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1. Formulation of the problem and main assumptions. Let us consider
a probability space (f,’,P), where f {w} is a set of elementary events, " is
some P-complete a-algebra of events, P is a probability measure on ’. We consider a
standard d0-dimensional Wiener process W(t) IIw: (t), Wdo (t) with independent
components. The part of this process IIw: (t),..., Wd(t)lJ, where d _< do, is denoted
by w(t). The process w(t) generates the filtration of P-complete a-algebras ’t
a[w(s), s <_ t] C " in the usual way.

We consider an n-vector It6 stochastic differential equation

(1.1) d-*’(t,w)y f[y*’(t,w),t,w] at + [y*’(t,w),t,w] dW(t),

(1.2) x,,/_ w) xY ,
where 0 -< s _<_ t <__ T, x E Rn, and the number T > 0. The functions f(x, t,w): Rn

R+ x fl -- Rn, (x, t,w)" Rn x R+ x fl -- Rnxd are progressively measurable with
respect to the filtration of a-algebras ’t for any x E Rn. These functions are measur-
able, bounded, satisfy the global Lipschitz condition in x uniformly in t,w, and are
continuous in x,t for any w. By a solution of (1.1), (1.2) we shall mean a "strong"
solution.

Let a region D C Rn be given, and let either D Rn or the region D be
simply connected, bounded, and have a C2-smooth boundary. Let us consider the
cylinder Q D x (0,T), and, for each (x, s) , the random variable Tx’s(W)
T A inf {t: y-,8 t,/t w) }, that is, the first exit time from the set - Q u OQ for the
vector [y’8 (t, w), t]. If D R, then T’" (W) --= T.

This paper is devoted to the study of functionals of the form

(1.3) E{ /.. [y’"(t,w),t,w]

Here the functions (x, t,w): Rn x R+ x O -, R are progressively measurable with
respect to the filtration ’t for any x Rn; E{. I’s } is the conditional expectation.

For distributions of such functionals of It5 processes, which are not Markov,
estimates are given in [1, Chap. II].

The goal of the paper consists in the representation of functionals (1.3) by solu-
tions of special boundary value problems for stochastic partial differential equations
introduced in 2. In 3 we establish the duality of these problems to boundary value
problems for It5 parabolic equations which allows us to obtain supplementary infor-
mation about solutions of boundary value problems of both forms (Theorem 3.2 and
Theorem 4.1). Sufficient conditions for a representation of a solution of the boundary
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value problem in the form (1.3) are obtained in 2, sufficient conditions for a repre-
sentation of the functional (1.3) in the form of a solution of a boundary value problem
are obtained in 5 (these cases are different because the function does not coincide
with the free term of the partial equation if the process y,S (t, w) is not Markov). A
certain smoothness of the functionals (1.3) in x, s is also established (Theorem 5.1).

Let us make additional assumptions.
For j 1,..., do we denote by/j the corresponding columns of the matrix/. In

the case d < do we denote by/ the n (do -d)-matrix II/d+l,... ,/doll. We assume

that the eigenvalues of the matrices/fT and//T (in the case d < do) are separated
from zero uniformly in all arguments.

Let us fix an integer number r => 0 and a number > 0 such that r < < r + 1,
r [/]. Let, as in [3, p. 7], H’/2() be the same Banach space of functions on which
are Hblder continuous together with r derivatives in x and [r/2] derivatives in t. We
assume that the functions f(x,t,w) and (x,t,w) belong componentwise to HJ/2()
for every w c and their norms in this space are bounded uniformly in w E . For
r < 2 the partial derivatives of the components of the matrix/(x, t, w) of second order
in x are assumed to be uniformly bounded in x, t, w. In the case r > 0 and D Rn we
assume that the boundary OD belongs to the class H+2 (see [3, p. 9]). For D Rn

we have cOD and by and we mean Rn and Rn [0, T], respectively.

Below, L2(D), L2(Q) W,m Cm2 (D) IV() () C() and so on denote the
usual spaces ([2]-[5]) of real-valued functions on D or Q. For a Sanach space A’ the
symbol I1" IIx denotes the norm, for a Hilbert space A" the symbol (., ")x denotes
the scalar product. For a region G c Rm the symbol C( X) denotes the Banach
space of continuous bounded functions u: --+ A" with the usual norm. Cm’q(- -+ X)
denotes the set of fumctions u(x, t)" Q X belonging to C(Q --. 2() together with
the first derivatives in x and q derivatives in t.

Let us consider the positive self-dual unbounded operator A: L2(D) L2(D) of
the form A v/I- A, where I is the identity operator and A is the n-dimensional
Laplace operator. For k 0, +1 we introduce the Hilbert spaces Hk with the scalar
product (u, V)g (Aku, AkV)L.(D). We assume that H-1 is the completion of L2(D)

H H W,I Rn, Hin the norm II IIH-1 L2(D) 2 (Rn) for D and I(m)
for D Rn. The coincidence of the corresponding norms for k 0, 1 can be easily
verified (see the description of Hk in [2]). For u e H and v e H-1 by (u, V)HO we

mean (Au, h-lv)Ho.

The symbol A denotes the Lebesgue measure in [0,T]. P (and P, for a given
s [0, T]) denotes the completion in the measure A1 7 of the a-algebra of subsets of
the set [0, T] x D generated by stochastic processes which are progressively measurable
with respect to the filtration ’ (respectively, of the a-algebra generated by measurable
processes (t,w) for all t e [0,T] which are measurable with respect to ’,).

For integer numbers m _> 0, k 0, +1, we introduce the Hilbert spaces

R2 L2([0, T] x , , A x P, R),
Xk=L2([O,T]x, , A xP, Hk),
k L2 ([0, T] x 2, T, A1 X P, Hk),
Vm L2([0,T] x , , A x P, W(D)),
-m L2 ([0, T] x , T, A1 X P, W,m2 (D))
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For p _> 1, s E [0, T] and the number fixed above, we introduce the BlEach spaces

= L2(fl, ’T, P, H’/2(0)),
n np ([0, T] x l’l, , "1 X P, C()),

Cp (s)= L([0,T] fl, , P, cm()),
Co =C([O,T] L2(fl, T, P, L2(D))),
= n2(, T, P, C()).

For integer numbers m 0, q 0, the symbol m,q denotes the set of functions
u(x, t, w) belonging to C together with the first m derivatives in x, and q derivatives
in t (the derivatives must exist with probability 1).

We sume that Co c X c X-1, X c 1 c X0 0, l c c -rC2(T), and

so on, meaning the natural dense embedding. Moreover, Cp c (T) Xk c and

so on. denotes the set D Wr, where r [/].
We introduce the set OoQ c OQ and the set OTQ C OQ of the following form:

OoQ {OD x [0, T]} U {D x {0}}, OTQ {OD x [0, T]} U {D x {T}};
intheceD#R",00Q=R"x{0},intheceD=R" OTQ=R"x{T}

For every w we define the differential operator

" 0 1 " 02
(1.4) A A(x,t,w) fi(x,t,w)i= + ,= bij(x,t,w)

OxiOx

Here fi, xi, bij are components of the vectors f, x, and of the matrix b
A*(x,t,w) will denote the differential operator dual to the operator (1.4) (in the
Lagrange sense (see [4, p. 141])).

For g E T/ we consider the following boundary value problem in Q:

(1.5)
OU
O---(x,t,w) + A(x,t,w)U(x,t,w) -g(x,t,w),

(1.6) U(x,t,w)l(x,t)eOrQ O.

We introduce the operator T, which maps the function g to a solution U Tg
of the boundary value problem (1.5)-(1.6). From [3] (see also [2] and [4]) it follows
that the operators : X -, T: X - : X -* Co are continuous.
Moreover, U T--g Er+2,1 if g T/.

2. Representation of solutions of boundary value problems in the form
of functionals of It6 processes. In the cylinder Q we consider the following bound-
ary value problem for a stochastic partial differential equation:

(2.1) dv(x,t,w) + [A(x,t,w)v(x,t,w) + g(x,t,w)]dt X(x,t,w)dw(t),

Here the function v is scalar-valued and values of the function X are row d-vectors,
X- IIX1,’", Xdll. Equation (2.1) in combination with a boundary condition at t- T
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means, in the case v E 1722 fq Co, g E X, Xi X, that for any t for a.e. (almost every)
X, (M

(2.3) v(x,t,w) [A(x,p,w)v(x,p,w) + g(x,p,w)]dp- X(x,p,w)dw(p).

The stochastic integral with respect to dwi (p) of a square-summable progressively
measurable with respect to the filtration ’p random function is meant to be the It6
integral. This integral is believed to be extended in the standard way to an isometric
operator mapping 2 L2([0, T] fl, , ,kl P, R)into L2(fl, ’T, P, R). For an
arbitrary function (equivalence class) in 2 the value of the integral is, by definition,
an equivalence class in L2(fl, ’T, P, R) containing the integral of a progressively
measurable representative which always exists [2, p. 11] in a class of 12. The stochastic
integral in (2.3) is defined for every t for a.e. x as an element of L2(fl, ’T, P, R).

THEOREM 2.1. For any function g 7"l a pair of f_unctions v, X, where v
X N Co fq C+2, r [/] < l, X IIXI,’",X.d[I, X.j X, j 1,...,d, is defined
satisfying (2.1)-(2.2). Moreover, relation (2.2) holds .for t T .for a.e. (x,w)
and .for D Rn and x OD .for a.e. (t,w) [0, T] f. These functions v, Xi are

determined uniquely up to equivalence (as elements of X).
Let us note that the Bismut backward equations [5], which occur in the control

theory for ordinary It6 equations, have a form analogous to (2.1)-(2.2): one must
find a solution of an It6 equation adapted to a nondecreasing (unlike the backward
equations of [2, p. 36]) filtration of a-algebras which takes on a given (for example,
nonrandom) value at a finite time. Usually this problem is solvable for the only
possible diffusion coefficient which must be found in the course of the solution (thus
under the conditions of Theorem 2.1 in view of uniqueness of X for nonrandom f,
g, we have X 0). It6 equations in an infinite-dimensional phase space, in particular
parabolic It6 equations, are by now well investigated (see, for example, [2] and [6]-[18]
and their bibliographies). The corresponding infinite-dimensional analogues of the
Bismut equations have practically not been studied at though they were introduced
in [19].

We introduce the operators T, G, Gi, J 1,..., d, which map a function g into
the functions v Tg, X g, Xi ig, respectively, satisfying (2.1)-(2.2).

THEOREM 2.2. The operator T can be extended from the set 7"l which is ev-
erywhere dense in X and in X- to continuous linear operators T: X- X
T: X- X W.--Co T: ---,

In what follows the continuity of some operator signifies the possibility of its
continuous extension from some everywhere dense set. The operators T, Gi and others
are the corresponding continuous extensions to X- (or in stipulated cases to X or

X-l). An assertion of the type "v Tg C2 for g 7-/l and operator T: X- --. X’’
means that v and g are representatives with the required properties for the functions
(classes) v Tg X, g X-.

THEOREM 2.3. The operators " X- -- X, j l,. d, are continuous.
DEFINITION. A generalized solution of the problem (2.1)-(2.2) for g X-x is a

pair of functions v, X, where v Tg X f Co, X Gg IIX,’", XdlI, Xi X.
THEOREM 2.4. The operators Gi X j 1,..., d, are continuous. More-

over, Gig X for g X (we recall that X W for D Rn and X C )/V).
THEOREM 2.5. Assume f 2 2,/ C2, let the function g 2 be a representative

0 X let thereof some class in X- and for the equivalence classes Tg X ig o
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exist representatives v E C C Co, Xj C. Then the function

belongs to , and, for v and , relation (1.3) holds ]or any s e [0,T] for a.e. (x,w) e
[0, T] and for a.e. (s,w) e [0, T] for any x e D.

We introduce the operator B: X X by the formula

d OXj (X, t, W), where Xj Gig.(2.4) Sg -(x,t,w)-x
j’--1

THEOREM 2.6. Let r > (n/2) + 2, g Tlt (the numbers l, r [/] are fixed in
Section 1). Then the hypotheses of Theorem 2.5 hold and there exist representatives
v e C N C, 7 e C2 of the equivalence classes Tg e Z, g + Sg e X for which
relation (1.3) holds for any s for a.e. x,w and .for a.e. s,w for any x.

Thus the solution Tg of the boundary value problem is represented in the form
(1.3), where

(2.5) 7 g / Bg.

The question arises whether (2.5) is solvable with respect to g for a given .
Proof of Theorem 2.1. For a solution of the problem (1.5)-(1.6) we have V e

rT2,1 C C([0,T]--. LP(, ,’T, P, CrT2()), P- 1,2. For e LI(, "’T, P,
Cr+2()) the symbol :-. denotes the projection of [20] to the space LI(, ’s, P,
Cr+2()). We introduce the functions v(x,t,w) yU(x,t,w) and u(x,t,s,w)

11+2e:. U(x t,w) We have v e (+2 u(. s, e (s).
Below let the symbol T) denote any partial derivative in x of order l, 0 =< _< r+ 2,

and let the symbol :D denote either :D or 0/0t.
By the Clark theorem (see [21, p. 178]) we have the representation

d T

+ foj--1

Here j are some functions of the class C(Q --. 2) (since T)U C(Q --.
L2(fl, T, P, R))); the order of arguments is such that - {(x,t)}.

0

Let -i denote the functions in (2.6) for/)U U (that is, i /). It can

be easily seen that all other -j are the derivatives of the form :D’ of the functions

"j" -* 2, and /j E C2’1( -- 2). Below the partial derivatives /)/j which
occur, for example, in the expression A(x, t,w)/j(x, t,p,w) are assumed to be the
functions -.

Let us prove that the function v introduced above and the functions

(2.7) Xj(x,t,w) 7j (x, O, t, w) A(x, p, w)7j(x, p, t, w) dp,

x IIx ,’",xall,

are the ones required.
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We have

:Du(x,t,s,w) E{:DU(x,t,w) $’} a.s.,

U E X1
2 (T). Thus the functions v and :Dv are square-summab]e in x, t, w and

XII’’Icr-I-2 (X t, )--V(X, 8, )the function ]lvllc+2() in t, w, that is, v 2 Obviously v

+2, where u(x, t, t, w) -u(x, t, s, w) and 2 u(x, t, s, w)-u(x, s, s, w). Letting
t- s tend to 0+, we have

Consequently, v e Co. By (1.6), relation (2.2) holds for a.e. x, w for t T and for a.e.
t, w for x OD, D R. In (2.7) the coefficients of one derivatives in A(x, p, w) are

bounded, continuous, and ’p-adapted for a.e. w; hence Xj X.
By virtue of (1.5)-(1.6) and (2.6) we have, for a.e. x, w,

The sum of It5 integrals in the right-hand side of the latter equality is equal to

f X(P)dw(p) by (2.7) and the Fubini theorem for stochastic integrals (see [22]). So,
for v, X, relation (2.3) holds and v, X are the ones required.

We introduce the operator 7"* X X- by the rule T*h r, where the function
r X f3 Co is a solution of the boundary value problem

(2.8)
0r A* t,w) + h( ,t w), O.

The operator T*" X - X (and even the operator T*" X-1 -- xl) is linear and
continuous (see [2] and [3]). The dual operator in the Hilbert space X is denoted by

X0 C2 X0iT; the operator iT: X --, is continuous. For some v E q Co qX and X E
let (2.1)-(2.2) hold as indicated in he theorem. It can be verified immediately that

V X0"(T’h, g)xo (h, Vr)xo (Vh X). So v Tg in X and hence v in From
v’ C2 X X(2.3) we obtain that, if v, E n Co and v v in then Xj Xj. (VJ) in

Thus v and X,"’, Xd are determined uniquely in X. The theorem has been proved.
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The proof of Theorem 2.2 follows from the estimates

which hold for constants c > 0 common for all g, v, U in the proof of Theorem 2.1,
by virtue of known (see [2]-[4]) properties of the operators T and properties of the
operation E{. I.’t}.

The proof of Theorem 2.3 will be adduced in Section 4.

Proof of Theorem 2.4. Let us consider functions

7 7(x,t, p,w)e L2([0, T] xf, , AlXP, C2())NL2([O,T]xf, , A1 xP, W’22 (Q)),
which are equal to zero in the case D Rn for x e OD for a.e. p, w (here Q {(x, t)}).
Using the estimate [4, p. 523, (149)] for D Rn and a similar estimate for D Rn,
for a constant Cl > 0 common for all such 7, we obtain the estimate

(2.9)

Obviously this estimate can be extended to all functions 7 7(x, t, p,w) which

belong to C2’1( 2), are square-summable in x [0, T] x f together with the
corresponding derivatives and are equal to zero for x E OD in the case D Rn. Such
are the functions 7j in the representation (2.6) for U T--g, g E ?_/l. The right-hand
side of the latter inequality in (2.9) under the substitution j is finite and does
not exceed the value

(2.10)

where ci > 0 are constants the same for all g T/l. Thus

(2.11) II(,t,t,)ll - IIllxo.
From (1.5)-(1.6) and (2.6)we obtain

for (x, s) Q with probability 1. This relation and (2.7) imply that, for a.e. x, t, w,

07 (x, s, t, w) ds (x, t, t, w).x(, t,) .(, o, t, ) + .
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By extending the estimate (2.11) from the everywhere dense subset 7/l to X, we
obtain the assertion of the theorem.

Proof of Theorem 2.5. As is seen from (2.1), the differential

dry(x, t, w) (x, t, w) dt + X(X, t, w) dw(t),

where -Av g E 2 2
2, X E 172, exists. We assume that (x, t,w) and X(X, t,w)

are defined on Rn+x f and e equal to zero for (x, t,w) x . For e > 0 we
introduce the functions

dp, "’’,

v(x,t,w) EU(x,O,w) + O(x,p,w)dp+ X(x,p,w)dw(p).

We denote Tx’s (, W) (T + e) A inf {t: yX,S (t, w) }. From the It6-Venttsel for-
mula (see [2] and [23]), whose applicability is left without a proof, we see that for a

modification of the function ve for (x, s) Q in the class 2,0 the following relation
holds:

aoSo

Restricting all functions again to Q f, we have, as 0,

OX) OXjAve --* Av, v -- v, [3 Ox ---’ Ox

Tin the metric of 1720 v v in the metric of Co. In addition
uniformly in w f. Hence we obtain the assertion of the theorem.

Proof of Theorem 2.6. We have v e 2 fq Co, v(x, O,w) EU(x, O,w) for a.e.
x,w, EU(x, O,w) e Cr+2(). From this and also from (2.3), with t 0, as well as
from the Clark theorem ([21, p. 178]) we obtain successively for 0, 1,..., r 1 for
arbitrary i,j and the vector e 118k,11_1 (where 8k, is the Kronecker symbol) that
the limit of the expression

-1 {:DX(x+ee,t,w)

/Oz =as e 0, exists in X which we denote from now on by OTxXj 7) Xj. Hence. () . X0we can approximate Xj(X, t,w) by functions Xi) E Yr so that zXj --’ zXj in
as i --, +c, 0, 1,..., r (we can use averagings in x of the type of [1, p. 48] with
a smooth kernel for a.e. t, w, extending Xj to Rn [0, T] f for D Rn). The

completeness of Wr implies the existence of the limit Xi) in 4f equivalent to Xj in

X. From the inclusion (see [3, p. 61]) Wr
C (:22 we obtain the required assertion.

3. Forms and properties of dual operators. In addition to the operators 7",
Gj, B introduced above we shall consider the operators R (I / B)-, L TR. The
operator R maps a function qo into a solution g Rqa of the equation (2.5) connected
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with the problem (2.1)-(2.2); I is the identity operator. The operator L maps the
function o into the joint solution v Lo T(Ro) of the equation (2.5) and the
problem (2.1)-(2.2).

The symbols T*, G], B*, R*, L*, and so on denote the corresponding dual op-
erators in the Hilbert space X (we shall show that the operators R and L are well
defined on sets which are everywhere dense in X).

For an n-vector -11,117= we denote
Below we shall consider initial-boundary value problems of the type of [2, 3.4-

4.1] with a boundary condition at t 0. The symbol A" will denote the set of processes
h(x, t,w) which are representatives of some functions in X, predictable [2, p. 16] for
all x, and taking values in L2(D) for all t,w. The symbol R"-1 will denote the set of
processes h which are representatives of functions (classes) in X-1 and representable
in the form h (7,), where ]11,"" ,nll, i ( x0 (Vi). Solutions of boundary
value problems are defined in [2] for free terms in Xk. It is known [24, Chap. 3] that in
every equivalence class of X-1, X there are representatives of R’-1, A’, respectively.
Therefore, we can (and shall) understand by a solution of boundary value problems
of the type of [2] with an initial condition at t 0 for free terms in Xk k -1 0
an extension to these Hilbert spaces of continuous operators (using suitable theorems
of [2]) which map free terms of boundary value problems into solutions in X N Co.
Then a boundary condition of the form g(x, t, w)l(x,t)eOoQ 0 is said to be satisfied if

g E X Co and g(x, 0, w) -0 for a.e. x, w.
THEOREM 3.1. The operators Xo X1 are continuous and have the .form

Gh q, where the function q X f Co satisfies the boundary value problem

(3.1) dtq(x, t, w) A* (x, t, w)q(x, t, w) dt + h(x, t, w) dwj (t),

(3.2) q(x, t,w)l(x,t)eOoQ O.

THEOREM 3.2. The operator B*" X --, X is continuous and has the .form
B*h z, where the function z satisfies the boundary value problem

(3.3)
d

dtz(x,t,w) A*(x,t,w)z(x,t,w)dt + y (V,j(x,t,w)h(x,t,w))dw(t),
j=l

(3.4) z(x, t,w)l(z,t)eooQ O.

For h 2( the solution z B*h X Co is understood in the sense of [2], for
h X, h q ,1, the solution is the limit in X of a sequence B’hi, where hi
and Ilhi hllxo --* 0 as

The theorem stated above contains the assertion of existence of a "generalized"
solution in the class X (or of the possibility of defining a solution as the corresponding
limit in this space) for a coefficient belonging to the class X-1 of the stochastic
differential in the free term of the equation. This assertion is apparently new for the
theory of partial It5 equations.

THEOREM 3.3. For d < do, the operator R* X X-- is determined uniquely
and the operator R* X X is continuous. For r X1, this operator has the .form
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R*r h, where h r- z and the function z E X Co is a solution of the boundary
value problem

dtz(x, t, w) A* (x, t, w)z(x, t, w) dt

(3. 1 + E (V, fl(x, t, w) [r(x, t, w) z(x,t,w)])dw(t),
j=l

z(x, t, ,.,.,)l(,t)eOo 0.

THEOREM 3.4. For d < do, the operator L* X X is continuous and has
the form L* h, where the function h X N Co is a solution of the boundary value
problem

(3.7)

dth(x,t,w) [A*(x,t,w)h(x,t,w) + (x,t,w)]dt
d

E (V, (x,t,w)h(x,t,w))dw(t),
j=l

h(x, t,w)l(,t)eooQ O.

Let us note that (3.1) and (3.3) are superparabolic [2] It5 equations, and (3.5)
and (3.7) are superparabolic for d < do and parabolic for d do.

Proof of Theorem 3.1. First let f and f be nonrandom.
Suppose that g e 7-/I is an arbitrary function and the functions j C( --* 2)

are determined by the Clark theorem [21, p. 178] from the representation

(3.9)
d

g(x,t,w) Eg(x,t,w) + E fo j(x,t,p,w)dwj(p);
j=l

2,1the functions u(x,t,s,w) C(s) and 9/j(x t,p,w) C2’( 2) for U g E
are defined in the same way as in the proof of Theorem 2.1. We have

(3.10)

Let G(x, y, t, s) be Green’s function of the boundary value problem (1.5), (1.6) with
the nonrandom operator A(x,t,w) A(x,t); then from (3.10) and the condition
/y (x, t, p, w) l(x,t)eOoQ 0 for a.e. p, w we obtain that, for a.e. p, w,

/j(x, t, p, w) dy G(x, y, t, s)i(y, s, p, w) ds.
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For an arbitrary function h E 7-/l we have

/o /o {[/o ] }(Gjg, h)xo E dt dx dy G(x,y,t,s)[?j(y,s,t,w)ds h(x,s,w)

]o fo]o" foE ds dy dtj(y,s,t,w) G(x,y,t,s, )h(x,t,w)ds (g,Gh)xo.

In view of (3.9) and the fact that g is arbitrary this means that

/o
s

(G]h)(y,s,w) dwj(t) G(x,y,t,s)h(x,t,w)dx.

From this relation we obtain (3.1), (3.2) and the form of G for nonrandom f, .
Now let f, be random. Consider the functions fo(X, t) El(x, t,w), o(X, t)

E(x, t,w). Let A0, A, To, Gj*,o denote the operators corresponding to the function
fo, o, which are defined like the A, A*, T, Gj are defined for the functions f, . We
introduce the operator 91 (Ao- A)To: for go E X we have 9.1go (Ao- A)vo,
where v0 Togo. The operators 91: X-1 Xo X0- X and P2: - are continuous by
Theorem 2.2.

It can be verified immediately that, for g --_o / PAgo, we have Tg --. TOgOo andg ,ogo. This means that j,o(I / 91) and the dual operator in X has
the form --(I / P2")-1*,0

Obviously 92* T0*(A- A*). The form of T* (and analogously of To*) was

established in 2 by formulas (2.8). The operators T* and To* map X-1 continuously
(see [2]-[4]) into X and Co. The operators A* and A map X continuously into

For q X we have z P.l*q X N Co, and z z(x, t, w) satisfies the boundary
value problem dz/dt Az + (A A*)q, zl(x,)eOoQ 0 in Q.

Let us find the form of q (I / 92*) -1 Xfor We have q + P2*q . We
92* Pffdenote z q; then q - z and z (- z) By the assertion proved above the

function z z(x, t, w) satisfies the boundary value problem

dZ A)z + (A) A*)( z) A*(3.11) d-- z + (Ao A*)r], zl(,)eOoQ O.

Thus, z ri-q X N Co and q E X1.
Let us find the form of q (I + P2")-1 for 6j*,oh, where h X. By

Theorems 3.4.8 and 4.1.1 of [2] the function r (x, t,w) e X C and satisfies,
by the proof, the boundary value problem d Adt + h(t), ](x,t)eOoQ O.
Moreover, q - z, where the function z z(x, t,w) satisfies a boundary value
problem of the form (3.11). So q X C0. om the formul for dy, and dz
(dz/dt)dt we find dq d- dz and thus we obtain (3.1). Condition (3.2) is
satisfied since the analogous conditions hold for z and . Continuity of the operator

" X X (and even continuity of the operator G]" X C0) follows from
Theorems 3.4.8 and 4.1.1 of [2]. The theorem h been proved.

Proof of Theorem 3.2. By Theorem 2.4, for g X, Xj Gig X. For h X
we have

d / d

j= X j= / Xo
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From this relation and the linearity of the problem (3.1), (3.2) we obtain (3.3), (3.4).
Theorems 3.4.8 and 4.1.1 of [2] imply continuity of the operators B* X -X and
B X --, Co. Continuity of the operator B: X --, X proved in Theorem 2.4 implies
continuity of the operator B*" X- X.

Proof of Theorem 3.3. If h R’r, then h r- z, where z B*h B*(-
z). By substituting the value h r- z into (3.3), (3.4) we obtain formulas (3.5),
(3.6). Continuity of the operator R*" X X (and thus uniqueness of the operator
R*" X -, X) follows from Theorems 3.4.8 and 4.1.1 of [2].

Proof of Theorem 3.4. Let h R*r and z B’h; then h r- z. Let r T*
be determined from the problem (2.8), where e X-1. Using (2.8) and (3.3), (3.4)
we obtain the expression for dth dr- dtz or (3.7), as well as condition (3.8).
Continuity of the operator L* X-1 X1 follows from the form of h L* and
Theorems 3.4.8 and 4.1.1 of [2].

4. Solvability of (2.5).
THEOREM 4.1. Let d < do. Then the operator R: X --, X is unique and well-

defined on some everywhere dense set T(R) c X in X (and in X-1) (that is, (2.5)
has at most one solution g E X .for any X and, in addition, the set of those

0X, .for which the equation is solvable with respect to g X zs everywhere dense
in X). The operators R and L defined on T)(R) can be extended from this set to
operators defined on X- so that the operators R: X- --,X-l, L" X-1 -- X1, and
L: X-1 - Co are continuous.

Let C, denote the set of all C2 N X such that up to equivalence (in X)
g + Bg for some g ?./l, where > r, the integer number r >= 0, and the number

were introduced in 1. We recall that such occured in the statement of Theorem
2.6, which asserts that for these with r > n/2 / 2 there exists a modification in the
class (:20 (and hence in the class C,) and moreover for this modification the value of
the functional (1.3) coincides with L.

THEOREM 4.2. For d > do and r > n/2 + 2, the set , is everywhere dense in

X0"
Proof of Theorem 4.1. The operator R* is defined on the set X which is every-

where dense in X and maps X continuously into X1. Hence the operator I / B*
inverse to it has a set of values everywhere dense in X and a kernel consisting only of
zero. Obviously, the operator I / B has the same properties. Thus the operator R is
determined umquely and has a dommn that s everywhere dense n X and is denoted

0o -1by T(R). Snce X is everywhere dense n X ,/)(R) s everywhere dense in X
It remains to prove the assertion concerning the extension of the operators to

X-1 Fork=0,+/-l,+/-2, u u(x,t,w) EX the symbolAku will denote the function
in X-k obtained by the application, for a.e. t, w, of the operator Ak introduced in

1 in the definition of the spaces Hk to the function u(.,t,w) L2(D). In view of
Theorem 3.3 we have, for some constant c > 0 and for any T(R), h X,

(R,h)x_ .-(i-lR,i-lh)xo (R,i-2h)xo (i-l,iR*i-2h)xo

This inequality implies the existence of a continuous extension of the operator R to
X-1. The corresponding assertion of the theorem for the operator L TR follows
from Theorem 2.2. The theorem has been proved.
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Proof of Theorem 4.2. For an arbitrary number e > 0 and for o E X, it is
required to find Oo E C. such that I1- ollxo < e. By Theorem 4.1 there exists

o’ X such that g + Bg’ for some and IIo- Ilxo < e/2. The norm

III / Sll of the operator (I + S)" X X is positive since this operator has an

image which is everywhere dense in X. For g’ R, there exists g" 7 such that
" Bg"IIg’- g"llxo < 11I + BI1-1/2. By Theorem 2.6, the function o g + has a

modification in the class C2. This function E C2 is the one required since

The theorem has been proved.
Proof of Theorem 2.3. By virtue of Theorem 3.1, we have, for some constant c > 0

and for any g X, h X,
(G#g, h)xo (g, Gh)xo (A-g AGh)xo < IIA-gllxollAG#hl[xo

This inequality implies the assertion of the theorem.

5. Representation of functionals of It5 processes in the form of solu-
tions of boundary value problems. Let us adduce some sufficient conditions for
the functional (1.3) to coincide, for a given , with a solution of the problem (2.1),
(2.2) and (2.5).

THEOREM 5.1. Let D Rn or D Rn, d < do; let the function/(x,t,w)
f(t,w) not depend on x, the function f , and let at least one of the following
conditions hold:

a) the function f(x, t, w) f(t, w) does not depend on x and the function e
C2 f X;

b) n 1 and the function qo 2 f X
c) n 1 and (x, t) is a nonrandom Borel measurable function of L2(Q).
Then the value v(x, s, w) of the functional (1.3) as a function of (x, s, w) belongs

to X N Co and coincides with Lo as a function in X and in Co (i.e., is a solution

of the problem (2.1), (2.2), and (2.5)).
COROLLARY 5.1. Under the assumptions of Theorems 4.1 and 5.1 the estimates

hold.for the functional (1.3), where the constants ci > 0 depend only on n, d, do, Q, f, ,
and, more precisely, as is seen from the proofs of 3 and [2], only on n, d, do, Q, and
the values

6= inf Det(x,t,w)(x,t,w)T,

K2 sup I/3(x, t, w) K’3 sup

K1 sup l,

(cf. estimates in [1, II.2-II.3]).
Proof of Theorem 5.1. Let assumptions a) or b) hold. For a function }(x)

L2(Rn) the symbol (}) will denote its averaging (convolution) with the kernel of
the Sobolev averaging (x/e)e-n. Here the function (x) 0 for Ix[ >_ 1, (x)
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xn exp {Ix12(Ix12-1)} for Ixl < 1; xn is a normalizing factor such that ft,, (x)dx 1.

If 6 H-1 and O/Ox:i where L2(Rn), j 6 {1,’", n}, then we assume that

()e(X)=__n_l/t

0 (y-x)(y)dy"
Let D Rn. For functions u e X or u e X-1, the symbol (u) denotes a function

in C2 coinciding with (u(.,t,w)) for all t,w such that u(.,t,w) 6 U 52(R) or

u(., t,w) 6 S- respectively (i.e. for i.e. t, w)
Let D Rn. In this case, functions defined on are assumed to be extended

to Rn [0,T] , and the operation (.) is applied to them according to the rule
indicated above.

Everywhere in the proof of this theorem, C2m will be the space Cn 52([0, T]
t, , A P, Cm(l:n)). So, for m 0, 1,2,. and u 6 X or u 6 X-, we have
(u) 6 Cn for the spaces X, X- defined for D Rn aswell as D # Rn.

For D # Rn we denote by De a region with a C2-smooth boundary which contains
the union of 2e-neighborhoods for all x 6 D and which itself is contained in the
union of 3e-neighborhoods for all x 6 D. The symbol .,8(w) denotes the random
time TAinf{t: yX’8(t,w) }. For n 1;tn we assume that n n Rn,
C 8 Tg 8=_ T.

Let D Rn or D : Rn, g R X-1 v L, X gg, X gig. Then
v 6 X N Co, Xj 6 X and, for all s, x, we have

(v)(x, s, w) (Av + g)(x, t, w) dt (X)(x, t, w) dw(t),

0 in the case D Rn, v (x, T, w) 0

with probability 1.
We introduce the functions A (Av)- A(v), (I) A / (). These functions

belong to the class C22. The function (v) e C is a solution of the problem of the form
(2.1), (2.2) with the free term (g) + A 6 C22 N X-1 in the cylinder D (0,T). By
Theorem 2.5, for any s 6 [0, T] for i.e. (s, w) 6 n and for i.e. (s, w) 6 [0, T] ,
we have

(5.1)

for any x 6 D.
Let us estimate A. For i.e. t, w we have v(., t, w) e H and

Ov

Under assumption a) this value is equal to zero.
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The HSlder inequality and the inequality (x)2 < xn(x) imply that

for a.e. t,, where ci > 0 e constangs and ((t,) is some Nnction in L([0,T] x, P, I1 X P, R).
Let e 0. For the function

(,) 2 su, ]V(, ,)] e L ([0, T] , , , P,

we have I(V)(x,t,w) + ](x,t,w) 2(t,w) for a.e. t, w. Moreover, for a.e. t, w,
()(x, t, w) V(x, t, w) for any x n. We have also A 0 in the metric of C for
n 1. Thus,

()[’"(t,),t,w] [’(t,),t,] et O,

om these relagions and ghe Lebesgue theorem we see tha he firs germ in the right-
hand side of equality (g.1) ends, in the meric of (,,P,N), o he right-hand
side of equaligy (1.a). Moreover, the left-hand side of (g.1) gends to v in the

merics of 0 and X a function of (, s, ).
o complete ghe proof of he heorem for the ce of sumpions a) and b) we

prove ghag ghe second germ in ghe righg-hand side of (g.1) gends go ero in the megric

of (,, P, N). Obviously his erm is equal o ero in ce D N. or D N
and n 1, we obgain

for a.e. t, . Moreover, re (w) () a.s. since r () TAinf {t: ’(t, ) }
and for a.e. here exists () > 0 such that ’(t, ) eN for r’() < T,
t r’() + O, 0 e (0, ()]. Hence we obtain the required sertion for sumpions

a) and b).
Le sumpgion c) hold. We ingroduce he operator defined on (), mapping

functions L() into values p of ghe funcgional (1.a) regarded functions

of (, ,).
assume e (), , he sequence {i} C C( i i, and

i in he meric of () +. By the above proof, i L 0.
Theorems II.2.4 and II.a.4 of [1] imply ha, for some consgang c > 0,

e[o,w]

Completeness of the space Co implies that i v in Co t + and Co. We
havei Li and, by Theorem 4.1, i Li L in Co i +. Hence

L L.
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Theorem 5.1 has been proved.

6. On distributions of It5 processes. Let D Rn or D Rn, d < do and
let po(x) E L2(D) be some nonrandom functions. We consider in the cylinder Q the
boundary value problem

(6.1)
d

dip(x, t,w) A*(x, t,w)p(x, t,w) dt E (v, j(x, t,w)p(x, t,w))dwj(t),

(.) (, 0,)= 0(), (,t,)lo. =0.

The boundary condition on OD in (6.2) is not considered for D Rn.
Equation (6.1) is a superparabolic It5 equation [2]. A solution of the problem

(6.1)-(6.2) is understood to be analogous to [2]; this problem has a solution p E
X )Co. The boundary conditions (6.2) for p X N Co are said to be satisfied if
p(x, O,w) Po(X) for a.e. x, w.

LEMMA 6.1. For X and s [0, T], the equality

(6.3) p(x, s, w)v(x, s, w) dx E dt p(x, t, w):(x, t, w) dx ,
holds with probability I. Here v L X Co is a solution of the problem (2.1),
(.), (.).

Let, in (I.i), (1.2), s 0 and let x x(w) be a random n-vector. We sume
that Ea(w)} < +, (w) e D a.s., the vector x(w) does not depend on W(t)
for any t 0 and h a probability density po(x) L2(D). Let y(),0 (t, w) be the
corresponding solution of equations (i.I), (1.2) and let the random time T()’0(W)
T A inf {t: y()’(t, w) }. The symbol l(t,w) denotes the indicator function of
the event {(),0(w) t}. For D we have T

()’(W) T, I (T, W) i, for
OStST.

THEOaEM 6.1 Let C2X, and let the assumptions of Theorem 5.1 hold.
Th/o a.. (,) [0, T] / (d/o e [0, T] o /D a)
the following equality holds:

(.) E{(, ):[:),0(, ), ,] :} f?(, , ):(, ,) d.

This theorem establishes the distribution of the process y()’(t, w) (broken off
at the exit of if D R); Ep(x, t,w) is the distribution density of the process. A
close result is proved in [2, Thin. 5.3.1], where equality (6.4) is obtained for D R
and coefficients f, of general form (no restrictive sumptions of Theorem 5.1 are
required). Moreover, in [2] another method of the proof is used, and equality (6.4) is
obtained only for nonrandom and D R, which is essential. Theorem 5.3.1 of [2]
establishes the distribution of the It6 process y()’(t, w); therefore with its help we
can obtain the following analogue of Theorem 5.1 (less strong, however, for functions
f and of general form).

THOaEM 6.2. Let D R, d < d0, and let the nction :(x, t) C()L(Q)
be nonrandom. Then
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Here (x, O) e L2(Rn) is a nonrandom modification of the function v(x,s,w)l,=o,
where v L e X f Co (in other words, v(x, O) v(x, O,w) for a.e. x, w).

The proof of Lemma 6.1 follows from equalities (2.4), (2.5) and the equality

{ ((, ,),(, ,)1o }

((, r, ), (, r, )). et ("(, t, )p(, t, ), (, t, )).
j=l H0

d

j=l

Proof of Theorem 6.1. Let E L2 ([0, T] t, , P, It) be an arbitrary function.
Consider the functions (x, t, w) (x, t, w)(t, w) and v v(x, s, w) L e X fCo.
We have v(x, O,w) e L2(f,JZo, P, L2(D)). The probability of any event of ’0 is equal
to 0 or 1. Thus the function v(x, 0, w) has a nonrandom modification (x, 0) e L2(D)
such that v(x, O) v(x, O, w) for a.e. x, w.

For x 6 D we consider the (n + 1)-dimensional process

?x (t, w) Ilyx’ (t, w), zx (t, w)I1’ where z(t,) [,0(p, ), p, ] ap.

Analogously we define the process V
x() (t,w) for a random vector x(w) using the

process y(),0 (t, w) instead of y,0 (t, w).
On functions of the form /(t)= Ily(t),z(t)ll, where y(.) e C([0, T] Rn)

and z(.) e C([0,’] --. R), we define the functional F[v}(.)] Z(T), where T

min {T, inf {t: y(t) }}. By Theorem 5.1, O(x, 0) EF[/x(., w)] for a.e.x. By
virtue of Theorem II.9.4 of [1] establishing an analogue of the Markov property for It6

processes, we have EV[x(w), 0] EF[}x() (., w)]. Thus

x)(, 0)x E[(), 0] E f0 [(),o (t, ), t, ] (t,) t.

From these equalities and equality (6.3), where s 0, we obtain

E p(x, t, w)(x, t, w) dx (t, w) dt

E I.(t,o)[(l’(t,o),t,o]((t,o)dt.

Since is arbitrary, this relation implies the assertion of the theorem.

Proof of Theorem 6.2. The existence of a nonrandom modification for the func-
tion v(x, O, w) can be established as in the proof of Theorem 6.1. By virtue of The-

orem 5.3.1 of [2] the left-hand member of equality (6.5) coincides with E fQ p(x, t, w)
x(x, t)dx dr. By Lemma 6.1 this value is equal to the middle member of equality

(6.5) (and hence to the right-hand member of this equality). The theorem has been
proved.
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