusion market model with a single stock S(t) with r = 0 (with zero

interest bank account). Assume that dS(t) = S(t)dw(t), where w(t) is the scalar

Wiener process (or, for simplicity, you can assume that S(t) = S(0) + w(t)). A (self-

financing) strategy of an investor is the number of shares γ(t), and the corresponding

wealth is such that X(t) = X(0) +
∫ t

0
γ(s)dS(s). John had initial wealth X0 = S(0)

and he uses the following strategy: γ(t) = I{S(t)≥S(0)}, where I denotes the indicator

function.

This means that John keeps one share of stock when S(t) ≥ S(0) and keeps zero

amount of shares if S(t) < S(0), i.e., in that case he keeps all money in risk-free cash

account).

John hopes to have the wealth XT = max(S(0), S(T )) at time T . Is this risk-free

gain?
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4 Pricing problem

The basic approach here is to use Ito’s formula and the rule that the price P of an

option is the minimal initial wealth that can be raised to the terminal derivative value

φ by self-financing strategies:

Price = inf{X0 : ∃γ(·) : X(T ) = X0 +

∫ T

0

γ(t)dS(t) ≥ φ a.s}.

(We assume that the risk free rate r is zero).

Case of martingale price

Let a = 0. Let φ = Φ(S(·)|t∈[0,T ]), i.e, it is an European type of an option. For instance,

we allow φ = (S(T )−K)+. Then, by Clark theorem, there exists a process f such that

φ = Eφ +

∫ T

0

f(t)dw(t) = c +

∫ T

0

f(t)S(t)−1dS(t).

Hence γ(t) = S(t)−1f(t) can be considered as a self-financing strategy that replicates

the claim φ, and Price = Eφ is the initial wealth that ensures replicating.

Non-martingale case

This case can be effectively reduced to the martingale case with Girsanov Theorem and

measure change. In that case, Price = E∗φ, where E∗ is the expectation with respect

to a measure such that S(t) is a martingale.

Markov case

Let y(t) be a Markov process, φ = Φ(S(T )).

Let H(x, s) be the solution of Cauchy problem for the backward parabolic equation




∂H
∂s

(x, s) + 1
2

∂2H
∂y2 (x, s)σ2y2 = 0,

H(x, T ) = Φ(x).

By Ito’s formula,

Φ(S(T ))−H(x, 0) = H(S(T ), T )−H(S(0), 0)

= E
∫ T

s
[∂H

∂t
+ LH](S(t), t)dt +

∫ T

s
∂H
∂y

(y(t), t)b(t)dw(t)

=
∫ T

s
∂H
∂y

(y(t), t)S(t)−1dS(t).
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If dS(t) = σS(t)dw(t), i.e., the appreciation rate a is zero, then

Φ(S(T ))−H(x, 0) =

∫ T

s

∂H

∂y
(y(t), t)S(t)−1dS(t).

Hence X(t) = H(S(t), t) is the wealth and

X(0) = H(S(0), 0) = E{Φ(S(T ))|S(0), a ≡ 0}.

If Φ(x) = max(0, x−K), then H(x, s) is the Black-Scholes price of a call option (with

zero risk free rate, and the parabolic equation is said to be Black-Scholes equation. The

explicit solution of this equation with this special Φ gives the celebrated Black-Scholes

formula for option price. Clearly, change of variable x = ey can convert it to a heat

equation.
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5 Portfolio selection problem

5.1 Optimal investment problem

We can state a generic optimal investment problem:

Maximize EU(X(T ))

over self-financing strategies π(·).

Here T is the terminal time, and U(·) is a given utility function that describes risk

preferences. The most common utilities are log and power, i.e., U(x) = log x and

U(x) = δ−1xδ, δ < 1.

There are many modifications of the generic optimal investment problem:

• optimal investment-consumption problems

• optimal hedging of non-replicable claims

• problem with constraints

• T = +∞

• etc.

Merton’s strategy

We describe now strategies that are optimal for the generic model with U(x) = log x

or U(x) = δ−1xδ:

π(t)> = ν(a(t)− r(t)1)>[Q(t)X(t)],

where ν = ν(δ) = (1−δ)−1, Q(t)
∆
= (σ(t)σ(t)>)−1, r(t) is the interest rate for a risk-free

investment, and 1> ∆
= (1, 1, . . . , 1)>.

Note that these strategies require direct observation of (σ, a). But, in practice, the

parameters a(·), σ(·) need to be estimated from historical market data.
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6 Examples of unsolved problem

6.1 Discrete time market

The real observed prices are given as time series, so the optimal solution for continuous

model is optimal only for the continuous limit, and it is not optimal after application

to the time series of prices.

The existing optimal solutions for discrete time processes requires solutions of Bell-

man’s discrete time equations starting from terminal time that includes calculating of

conditional densities at any step, and it is not so nice as Merton’s strategies.

As far as I know, it is still unknown how to derive optimal Merton’s strategy for

multi-period discrete time model for U(x) = xδ even for the number of steps equal

two. (This problem is solved for U(x) = kx− x2, but the solution is not real analog of

Merton’s strategy).

6.2 Stefan problem for American option

Similarly to European option pricing, the price of American option with payoff F (S(τ)

(where τ is any (Markov random) time chosen by option’s holder) satisfies Stefan

problem

∂H

∂t
(t, x) +

σ2x2

2

∂2H

∂x2
(t, x) = r

[
H(t, x)− x

∂H

∂x
(t, x)

]
, (x, t) : H(x, t) > F (x),

H(T, x) = F (x).

This problem does not have explicit solution for F (x) = (K−x)+, i.e., for the simplest

cases. Moreover, it s very difficult to obtain a solution even for only slightly generalized

problem.

6.3 Explicit formulas for replicating strategies

Assume that admissible strategies are using historical prices only. Typically, optimal

claim can be found in that setting. However, the integrand in Clark’s formula (or the

optimal strategy) is unknown for a very generic cases, for instace, for U(x) = x1/3.
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6.4 Optimal investment problems for observable but unhedge-

able parameters

Solution (i.e., the optimal investment strategy) is unknown if we include observable

parameters such as trade volume (with unknown evolution law). The only known case

if when U(x) = log x.
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7 Solution in minimax setting

(This is my result presented in 57th British Mathematical Colloquium, Liverpool, April

4=7, 2005; the paper accepted to ”IMA Journal Management Mathematics”).

For problems with uncertainty in prior distributions, the most popular and straight-

forward approach is solution in maximin setting: Find a strategy which maximizes the

infimum of expected utility over all admissible parameters from a given class. The max-

imin setting has long history in optimization and optimal control theory. It is presented

in robust control, in particular, in Hp-control. In economics, there is a large literature

devoted to related investment problems. Uncertainty in prior probability measures is

referred sometimes as the Knightian Uncertainty. Maximin setting in mathematical

economics is presented in theory of problems with robust performance criteria.

We give a new solution for a general U(·) for an “incomplete market” and for the

problem with uncertainty. We assume that the market parameters are observable but

their future distribution is unknown and they are non-predictable.

Let D ⊂ R be a given interval. Let T > 0 and the initial wealth X(0) be given.

Let M = {µ(·)} be a class of parameters µ(·) = [r(·), a(·), σ(·)]. Consider the following

problem:

Maximize inf
µ∈M

EU [X̃(T )] over π(·) : X(T ) ∈ D a.s.

Let

Rµ
∆
=

∫ T

0

|θ(s)|2ds, Rmin = inf
µ∈M

Rµ,

where θ(t)
∆
= σ(t)−1[a(t)− r(t)1] is the market price of risk, 1 = (1, 1, ..., 1) ∈ Rn.

Let the function F (·, ·) be such that

F (z, λ) ∈ arg max x{zU(x)− λx}. (∗)

Let

τµ(t)
∆
=

1

Rmin

∫ t

0

|θ(s)|2 ds. (∗∗)

Theorem 1 The optimal strategy (i.e. the strategy for the saddle point) is defined by

π(t) = θ(t)
∂u

∂x
(Zt, τµ(t)), (7.1)

dZ(t) = θ(t)>Z(t) σ(t)−1S(t)−1dS(t), (7.2)
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where S = diag (S1, . . . , Sn), and where u(·) is the solution of the heat equation

∂u

∂t
(x, t) + Rmin

1

2T

∂2u

∂x2
(x, t) = 0, (7.3)

u(x, T ) = F̃ (x, Rmin, λ̂), (7.4)

Here F̂ (y, R, λ)
∆
= F (ey+R/2, λ), and λ̂ is a Lagrange multiplier defined from the equa-

tion E∗X̃(T ) = X(0), where E∗ corresponds the risk neutral measure P∗ given σ (i.e.,

µ) such that Rµ = Rmin; and this is the ”worst” (”saddle point”) µ.

In fact, Z(t) = Z(t, µ), and Z(T )−1 = dP∗/dP, where P is the original measure.

The solution of the Cauchy problem can be expressed explicitly via integral with known

kernel. Note that the heat equation is one dimensional, and the maximization is also

one-dimensional, even for a case of a large number of stocks n.

The novelty of this result is that, we obtained explicitly (under certain conditions)

the solution of the maximin problem even for a case when the solution is unknown for a

given distribution of the random parameters. In other words, the solution in maximin

setting with unknown prior distributions appears to be easier than for the problem

with given prior distribution.
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Proofs

7.1 Additional definitions

Without loss of generality, we describe the probability space as follows: Ω = T × Ω′,

where Ω′ = C([0, T ];Rn). We are given a σ-algebra F ′ of subsets of Ω′ generated by

cylindrical sets, and a σ-additive probability measure P′ on F ′ generated by w(·).
Furthermore, let FT be the σ-algebra of all Borel subsets of T , and F = FT ⊗F ′. We

assume also that each µ = µ(·) generates the σ-additive probability measure νµ on FT
(this measure is generated by Θ which corresponds to µ).

Let
◦
Rn

+
∆
= (0, +∞)n.

For a function Γ(t, ·) : C([0, t];
◦
Rn

+)×B([0, t];R×Rn×Rn×n) → Rn, introduce the

following norm:

‖Γ(·)‖X ∆
= E sup

µ(·)=µα(·): α∈T

( n∑
i=1

∫ T

0

Γi(t, [S(·), µ(·)]|[0,t])
2dt

)1/2

. (7.5)

Definition 7.1 Let C0 be the set of all functions Γ(t, ·) : C([0, t];Rn) × B([0, t];R ×
Rn ×Rn×n) → Rn such that

‖Γ(·)‖X < +∞,

π(t) = Γ(t, [S(·), µ(·)]|[0,t]) ∈ Σ̃(Fµ
· ) ∀µ(·),

X̃(T, Γ(·), µ) ∈ D a.s. ∀µ.

In fact, C0 is a subset of the linear space of functions with finite norm (7.5).

7.2 A duality theorem

We need the following duality theorem.

Theorem 7.1 The following holds:

supΓ(·)∈C0 infµ EU(X̃(T, Γ(·), µ))

= infµ supΓ(·)∈C0 EU(X̃(T, Γ(·), µ)).

(7.6)



19

By this theorem, it follows that there exists a saddle point.

To prove Theorem 7.1, we need several preliminary results, which are presented

below as lemmas.

Lemma 7.1 The function X̃(T, Γ(·), µ) is affine in Γ(·).

Lemma 7.2 The set C0 is convex.

Let µα be µ that corresponds non-random α ∈ T .

Lemma 7.3 There exists a constant c > 0 such that

E|X̃(T, Γ(·), µα)|2 ≤ c (‖Γ(·)‖2
X + X2

0 ) ∀Γ(·) ∈ C0, ∀α ∈ T .

Lemma 7.4 The function EU(X̃(T, Γ(·), µα)) is continuous in Γ(·) ∈ C0 uniformly in

α ∈ T .

For α ∈ T , set

J ′(Γ(·), α)
∆
= EU(X̃(T, Γ(·), µα(·))).

Lemma 7.5 For a given Γ(·) ∈ C0, the function J ′(Γ(·), α) is continuous in α ∈ T .

Let V be the set of all σ-additive probability measures on FT . We consider V as a

subset of C(T ;R)∗. Let V be equipped with the weak∗ topology in the sense that

ν1 → ν2 ⇔
∫

T
ν1(dα)f(α) →

∫

T
ν2(dα)f(α) ∀f(·) ∈ C(T ;R).

Lemma 7.6 The set V is compact and convex.

Proof. The convexity is obvious. It remains to show the compactness of the set V .

In our case, the set T is a compact subset of a finite-dimensional Euclidean space. Now

we note that the Borel σ-algebra of subsets of T coincides with the Baire σ-algebra (see,

e.g., Bauer (1981)). Hence, V is the set of Baire probability measures. By Theorem

IV.1.4 from Warga (1972), it follows that V is compact. This completes the proof. ¤
We are now in the position to give a proof of Theorem 7.1.

Proof of Theorem 7.1. For a Γ(·) ∈ C0, we have J ′(Γ(·), ·) ∈ C(T ;R) and

EU(X̃(T, Γ(·), µ)) =
∫
T dνµ(α)EU(X̃(T, Γ(·), µα))

=
∫
T dνµ(α)J ′(Γ(·), α),



20

where νµ(·) is the measure on T generated by Θ which corresponds µ(·). Hence,

EU(X̃(T, Γ(·), µ(·))) is uniquely defined by νµ. Let

J(Γ(·), νµ)
∆
= EU(X̃(T, Γ(·), µ(·))).

By Lemma 7.5, J(Γ(·), ν) is linear and continuous in ν ∈ V given Γ(·).
To complete the proof, it suffices to show that

sup
Γ(·)∈C0

inf
ν∈V

J(Γ(·), ν) = inf
ν∈V

sup
Γ(·)∈C0

J(Γ(·), ν). (7.7)

We note that J(Γ(·), ν) : C0 ×V → R is linear in ν. By Lemmas 7.1 and 7.4-7.5, it

follows that J(Γ(·), ν) is either concave or convex in Γ(·) and that J(Γ(·), ν) : C0×V →
R is continuous in ν for each Γ(·) and continuous in Γ(·) for each ν. Furthermore, the

sets C0 and V are both convex, and the set V is compact. By the Sion Theorem, it

follows that (7.7), and hence (7.6), are satisfied. This completes the proof of Theorem

7.1. ¤

7.3 Proof of Theorem 1

Let α̂ ∈ T be such that Rµ̂ = Rmin, where µ̂(·) ∆
= µα̂(·). Let λ = λ̂. It follows that

EU(X̃(T, Γ̂α̂(·), µ̂)) = sup
Γ(·)∈C0

EU(X̃(T, Γ(·), µ̂)). (7.8)

Let µ be arbitrary. Let

T̃µ(t)
∆
= inf{s :

∫ s

0

|θµ(r)|2dr > t}, Tµ
∆
= T̃µ(Rmin).

Clearly, Tµ ≤ T , and Tµ = inf{t : τµ(t, Rmin) = T}, where τµ(t, R)
∆
= T

R

∫ t

0
|θµ(s)|2ds.

Set Iµ(t)
∆
=

∫ t

0
θµ(s)>dw(s). This is a martingale. By the Dambis–Dubins–Schwarz

theorem, I ′µ(t)
∆
= Iµ(T̃µ(t)) is a Brownian motion. We have that

Y (T, µ̂) =

∫ T

0

|θµ̂(t)|>dw(s), lnZ(T, µ̂) =
∫ T

0
|θµ̂(t)|>dw(s) + 1

2
Rmin,

Y (Tµ, µ) = Iµ(Tµ) = I ′µ(Rmin), lnZ(Tµ, µ) = Iµ(Tµ) + 1
2
Rmin = I ′µ(Rmin) + 1

2
Rmin.

These two random variables are Gaussian with mean Rmin/2 and variance Rmin. There-

fore, the variables Y (T, µ̂) and Y (Tµ, µ) have the same probability distribution.
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It is easy to see that the process

X̃ ′(t) =

{
u(Y (t, µ), τµ(t, Rmin), Rmin, λ̂), t ≤ Tµ

X̃ ′(Tµ), t > Tµ

is the normalized self-financing wealth for some admissible strategy Γ′(·) ∈ C0, i.e.,

X̃ ′(t) = X̃(t, Γ′(·), µ). Furthermore,

X̃ ′(T ) = X̃(T, Γ′(·), µ) = F (Z(Tµ, µ), λ̂) = F̂ (Y (Tµ, µ(·)), Rmin, λ̂),

and this variable has the same distribution as

X̃(T, Γ̂α̂(·), µ̂) = F (Z(T, µ̂), λ̂) = F̂ (Y (T, µ̂), Rmin, λ̂).

Hence

EU(X̃(T, Γ̂α̂(·), µ̂)) = EU(X̃(T, Γ′(·), µ)).

Therefore,

EU(X̃(T, Γ̂α̂(·), µ̂)) ≤ sup
Γ(·)∈C0

EU(X̃(T, Γ(·), µ)) ∀µ. (7.9)

By (7.8) and (7.9), the pair (µ̂(·), Γα̂(·)) solves the problem

Minimize sup
Γ(·)∈C0

EU(X̃(T, Γ(·), µ)) over µ. (7.10)

By Theorem 7.1 it follows that the pair (µ̂(·), Γ̂α̂(·)) is a saddle point for the problem.

This completes the proof of Theorem 1. ¤


