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DISTRIBUTIONS OF IT PROCESSES: ESTIMATES FOR THE
DENSITY AND FOR CONDITIONAL EXPECTATIONS OF

INTEGRAL FUNCTIONALS*
N. G. DOKUCHAEV

(Translated by A. A. Gushchin)

Abstract. We obtain a priori estimates for the L2-norms of solutions of parabolic It5 equations
describing evolution of the distributions of solutions of ordinary It5 stochastic differential equations
with random coefficients. In the case of nondegenerate equations, estimates for the L2-norms of
derivatives with respect to space variables are also obtained. As a consequence, we establish a

generalization of Ith’s formula for functions that have only square-summable derivatives of the first
and the second order (or even of the first order).

Key words, distributions of It5 processes, parabolic It5 equations, Ith’s formula

This paper is devoted to studying the probability distributions of It5 processes with the
help of stochastic differential equations of parabolic type techniques [1]. The paper continues
the work [2]. In the case of degenerating It5 equations we obtain integral estimates for
functionals of It5 processes improving the well-known Krylov-Fichera estimates [1, 5.2]. (In
the limit case when there is no diffusion, similar estimates for ordinary differential equations
were obtained in [3] and [4] and used to study control .problems for ordinary differential
equations.) In the nondegenerate case (different from that considered in [2]) a smoothness of
functionals with respect to an initial value of the process is established. As a consequence,
we establish a generalization of Ith’s formula for functions that have only square-summable
derivatives of the first and the second order (or even of the first order).

Close results have been announced in [5].
1. Introduction. Let us consider a N-dimensional Wiener process w(t) with indepen-

dent components on a complete probability space (, ’, P), g/-- (w}. The process generates
the filtration of complete a-algebras 9v a[w(s), s <_ t], t e [0, T], in the usual way, where
T > 0. We assume that w(0) 0.

Let us consider an n-vector It5 equation

Denote Q R [0, T]. We assume that functions f(x,t,w): Q - R and
(x,t,w): Q --, Inxg are measurable, progressively measurable for any x E R and
uniformly bounded with their partial derivatives in x up to the second order inclusive for f
and up to the third order inclusive for/.
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Let a be a random vector that does not depend on w(t)- w(s), t >= s. Denote by ya,8 (t)
a solution of (1.1) with the initial condition

(1.2) y(s) --a.

We shall study the functionals

(1.3) Y(x,s,w) E o y’S(t,w),t,w dt s

where (x, s) e Q and o(x, t,w) are measurable -adapted (see a more precise definition
below) functions.

Let us introduce some notation: /m is the Borel a-algebra in lm; Am is the Lebesgue
measure in l:t and Bm is the completion in the Lebesgue measure of/m; 7) is the a-algebra
of progressively measurable (with respect to ’t) subsets of [0, T] ; is the completion in
the measure ,1 P of 7);/m (R) 9w is the completion in the measure A1 P of the a-algebra

Introduce the Hilbert spaces Hk k 0, :t=l d=2: for k => 0 we put Hk Wk (1%n), H-k

1/2 (these spaces are the sameis the completion of H in the norm IlUllH- ((I A)-ku,jH
as in [2]).

Introduce the Hilbert spaces

yk[8,T] L2([8,T],-I,1,Hk), zks L2(,s,P,Hk)
and the Banach spaces

of functions (t)" [s, T] Zr continuous in t. We assume that these spaces contain functions
of (:, t, w) (or (x, t), or (x,o) although, strictly speaking, they contain equivalence classes.
We aenote for brevity X [0, rl, Y Y[0, ], Co Col0,

Introduce the parameters

#I sup

#I sup of(,t,)

tt- sup I(x,t,w)l,

O(x,t,w)

(Here 109/Oxl and 102/Ox21 are the usual Euclidean norms of the derivatives of mappings
from the finite-dimensional space {x} R into the corresponding finite-dimensional spaces.)

2. Degenerating equations. Let

b(x, t, ) 1/2 (x, t, w) (x, t, w)T.
Let consider the Cauchy problem for the parabolic [1] It6 equation

i,j=l

+ f(,t,)(,t,)+((,t,) et
i=1

(2.1) (bj(x,t,w)r(x,t,w)} dwU)(t),
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Introduce the operators L and $" we assume that r L + p. It is known [1]
that the operators L: X[s, Tl -. Xl[s,Tl, s*: Z] --, X[s, and Ls*: Xi[s,T] --, Co[s,T]
are continuous. From [1, Lem. 4.2.3] it follows that the last two operators can be extended
to continuous operators L: X[s, T] --. Co[s, and .: Zs -. Co[s, T] and there exists a
constant co c0(/1,#2) > 0 depending only on/ and/2 such that the norms of the two
last operators do not exceed co.

We shall denote by Ls and s the operators dual to L: X[s, --. X[s,T] and
,: Z --. X[s, T], ol[s,T] denotes the restriction of o E X onto

THEOREM 2.1. Let a function o(x,t,w): Q --. R be a (Bn+l (R)J,B)-measurable [6,
p. 282] function in X. Then the following holds for the function V(x, s, w) defined by (1.3)
and the function v(x, s, w)

a) v E Co, v Logo;
b) V o a.d (, ,) V(:, ,)/o a=u /o a. .
c) IlYllo =< ollllxo, wh o o(x,2) dpnds o.y o

1.
Remark. The estimate in statement c) of the theorem resembles the Krylov-Fichera

inequality [1, 5.2], which allows one to estimate the norm of the function EV(x,t,w) in
Lv(Q) for nonrandom f,, o.

Proof. One may easily see that v Logo and, if --_-- 0,

for p p. Since the choice of p is arbitrary, we obtain that

If ps 0,

(e.a) (,, )x0[,rl (v, )x0i,rl

for r L (here and below (., .) stands for the scalar product in the corresponding Hilbert
space). From (2.3) one can also deduce the estimate

-< oollllxo

with the constant co co(#, #2) introduced before the statement of the theorem.
Let us establish that v Co.
It is enough to show that Logo Co (/99 ) for some set 3 C X that is everywhere

dense in X. Let H: Co -* Co be the operator such that, for u Co, (Hu)(t) is the projection
of u(t) Z onto Zt for all t. Let : X --* Co be the operator which maps a function g
into a solution u Tg of the problem

u- + Au -g, ulteT O.

Define the operator R: X - X by assuming that R*r h for the dual operator R*, where
h r z and z is a solution of the problem

(,0,) =0,
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(the operators T and R have been introduced and investigated in [2]). Similar to [2], L0 may
be represented as the superposition Lo TR, where T H: X -. C0 is a continuous
operator and T(X) C Co. From the form of R* and [1, Thin. 4.2.1] we obtain that the set
E {to E X" Rto E X} is the one required: it is dense in X and Loto Co (V to J).

Let ps Z] be the conditional (relative to ’s) density of some vector a, which does
not depend on w(t)- w(s), t >= s; this means that ps is the Radon-Nikodym derivative
of the regular conditional (relative to ’s) distribution of a with respect to the Lebesgue
measure (see [1, 5.3]). It is known [1] that in this case p(x, t,w) .ps is the conditional
(relative to ’,) density of the distribution of the solution of the equations (1.1)-(1.2) (in
the case Elal2 -boo a solution of the equation is understood in the sense of [7, 1, p. 4]).
Without loss of generality, we shall assume that a is a random vector on the probability space
(fl, ’, P), where f2 fl fY, fl Rn, " 9v (R) Bn and

(F F2)= [ P(dw)P’(w, F2), where P’(w,F9.)= [ ps(x,w)dx
JF

for F " and Fz E Bn. The symbol E denotes expectation in (f,gr, P). We suppose that

--IIw, w’ll f {} and a() w’.
The function to(yO/,s (t, ), t, w) is (n+, B1)-measurable as a function of w’, t for a.e.

w and (’, B)-measurable as a function of D Ilw, w’ll for a.e.t. This follows from the fact
that the vector ya,S (t) has a density and a ’,-conditional density and, hence, the preimages
of Borel sets of zero measure have zero measure for the function yW’,s (t, ) considered as a
function of t, for a.e. w and a function of for any t __> s (it can be easily deduced from

this that the mapping col[yW"s(t,w),t]: f’ [s, --- Rn+ is (n+,n+)-measurable for
i.e. w).

From (2.3) and Fubini’s theorem we obtain

E(p,(x,,), V(x,s,,))HO E y’"(t..).t., dt . dx

E (..)v :.(.)... t- v :’(.).t. t

(:.) E (, , ), v(.. t. ) .oat E (, ), .(, ,) .o

(summability of the functions is seen from (2.3) and the fact that p X[s,T], to X).
Since the choice of ps and a is arbitrary, it follows that V(x, s,) v(x, s,) on Co. The
theorem has been proved.

THEOREM 2.2. Let ps(x,w) L2(fI,’s,P,H) be the conditional (relative to s) den-
sity of the distribution o/a random n-vector a, which does not depend on w(t) w(s), t >= s.
Then the function p(x, t, w) .ps is the conditional (relative to ) density of the distribu-
tion o/the process ya,s (t, w). The following estimate holds:

IIPlIco[.,T] aOIIPllZo,
where co c0(#1, #2) depends only on #1 and #2.

Proof. It has been already noted that the operator 2." Zs Co[s, is continuo and
there ests a constant c0 co(#, #2) such that the norm of the operator does not exceed
CO.

One may see om (2.3) and the chain of equalities (2.5) that

v :.(.).. t= t (.)v :.(.)..
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t (, t,) v(, t, ).
(Here E and are the same as in the proof above.) Since the choice of is arbitrary, from
this one can obtain routinely the statement of the theorem.

3. Nondegenerate case. Let

l(t) ]W(1) (t),..., W(d) (t)], 2(t) I](dT1)(t),..., W(N)

be two parts of w(t), 0 < d < N. As to the initiM probability spe (,, P) we shaft se
that x 2, x 2, P P x P2 and the processes w(t), 1,2, are given
on the probability spaces (n,,P); or a w hve 1,:[[, (t,) (t,,),
i=1,2.

Let ) a[w(s), s 5 t] be the completion in n of the a-algebras generated by w(.).
Denote byP the completion of the a-algebra in [0, T] x generated by processes progressively
meurable relative to)

Introduce the spaces k L2 ([0, T] x , 1,1 x P, Hk).
Denote by X the class of ctio u(x, t, w) u(x, t,, w2) X such that

x e(1) u (, t, 1,) t < +.

Introduce the (N- d) n matr ]d+,..., N]] (here are colu of ).
THEOM 3.1. Let the function (x, t,) ds not depend on w(.) and

for some a > O. Let 00 , O(x,t,w) O(x,t,) 2, 1,...,n, and

0 (,t,)(, t, ) o(, t, ) +
i--1

Then the following estimate holds for the functional (1.3)"

(3.1) IIVIIx II011x + I1110
i=1

whe c c(, 8) > 0 depends oy on 8 and the pammeter 1 mtmdud in 1.

Pmof. It is enough to consider non-negative ctions
Introduce the set

(z, t, w) X 1. (z, t, w) is bonded and fiteB+

(x,t,w) 0, E E (x,t,w) [1) dxdt 5 1

Let B+. Put. L*, r(z, t, ) E{.(x, t,
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PROPOSITION 3.1. For 6 B+
a) r(, t, ) => 0 or all
b) [o(x, t, w)[ =< ess sup [(I)o(x, t, w)[ for a. e. x, t;

c) If(z, t, w)l =< sup,t,o If(z, t, w)l-
Statement a) of this proposition follows from Theorem 2.1 and the remaining statements

follow from
One can easily see that the function satisfies the equation

(3.2)

dt(z, t, w) ,1", ": OziOxj
bij(x, t, w) W(z, t, w) dt

+

_
]i(z,t,w)r(z,t,w) + ((z,t,w) et

j=l

Equation (3.2) is a superparabolic [1] it6 equation for any bounded measurable function

f (it would be a parabolic [1] It6 equation if d N). As is seen from the proof of Theorem
4.1.1 in [1] one may take (biu)i instead of b u in the right-hand side of (4.1.1) in [1].
Applying Theorem 4.1.1 in [1], we get the estimate

(3.3)

where Cl Cl (1,6) does not depend on the choice of 6 B+.
We have

IlVllxo sup (V, )xo <- sup (, 7r)xo
eB+ eB+

(3.4) <_ sup
eB+ X

for non-negative qo(x, t, w). Evidently,

(I)i,/ X

From this and (3.3)-(3.4), we obtain the estimate (3.1).
THEOREM 3.2. Let the assumptions of Theorem 3.1 be satisfied. Let p and p be the same

as in Theorem 2.2,

Then

IIPlIt,TI =< allllz,0,
where c c(/1,6) depends only on m and 6.

Theorem 3.2 is proved similarly to the proof of Theorem 3.1.
THEOREM 3.3. Let the function (z,t,w) =/3(t) in (1.1) does not depend on z and w,

det {/(t)/(t)T } >= 6 > 0 (V t),
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and the function 99 99(x, t) e L2(Q) in (1.3) is nonrandom. Then

(’)
xo

where c- c(#1,6).
Proof. Introduce the set

B { X1" IIllxo <= 1, (x,t,w) is smooth and finite for all w}.
Denote 7)= O/Oxi. We have

sup(V, T)x sup (99, L’T) )xo.
5EB 5EB

Let r L’T), W(x, t) Er(x, t, w) for B. Then

’ ’,j’=l OXOXj bij(t)W(x,t) + J(x,t) + E1)(x,t,w),

(3.8) (, 0) -o,

where

Evidently,

0 {,(, )(,t,)t, }
i--1

(3.9)

(3.10)

where Cl Cl (1, 5) is some constant. The last inequality follows from known properties of
the problem dual to (3.7)-(3.8).

One can note that

(3.11) 113llY- -< cllnllx-1,

where c c(#)). It is seen from (3.9)-(3.11) that the estimate (3.1) will be proved if we
shall show that the norm of the operator L*" X-1 --+ X- or the operator L: X -- X is
bounded by a constant depending only on #1 and #. Let us prove this.

We have

(3.12)

for a smooth finite 99 X where hx’s (t, w) are solutions of the equation

dh’ (t,w)_Of ( )h’S(t,),dt -x Y’S(t’w) t w

hx’s (s) col lie}) I1= 1, where ej) 1 if j and e}j) 0 if : j (one may use the results
in [8, Chap. 8]).
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Evidently, [h’s (t, w)[ __< c (Vt, w), where c c(T, #, tt). Applying Theorem 2.1 to
(3.12), we get the estimate

OV < cxi x0= --x x1

where c c(#1, tt). Theorem 3.3 has been proved.

4. Corollaries: Generalizations of ItSs formula. Let us introduce the classes of
functions:

Vk, (u(x,t). u E yk
0u yO- E r=0,1,...,/

W,= v,n c([o, T] --, H).
THEOREM 4.1. Under the assumptions of 2,

Eu (y,O (T, ), T) u(x, O) E - T Au (t, w), t,

for any function u u(x, t) })2,1 for a. e. x I:tn.
Note that, in comparison with the theorem in [8, 10.2], nondegeneray of the matrix

T is not required, and L2-summability of derivatives of u instead of Lq-summability with
q n + 1 is required (but the obtained statement is less strong since it holds only for
almost all x). Below we shall escape the restriction on u(x, t) that the derivative O2u/Ox2 is

L2-summable.
THEOREM 4.2. Let the assumptions of Theorem 3.1 be satisfied, u u(x, t) )/Vl’ and

let the representation u(., t) uo + f (s) ds take place, where and uo H, y-1 (the
equality holds in H for all t). Let a sequence {(I)k}= C X0 be such that

O:u
(x,t)X-1+ , (,, t,) o

i,j=l

as k -, +c in the metric of X-1. Then

moreover, the limit exists in H L2(Rn), the both sides of the equality, as functions of
x Rn, belong to H and the equality holds in H L2(Rn) (for a. e. x).

The proof of Theorems 4.1-4.2 is based on an approximation of u by more smooth
functions (as well as the proof of the theorem in [8, 10.1]) and makes use of Theorems
2.1-2.2 and 3.1.
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INTEGRAL TRANSFORMS WITH INFINITELY DIVISIBLE
KERNELS*

M. FINKELSTEIN, S. SCHEIBERG, AND H. G. TUCKER

Abstract. Given r characteristic functions fl(u),..., Jr(u), none of which is identically equal
to one, it is shown that the integral transform

fj(uj)’ dF(sl
j--1

ofthe joint distribution function F of r non-negative random variables can be defined over a nonempty
domain of natural numbers and it uniquely determines F. This result is used to obtain the converse
of a multivariate version of a transfer theorem due to Gnedenko and Fahim, thus extending a result
of Szasz and Frajeris in the univariate case. An application is also made to L6vy processes.

Key words, intergral transform, infinitely divisible, vector of random sums, the Lvy process

1. Introduction and summary. Given r probability characteristic ftmctions
f.(u), none of which is identically equal to one, we show that the integral transform

QF(U)’---- fj(uj)s dF(sl,...,s)

can be defined over a domain of natural numbers, where F is any joint distribution ftmction of
r non-negative random variables. Such a transform has arisen earlier in the case r 1 in pa-
pers by Feller [1], Gnedenko and Fahim [4], and Szasz and Frajeris [6], and in the monograph
by Kruglov and Korolev [5]. This transform is shown here to determine F uniquely. This re-
sult is then used to answer a number of questions in the theory of independent random sums
of independent random variables. In 3 a multivariate extension of the transfer theorem by
Gnedenko and Fahim [4] is obtained, and our uniqueness theorem is applied to give necessary
and sufficient conditions that the joint limit distribution have independent coordinates. In
connection with this, the converse to this transfer theorem obtained by Szasz and Frajeris in
[6] is extended to the multidimensional case by means of our uniqueness theorem. In 4 the
results of 3 are applied to Lvy processes.

2. The integral transform. Let f(u) be an arbitrary characteristic function, and let
F(x) be the distribution flmction of a non-negative random variable. If f(u) =/= 0 for all u,
let J(f)---- R; otherwise, let J(f)- (-a, a), where

a--sup {uE R" f(u) O}---inf {uE R: f(u) 0}.
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