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1. Formulation of the problem and main assumptions. Let us consider
a probability space (2, F,P), where Q = {w} is a set of elementary events, F is
some P-complete o-algebra of events, P is a probability measure on F. We consider a
standard dy-dimensional Wiener process W (t) = |lw (), - -, wg, (t)|| with independent
components. The part of this process ||wy(t),---,wq(t)||, where d < dp, is denoted
by w(t). The process w(t) generates the filtration of P-complete o-algebras F; =
o[w(s), s £ t] C F in the usual way.

We consider an n-vector It6 stochastic differential equation

(1.1) dy™* (t,w) = fy"°(t,w), t,w] dt + B[y"°(t,w), t,w] AW (2),

(1.2) ¥ (s,w) =z,

where 0 < s <t < T, x € R", and the number T > 0. The functions f(z,t,w): R" x
R x Q- R", B(z,t,w): R® x Rt x @ - R™*? are progressively measurable with
respect to the filtration of o-algebras F, for any € R". These functions are measur-
able, bounded, satisfy the global Lipschitz condition in z uniformly in ¢,w, and are
continuous in z,t for any w. By a solution of (1.1), (1.2) we shall mean a “strong”
solution.

Let a region D C R" be given, and let either D = R" or the region D be
simply connected, bounded, and have a C*-smooth boundary. Let us consider the
cylinder @ = D x (0,T), and, for each (z,s) € @, the random variable 7°°(w) =
T Ainf {: y™°(t,w) ¢ D}, that is, the first exit time from the set @ = Q U 0Q for the
vector [y™°(t,w),t]. If D = R", then 7"°(w) = T.

This paper is devoted to the study of functionals of the form

x,8

(1.3) v(z,s,w) = E{ /: ¥ o[y™ (tw), t,w] dt | .7-'8}.

Here the functions ¢(z,t,w): R" x R" x Q — R are progressively measurable with
respect to the filtration F; for any z € R"; E{- | F,} is the conditional expectation.

For distributions of such functionals of It6 processes, which are not Markov,
estimates are given in [1, Chap. II].

The goal of the paper consists in the representation of functionals (1.3) by solu-
tions of special boundary value problems for stochastic partial differential equations
introduced in §2. In §3 we establish the duality of these problems to boundary value
problems for It parabolic equations which allows us to obtain supplementary infor-
mation about solutions of boundary value problems of both forms (Theorem 3.2 and
Theorem 4.1). Sufficient conditions for a representation of a solution of the boundary
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value problem in the form (1.3) are obtained in §2, sufficient conditions for a repre-
sentation of the functional (1.3) in the form of a solution of a boundary value problem
are obtained in §5 (these cases are different because the function ¢ does not coincide
with the free term of the partial equation if the process y”°(t,w) is not Markov). A
certain smoothness of the functionals (1.3) in z, s is also established (Theorem 5.1).

Let us make additional assumptions.

For j =1,---,dy we denote by 3; the corresponding columns of the matrix 3. In
the case d < dy we denote by 3 the n x (dy — d)-matrix ||Batq,- -, B4, || We assume
that the eigenvalues of the matrices ,BﬂT and B37 (in the case d < dg) are separated
from zero uniformly in all arguments.

Let us fix an integer number r 2 0 and a number [ > 0 such that r <l < r+1,
r = [l]. Let, asin [3, p. 7], H L2 (Q) be the same Banach space of functions on @ which
are Holder continuous together with r derivatives in = and [r/2] derivatives in t. We
assume that the functions f(z,t,w) and B(z,t,w) belong componentwise to H L/ 2(7Q“)
for every w C 2 and their norms in this space are bounded uniformly in w € Q. For
r < 2 the partial derivatives of the components of the matrix 3(z, t,w) of second order
in z are assumed to be uniformly bounded in z,¢,w. In the case r > 0 and D # R" we
assume that the boundary 8D belongs to the class H'*? (see [3, p. 9]). For D =R"
we have 8D = @ and by D and Q we mean R" and R" x [0, T, respectively.

Below, Ly(D), Ly(Q), W' (D), vc[,/'%(-ﬁ), C™(D), C(Q), and so on denote the
usual spaces ([2]-[5]) of real-valued functions on D or Q. For a Banach space X the
symbol || - ||x denotes the norm, for a Hilbert space X the symbol (-,-)x denotes
the scalar product. For a region G C R™ the symbol C(G — X) denotes the Banach
space of continuous bounded functions u: G — X with the usual norm. C"™%(Q — X)
denotes the set of fumctions u(z,t): @ — X belonging to C(Q — X) together with
the first derivatives in z and q derivatives in ¢.

Let us consider the positive self-dual unbounded operator A: Ly(D) — Lo(D) of
the form A = /I — A, where I is the identity operator and A is the n-dimensional
Laplace operator. For k = 0,+1 we introduce the Hilbert spaces H * with the scalar
product (u,v)gr = (Aku, Akv) Ly(D)- We assume that H ~! is the completion of Ly (D)
in the norm | - |1, H® = Ly(D), H' = W3(R") for D = R", and H' = W (D)
for D # R". The coincidence of the corresponding norms for k = 0,1 can be easily
verified (see the description of H * in [2]). For u € H' and v € H™ ! by (u,v)go we
mean (Au, A”'v)go.

The symbol \; denotes the Lebesgue measure in [0,T]. P (and P, for a given
s € [0,T) denotes the completion in the measure A\; € P of the o-algebra of subsets of
the set [0, T'] x 2 generated by stochastic processes which are progressively measurable
with respect to the filtration F; (respectively, of the o-algebra generated by measurable
processes £(t,w) for all t € [0, T] which are measurable with respect to F,).

For integer numbers m > 0, k = 0, +1, we introduce the Hilbert spaces

L*(

X% =L*([0,T] x Q,

X" =L*(0,T] xQ, Pr, M x P, H),

W™ =L*([0,T] x Q, P, A\ x P, W3*(D)),
L*([0,T) x Q, Pr, M\ x P, W3*(D)).
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For p 2 1, s € [0,T] and the number ! fixed above, we introduce the Banach spaces

H =L*(Q, Fr, P, H'*Q)),
Cp =L°([0,T] xQ, P, A x P, C™(D)),
Cp (8) = LP([0,T] x Q, P,, A, x P, C™(D)),
Co = C([0,T) = L*(Q, Fr, P, Ly(D))),
¢="L*Q, Fr, P, C@Q)).
For integer numbers m > 0, ¢ 2 0, the symbol C ! denotes the set of functions

u(z,t,w) belonging to C together with the first m derivatives in z, and ¢ derivatives
in t (the derivatives must exist with probability 1).

We assume that Cy ¢ X° ¢ X™1, X c W' ¢ X° = W°, ' c C c Cy(T), and
so on, meaning the natural dense embedding. Moreover, C,',n C @"(T), Xk c _Xk, and

so on. H' denotes the set ' N W", where r = [l].
We introduce the set 9Q C 8Q and the set 0rQ C 9Q of the following form:

3Q = {0D x [0,TI} U{D x {0}},  8rQ={8D x [0, T} U{D x {T}};

in the case D # R", 8,Q = R" x {0}, in the case D = R", 8;7Q = R" x {T}.
For every w € 2 we define the differential operator

(1.4) A= Az, t,w) = }: filz,t, w) +35 Z bij (€, t,w) e

i,j=1

oz 6:1:]

Here f;, x;, b;; are components of the vectors f, z, and of the matrix b = ﬂﬂ
A*(z,t,w) will denote the differential operator dual to the operator (1.4) (in the
Lagrange sense (see [4, p. 141])).

For g € H' we consider the following boundary value problem in Q:

(15) O (0, 1,) + Al £, 0)U (2, 1,0) = ~g(z,1,0),

(1.6) U(z,t,w)| (@teorg =0

We introduce the operator 7, which maps the function g to a solution U = Tg
of the boundary value problem (1.5)-(1.6). From [3] (see also [2] and [4]) it follows

that the operators 7: X° —» W, T: X' & X T xS C, are continuous.
Moreover, U = Tg € €21 if g e 1.

2. Representation of solutions of boundary value problems in the form
of functionals of It6 processes. In the cylinder ) we consider the following bound-
ary value problem for a stochastic partial differential equation:

(2.1) dv(z, t,w) + [A(z, t,w)v(z, t,w) + g(z, t,w)]dt = x(z,t,w) dw(t),

(2.2) v(z, t’w)l(m,t)eaTQ =0.

Here the function v is scalar-valued and values of the function x are row d-vectors,
X = |lx1," -+ Xall- Equation (2.1) in combination with a boundary condition at t =T
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means, in the case v € CaNCy, g € X°, x; €X 0 that for any ¢ for a.e. (almost every)
z, w,

T T
(23) ’U(:B, taw) =[ [A(iL', p,w)v(w, p,(-U) +g(:c, p’w)]dp_[ X(.’L', P,w) dw(p)

The stochastic integral with respect to dw;(p) of a square-summable progressively
measurable with respect to the filtration F, random function is meant to be the It6
integral. This integral is beheved to be extended in the standard way to an isometric
operator mapping £, = L*([0,T] x Q, P, A, x P, R) into L*(, Fr, P, R). For an
arbitrary function (equivalence class) in £, the value of the integral is, by definition,
an equivalence class in LZ(Q, Fr, P, R) containing the integral of a progressively
measurable representative which always exists [2, p. 11] in a class of £2. The stochastic
integral in (2.3) is defined for every t for a.e. a: as an element of L*(Q, Fr, P, R).

THEOREM 2 1. For any function g € H a pair of functcons v, X, where v €
xX'ncone r=M <l x=lx, - xall x; € X% § =1,+,d, is defined
satisfying (2.1)- (2.2). Moreover, relation (2.2) holds for t = T for a.e. (x,w) € DxQ,
and for D # R" and = € 8D for a.e. (t,w) € [0,T] x Q. These functions v, x; are
determined uniquely up to equivalence (as elements of X 0).

Let us note that the Bismut backward equations [5], which occur in the control
theory for ordinary It6 equations, have a form analogous to (2.1)—(2.2): one must
find a solution of an Ité equation adapted to a nondecreasing (unlike the backward
equations of [2, p. 36]) filtration of o-algebras which takes on a given (for example,
nonrandom) value at a finite time. Usually this problem is solvable for the only
possible diffusion coefficient which must be found in the course of the solution (thus
under the conditions of Theorem 2.1 in view of uniqueness of x for nonrandom f, 3,
g, we have x = 0). Itd equations in an infinite-dimensional phase space, in particular
parabolic Itd equations, are by now well investigated (see, for example, [2] and [6]-[18]
and their bibliographies). The corresponding infinite-dimensional analogues of the
Bismut equations have practically not been studied at though they were introduced
in [19].

We introduce the operators 7, G, G;, j = 1,---,d, which map a function g into
the functions v = Tg, x = Gg, x; = G,9, respectively, satisfying (2.1)- (2 2).

THEOREM 2.2. The operator T can be extended from the set H whzch is ev-
erywhere dense in X and in X' to continuous linear operators T: X' — X',
T: X' 5C, T: X' W

In what follows the continuity of some operator signifies the possibility of its
continuous extension from some everywhere dense set. The operators 7, G; and others
are the corresponding continuous extensions to X -1 (or in stipulated cases to X % or
X ~1) An assertion of the type “v =Tg € C3 for g€ H' and operator 7: X ! — x'»
means that v and g are representatlves with the required properties for the functions
(classes)v—TgeX ,geX !

THEOREM 2.3. The operators G: X' XO, j=1,---,d, are continuous.

DEFINITION. A generalized solution of the problem (2.1)-(2.2) for g € X!
pair of functions v, x, where v=Tg € X' NCy, x =Gg = lIx1, -+ xall, x; € x°.

THEOREM 2.4. The opemtors g;: x° - Wl, j =1,---,d, are continuous. More-
over, G;g € X! forge x° (we recall that X' =w for D=R" and X' c W! )-

THEOREM 2.5. Assume fe Cg, B € C2, let the function g € (32 be a representatwe
of some class in X!, and for the equivalence classes Tg € X° , Gi9 € X let there
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exist representatives v € c;‘ NCy, x; € C2. Then the function
d x;
<p(a:,t,w) = g(m, t7w) - Zﬂj(w’ t’ w)—éj_(a”taw)
=1

belongs to Ca, and, for v and o, relation (1.3) holds for any s € [0,T) for a.e. (x,w) €
[0,T] x Q and for a.e. (s,w) € [0,T] x Q for any z € D.
We introduce the operator B: X 0, x° by the formula

d
ov.;
(24) Bg = - E ﬂj(fl‘,t,UJ) a)f; (.’B, t,UJ), where Xj = ng
Jj=1

THEOREM 2.6. Let r > (n/2) +2, g € H' (the numbers I,r = [I] are fized in
Section 1). Then the hypotheses of Theorem 2.5 hold and there exist representatives
v E c;‘ N Cg, p € cy of the equivalence classes Tg € XO, g+ Bg € x° for which
relation (1.3) holds for any s for a.e. z,w and for a.e. s,w for any =.

Thus the solution 7 g of the boundary value problem is represented in the form
(1.3), where

(2.5) ¢ =g+ Bg.

The question arises whether (2.5) is solvable with respect to g for a given ¢. :

Proof of Theorem 2.1. For a solution of the problem (1.5)—(1.6) we have U €
T c o(o,1) - IPQ, Fr, P, C"*(D)), p = 1,2. For £ € L}(Q, Fr, P,
crt? (D)) the symbol Ex,¢ denotes the projection of ¢ [20] to the space L Q, 7, P,
CT+2(3)). We introduce the functions v(z,t,w) = £ U(z,t,w) and u(z,t,s,w) =
Ex,U(x,t,w). We have v € C]*2, u(.,s,-) € a“(s).

Below let the symbol Di denote any partial derivative in z of order [, 0 £ | < r+2,
and let the symbol D denote either ’Di or 0/0t.

By the Clark theorem (see [21, p. 178]) we have the representation

d T
(2.6) DU(z,t,w) = EDU(z,t,w) + Z/ 7;-D(m, t, p,w) dw;(p) a.s.
=170

Here 'y;P are some functions of the class C(Q — £;) (since DU € C(Q —
L2(Q, Fr, P, R))); the order of arguments is such that Q@ = {(z,t)}.

Let +; denote the functions in (2.6) for DU = U (that is, v; = 'y;D 2). It can
be easily seen that all other '7,-9 are the derivatives of the form D~ of the functions
078 Q — £, and v; € 02"@‘ — £5). Below the partial derivatives Dv; which
occur, for example, in the expression A(z,t,w)y;(x,t,p,w) are assumed to be the
functions 'y;p.

Let us prove that the function v introduced above and the functions

t
Xj(w’t7w) = 7j(wa 0, t)w) —/ A(:’:’ p,W)’)'j(IL‘, P,t,w) dp,
(2.7) 0

X= ”Xh cre de"7

are the ones required.



464 N. G. DOKUCHAEV

We have
Dhv(z, t,w) = E{DiU(:L‘, t,w) | Fi}, Du(z,t,s,w) = E{DU(z,t,w) | F;} as.,

Uex'nc™ (T). Thus the functions v and ’D;v are square-summable in z, ¢, w and
the function ||v||C,+2(5) int,w, that is, v € X' NC3 2. Obviously v(z, t,w)—v(z, s,w) =
¢1+¢z, where (; = u(z, t,t,w) —u(z, t, s,w) and {; = u(z,t, s,w)—u(z, s, s,w). Letting
t — s tend to 0+, we have

Ell(llliz(o) < E”U(w, t,w) — U(z, s’w)“ig(D) —0,

— 0.

t
/ Yj ("l"a 8, Py W)2 dp
8 Ll(D)

d
E|Gli.0) £ ) E

=1

Consequently, v € Cy. By (1.6), relation (2.2) holds for a.e. z, w for t = T and for a.e.
t,w for z € 8D, D # R". In (2.7) the coefficients of one derivatives in A(z, p,w) are
bounded, continuous, and F,-adapted for a.e. w; hence x; € X 0

By virtue of (1.5)—(1.6) and (2.6) we have, for a.e. z, w,

v(z,t,w) = E{U(z,t,w) | F;}

t
= u(z,0,t,w) — / [A(z, s,w) u(z, 5, t,w) + g(z, s,w)] ds
0

= v(z,0 w>+Z/ %(,0,p,0) duy o)

j=1

_ /Ot {A(:c, s,w) [v(m, s,w) + é /: v;(z, s, p,w) dwj(p)] + g(z, s,w)} ds
= v(z,0,w) — /ot [A(z, s,w)v(z, s,w) + g(z, 5,w)] ds

+§{ / @0, p,10) () ~ / s / tA(w,s,w)w(w,s,p,w)dwj@)}-

The sum of It integrals in the right-hand side of the latter equality is equal to
fo x(p) dw(p) by (2.7) and the Fubini theorem for stochastic integrals (see [22]). So,
for v, x, relation (2.3) holds and v, x are the ones required.

We introduce the operator T*: X° — X° by the rule 7"k = 7, where the function
reX'n Cp is a solution of the boundary value problem

7T *
(2.8) —&—(m,t,w) = A" (z,t,w)r(z,t,w) + h(z,t,w), w(z, t,w)l(m,t)eaoQ =0.

The operator 7*: X° — X° (and even the operator T*: X! — X 1) is linear and
continuous (see [2] and [3]). The dual operator in the Hilbert space X° is denoted by
T; the operator 7: X % _, X° is continuous. For some v’ € C3 NCyNX" and x; e x°,
let (2.1)—(2.2) hold as indicated in the theorem. It can be verified immediately that
(T*h,g)xo0 = (h,v')x0 (Vh € XO). So v' = Tg in X° and hence v = v' in X°. From
(2.3) we obtain that, if v, v e c% NCy and v' = v in XO, then x; = x} (Vj) in Xx°.
Thus v and xi,- -, xq are determined uniquely in X % The theorem has been proved.
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The proof of Theorem 2.2 follows from the estimates

lvllx: + llvllc, < IUllgr + 1Tl < eallgllxrs  llvllwe < Ul < eallgllxo,

which hold for constants ¢; > 0 common for all g, v, U in the proof of Theorem 2.1,
by virtue of known (see [2]-[4]) properties of the operators 7 and properties of the
operation E{- | %;}.

The proof of Theorem 2.3 will be adduced in Section 4.

Proof of Theorem 2.4. Let us consider functions

v =(z,t,p,w) € L*([0,T]xQ, P, \xP, C*@))NL?([0, T|xQ, P, M xP, W3(Q)),

which are equal to zero in the case D # R" for z € 8D for a.e. p, w (here Q = {(z,t)}).

Using the estimate [4, p. 523, (149)] for D # R" and a similar estimate for D = R",
for a constant ¢; > 0 common for all such v, we obtain the estimate

T 2 T 2

E [ It to)liyott S E [ N G0l A

2 LTI, 2% 2
+ “——-— z,t, p,w
L2(Q) ; 6:::@-( o)

T /16y
(2.9) §01E/0 (“E(xvtap’w) L2(Q)

n 2
’ ;L; l‘ggggg(w’t’ P w)“i,(Q))dp'

Obviously this estimate can be extended to all functions v = 7(z,t, p,w) which
belong to 02’1(@_ — £,), are square-summable in @ x [0,T] x Q together with the
corresponding derivatives and are equal to zero for x € 8D in the case D # R". Such
are the functions +y; in the representation (2.6) for U = Tg, g€ H'. The right-hand
side of the latter inequality in (2.9) under the substitution v = +; is finite and does
not exceed the value

(2.10) c2<||U||ng + ”%j—”;) < esllglo,

where ¢; > 0 are constants the same for all g € H'. Thus

(211) 73 (@, st )| 1 < Vs llgllxe-
From (1.5)—(1.6) and (2.6) we obtain

d T g
> [ P pw)dule) = 5 (e00) - B{G @ ow) | 7.}
j=1"?
= —A(z,s,w) [U(:c, s,w) — E{U(ﬂ"', sw) | fs}]
d T
= _Z/ Az, 5,w)v;(z, s, pyw) dw;(p),
j=1"¢

for (z,s) € Q with probability 1. This relation and (2.7) imply that, for a.e. z, t, w,

ta .
xj(z,t,w) =’yj(w,0,t,W)+/0 %(w,s,t,w) ds = v;(z,t,t,w).
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By extending the estimate (2.11) from the everywhere dense subset H to X 0 we
obtain the assertion of the theorem.
Proof of Theorem 2.5. As is seen from (2.1), the differential

dv(z,t,w) = (z, t,w) dt + x(z,t,w) dw(t),

where & = —Av — g € C2, x € C3, exists. We assume that o(z,t,w) and x(z,t,w)
are defined on R™" x Q and are equal to zero for (z,t,w) & Q x Q. For ¢ > 0 we
introduce the functions

t
Ue(x, t,w) = e’l/ i(z, p,w) dp,
t—e
t
Xs(x, t, w) = E_l /; X(.’l), P w) dp’ = ”X(e) s Xd )”
—€

¢ t
ve(z,t,w) = BU(z,0,w) + /0 Ue(z, p,w) dp + /0 Xe(z, p,w) dw(p).

We denote 77°(e,w) = (T +¢) Ainf {t: y™°(t,w) ¢ D}. From the It6—Venttsel for-
mula (see [2] and [23]), whose applicability is left without a proof, we see that for a

modification of the function v, for (z,s) € Q in the class @ the following relation
holds:

7% (e,w) F) (&
vs(w,s,w)=—E{ / |:'Ue+A'U€+ZﬂJ = ](yz’s(t,w),t,w)dtlfs} a.s.

j=1
Restricting all functions again to Q x £, we have, as € — 0,

xS ax
Uy — —Av—g =17, Av, — Av, Ve — 0, ﬂ] 9z 'BJ e

in the metric of C3, v, — v in the metric of Cy. In addition 7°°(e,w) — ‘rz’s(w)
uniformly in w € €. Hence we obtain the assertion of the theorem.

Proof of Theorem 2.6. We have v € C32 N Cy, v(z,0,w) = EU(z,0,w) for a.e.
z,w, BU(z,0,w) € C"**(D). From this and also from (2.3), with t = 0, as well as
from the Clark theorem ([21, p. 178]) we obtain successively for [ = 0,1,---,r — 1 for
arbitrary i, j and the vector e; = ||6, |[k—1 (where &, is the Kronecker symbol) that
the limit of the expression

e-l{D:lin(w +€ey, t,W) - D:l,_.xj(m,t,w)},

as € — 0, exists in X° which we denote from now on by 8’szj /62:, = DHIXJ Hence

we can approximate x;(z,t,w) by functions x(') € W" so that D (’) ,cxJ in X°
as i — 400, =0,1,---,r (we can use averagings in x of the type of [1, p. 48] with
a smooth kernel for a.e. t, w, extending x; to R" x [0,T] x Q for D # R"). The

completeness of W' implies the existence of the limit x( D in W equivalent to x; in
X°. From the inclusion (see [3, p. 61]) W™ C C# we obtain the required assertion.
3. Forms and properties of dual operators. In addition to the operators 7,

G;, B introduced above we shall consider the operators R = (I + B)™',L=TR. The
operator R maps a function ¢ into a solution g = Ry of the equation (2.5) connected
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with the problem (2.1)-(2.2); I is the identity operator. The operator L maps the
function ¢ into the joint solution v = Ly = T(Ry) of the equation (2.5) and the
problem (2.1)—-(2.2).

The symbols 7%, G;, B*, R*, L*, and so on denote the corresponding dual op-
erators in the Hilbert space X 0 (we shall show that the operators R and L are well
defined on sets which are everywhere dense in X 0).

For an n-vector £ = ||§;]|7=; we denote (V,¢) = Y-, 6¢;/0z;.

Below we shall consider initial-boundary value problems of the type of [2, §§ 3.4
4.1] with a boundary condition at ¢ = 0. The symbol X % will denote the set of processes
h(z,t,w) which are representatives of some functions in X°, predictable [2, p. 16] for
all z, and taking values in Ls(D) for all t,w. The symbol X ~! will denote the set of
processes h which are representatives of functions (classes) in X ~! and representable
in the form h = (V,£), where £ = ||&,---, &, & € x° (V7). Solutions of boundary
value problems are defined in [2] for free terms in X*. It is known [24, Chap. 3] that in
every equivalence class of X -1, X° there are representatives of X _1, X 0, respectively.
Therefore, we can (and shall) understand by a solution of boundary value problems
of the type of [2] with an initial condition at ¢ = 0 for free terms in X k k=-1,0,
an extension to these Hilbert spaces of continuous operators (using suitable theorems
of [2]) which map free terms of boundary value problems into solutions in X' N Cj.
Then a boundary condition of the form g(z,t,w)|(s,1)ca,@ = 0 is said to be satisfied if
g€ X'NnC, and 9(z,0,w) =0 for a.e. z, w.

THEOREM 3.1. The operators Q'; : Xo — X, are continuous and have the form
g;‘ h = q, where the function g € X 'n Cy satisfies the boundary value problem

(3.1) diq(z,t,w) = A™(z,t,w)q(x, t,w) dt + h(z,t,w) dw;(t),

(3.2) Q(wa t, w)l(a:,t)eaoQ =0.

THEOREM 3.2. The operator B*: X° — X° is continuous and has the form
B*h = z, where the function z satisfies the boundary value problem

d
(33)  diz(x,t,w) = A" (3, t,w)2(z, t,w) dt+ Y (7, B5(x, t,w)h(z, t,w)) dw; (£),
j=1

(34) 2(:1}, t, w)l(m,t)eaoQ =0.

For h € X' the solution z = B*h € X" N Cy is understood in the sense of [2], for
h € Xo, h & Xl, the solution is the limit in X° of a sequence B"h;, where h; € xt
and ||h; — h||xo — 0 as i — +o0.

The theorem stated above contains the assertion of existence of a “generalized”
solution in the class X° (or of the possibility of defining a solution as the corresponding
limit in this space) for a coefficient belonging to the class X~ ! of the stochastic
differential in the free term of the equation. This assertion is apparently new for the
theory of partial It6 equations.

THEOREM 3.3. For d< do, the operator R*: x° = X° is determined uniquely
and the operator R*: X' - X' is continuous. Form € X' , this operator has the form
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R*m = h, where h = © — z and the function z € X N Cy is a solution of the boundary
value problem

de2(z,t,w) = A*(z,t,w)z(x, t,w) dt

(3.5) d
+ Z (v, Bj(z,t,w)[n(z,t,w) — 2(x, t,w)])dw;(¢),

=1

(3.6) (2, t, w)|(z,t)e80Q = 0.

THEOREM 3.4. For d < dy, the operator L*: X' — X' is continuous and has
the form L*¢ = h, where the function h € X 'n Cy is a solution of the boundary value
problem

dih(z,t,w) = [A%(z,t,w)h(z,t,w) + &(z, t,w)]dt

d
(3.7) -3 (9, Bz, t,w)h(z,t,w))dw;(t),
=1

J

(3-8) h(z,t,w)|(z,t)e00@ = 0

Let us note that (3.1) and (3.3) are superparabolic [2] Ito equations, and (3.5)
and (3.7) are superparabolic for d < dy and parabolic for d = dy.

Proof of Theorem 3.1. First let f and 8 be nonrandom.

Suppose that g € H' is an arbitrary function and the functions g; € C(Q — £5)
are determined by the Clark theorem [21, p. 178] from the representation

d t
(39) g(fl‘, t,LU) = Eg(w,t,w) + Z\A gj(za t’ p,UJ) dwj(p);
=1

the functions u(z,t,s,w) € Cg(s) and v;(z,t, p,w) € C2’1(§ — L) forU=Tge€ !
are defined in the same way as in the proof of Theorem 2.1. We have

d ot
; _glU L oU

Jj=1

= — [A(e, Bus,t,t,w) + E{g(a, t,w) | 7}
(3.10)
- A(‘Ta t)u(m?tv Oaw) - Eg(x, t,w)]

d ot
> / [Az, t)v;(@,t, pw) + §5(2:2, ps w)] du; (p)-
=170

Let G(z,y,t,s) be Green’s function of the boundary value problem (1.5), (1.6) with
the nonrandom operator A(z,t,w) = A(z,t); then from (3.10) and the condition
v (@, t, pyw)|(z,t)c80@ = O for a.e. p, w we obtain that, for a.e. p, w,

T
¥z, t, pyw) = /D dy / G(z,y,t,5)3;(y, s, p,w) ds.
t



BOUNDARY VALUE PROBLEMS FOR FUNCTIONALS OF ITO PROCESSES 469

For an arbitrary function h € H' we have

T T
Gaxo =B [ a [ aof[ [ ay [ Gomtomstwas|neso)
0 D D t
T s
B[ s [y [ dtgyw5,0) [ Gloutis )hetw)ds = (6,6 Wxo.
0 D 0 D

In view of (3.9) and the fact that g is arbitrary this means that

GMwsw) = [ duy) [ Gt hate) de

From this relation we obtain (3.1), (3.2) and the form of G} for nonrandom f, .

Now let f, 8 be random. Consider the functions fy(z,t) = Ef(z,t,w), Bo(z,t) =
EfB(z,t,w). Let Ay, Ag, To, G;o denote the operators corresponding to the function
fo, Bo, which are defined like the A, A", T, G; are defined for the functions f, 3. We
introduce the operator & = (4y — A)7Ty: for go € X° we have gy = (Ag — A)vy,
where vy = Tggo. The operators A: X ! X' and %: X° — X° are continuous by
Theorem 2.2.

It can be verified immediately that, for g = go + QAgy, we have Tg = Tygo and
G;9 = G;090- This means that G; = gj,O(I +2)” " and the dual operator in X % has
the form Gj = (I +2A*)™'G;.

Obviously A = Ty (Ag — A™). The form of 7" (and analogously of 7y') was
established in §2 by formulas (2.8). The operators 7* and 7;' map X ' continuously
(see1 [2]-[4]) into X' and C,. The operators A* and Aj map X' continuously into
X .

For g € X' we have 2 =g € X' NCy, and z = z(z,t,w) satisfies the boundary
value problem dz/dt = Agz + (Ag — A*)q, 2|(s,t)c00@ = 0 in Q.

Let us find the form of ¢ = (I +2*) "'y for n € X'. We have ¢ + A*q = . We
denote z = A*q; then ¢ = n — z and z = A*(n — 2). By the assertion proved above the
function 2z = 2(z,t,w) satisfies the boundary value problem

(311) Lo Mot (4 A2 = A4 A~ A0, e =0
Thus, z=n—q€XlﬂCo a,ndlel.

Let us find the form of ¢ = (I + A*) ™' for n = G}oh, where h € X°. By
Theorems 3.4.8 and 4.1.1 of [2] the function n = n(z,t,w) € X' N C° and satisfies,
by the proof, the boundary value problem d;n = Agndt + hdw;(t), nl(z,t)es00 = 0.
Moreover, ¢ = 1 — z, where the function z = 2(z,t,w) satisfies a boundary value
problem of the form (3.11). So g € X ' N C,. From the formulas for d;n, and dyz =
(dz/dt) dt we find dig = dyn — dyz and thus we obtain (3.1). Condition (3.2) is
satisfied since the analogous conditions hold for z and 7. Continuity of the operator
G;: X° — X' (and even continuity of the operator G;: X° — Cj) follows from
Theorems 3.4.8 and 4.1.1 of [2]. The theorem has been proved.

Proof of Theorem 3.2. By Theorem 2.4, for g € Xx°, X; =G;g € X'. Forhe X'

we have
d

d
(Bah)xo = 3 (1609, 851) o = . 3657, 55m))

i=1 x°
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From this relation and the linearity of the problem (3.1), (3.2) we obtain (3.3), (3.4).
Theorems 3.4.8 and 4.1.1 of [2] imply contmulty of the operators B™: X' - x' and
B*: X' Cp. Continuity of the O(Perator B: x° - x° proved in Theorem 2.4 implies
continuity of the operator B*: X° — Xx°.

Proof of Theorem 3.3. If h = R*m, then h = 7™ — 2, where z = B*h = B*(7 —
z). By substituting the value h = m — 2z into (3.3), (3.4) we obtain formulas (3.5),
(3.6). Continuity of the operator R*: X' — X' (and thus uniqueness of the operator
R*: X° — X°) follows from Theorems 3.4.8 and 4.1.1 of [2].

Proof of Theorem 3.4. Let h = R*w and z = B*h; thenh—7r—z Let m = T"¢
be determined from the problem (2.8), where ¢ € X~ '. Using (2.8) and (3.3), (3.4)
we obtain the expression for dih = dyr — dyz or (3. 7), as well as condition (3.8).
Continuity of the operator L*: X ~! _ X! follows from the form of h = L*¢ and
Theorems 3.4.8 and 4.1.1 of [2].

4. Solvability of (2.5).

THEOREM 4.1. Let d < dy. Then the opemtor R: — X0 is unique and well-
defined on some everywhere dense set D(R) ¢ X° in X° (and in X71) (that is, (2.5)
has at most one solution g € x° for any ¢ € x° and, in addztzon the set of those
pE X , for which the equation is solvable with respect to g € x° , 18 everywhere dense
in X°). The operators R and L defined on D(R) can be extended from this set to
operators defined on X~ so that the operators R: X'oXx _1, L X' Xx' , and
L X '> Cy are continuous.

Let C, denote the set of all ¢ € €3 N X° such that up to equivalence (in X 0)
@ = g+ Bg for some g € H', where I > r, the integer number r > 0, and the number
1 were introduced in §1. We recall that such ¢ occured in the statement of Theorem
2.6, which asserts that for these ¢ with r > n/2 + 2 there exists a modification in the
class C3 (and hence in the class C,) and moreover for this modification the value of
the functional (1.3) coincides with L.

. THEOREM 4.2. For d > dy and r > n/2 + 2, the set C, is everywhere dense in
X",

Proof of Theorem 4.1. The operator R is defined on the set X' which is every-
where dense in X° and maps X! continuously into X Hence the operator I + B*
inverse to it has a set of values everywhere dense in X° and a kernel consisting only of
zero. Obviously, the operator I + B has the same properties. Thus the operator R is
determined umquely and has a domain that is everywhere dense in X° and is denoted
by D(R). Since X° is everywhere dense in X ', D(R) is everywhere dense in X~

It remains to prove the assertion concerning the extension of the operators to
X Y Fork=0,+1,42 u= u(z,t,w) € X 0 the symbol A*u will denote the function
in X" obtained by the application, for a.e. t, w, of the operator A* introduced in
§1 in the definition of the spaces H* to the function u(-,t,w) € Ly(D). In view of
Theorem 3.3 we have, for some constant ¢ > 0 and for any ¢ € D(R), he X 0

(Rp,h)x-1 = (AR, A"'h) 4o = (Rp, A72R) 4o = (A0, AR*"A?h)
< llellx: |R* AR 4y < ell@llx-1[[A72R] 41 € cllellx-1 lIBllx-1-
ThlS inequality implies the existence of a continuous extension of the operator R to

X', The corresponding assertion of the theorem for the operator L = TR follows
from Theorem 2.2. The theorem has been proved.
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Proof of Theorem 4.2. For an arbitrary number ¢ > 0 and for ¢ € X 0, it is
required to find ¢y € C, such that ||¢ — @pl|xo < €. By Theorem 4.1 there exists
¢’ € X° such that ¢’ = g’ + Bg' for some g e X° and lle — ¢'llxo < €/2. The norm
I + B|| of the operator (I + B): X° — X? is positive since this operator has an
1mage whlch is everywhere dense in X°. For g € Ry, there exists g E H such that
lg' — ¢"llxe < €|lI + B||~*/2. By Theorem 2.6, the function @y = g” + Bg" has a
modification in the class Cg . This function ¢ € Cg is the one required since

lle = @ollxo < lle = ¢'llxo + ¢’ = ollxo < e/2+llg" — g"lIxollI + Bl <e.

The theorem has been proved.

Proof of Theorem 2.3. By virtue of Theorem 3.1, we have, for some constant ¢ > 0
andforanngX heX

(Gi9,h)xo = (9,G7h)xo0 = (A9, AGF ) 4o < 1A gllx0||AG B 4o
= llgllx-1 |G} Bl 5 < cllgllx-IRllxo.

This inequality implies the assertion of the theorem.

5. Representation of functionals of It6 processes in the form of solu-
tions of boundary value problems. Let us adduce some sufficient conditions for
the functional (1.3) to coincide, for a given ¢, with a solution of the problem (2.1),
(2.2) and (2.5).

THEOREM 5.1. Let D = R" or D # R", d < dy; let the function B(z,t,w) =
B(t,w) not depend on x, the function f € C2, and let at least one of the following
conditions hold:

a) the function f(z,t,w) = f(t,w) does not depend on x and the function ¢ €
Cg nx 0;

b) n =1 and the function ¢ € can x°

c) n=1 and p = ¢(z,t) is a nonrandom Borel measurable function of La(Q).

Then the value v(z, s,w) of the functional (1.3) as a function of (z,s,w) belongs
to X' N Cy and coincides with Ly as a function in X % and in Cy (i.e., is a solution
of the problem (2.1), (2.2), and (2.5)).

COROLLARY 5.1. Under the assumptions of Theorems 4.1 and 5.1 the estimates

lvllo, < erllellix-1 S calipllxo,  llvllxs < esllpllx-1 < eallpllxo,

hold for the functional (1.3), where the constants c; > 0 depend only on n,d, dy, Q, f, B,
and, more precisely, as is seen from the proofs of §3 and (2], only on n,d,dy, Q, and
the values

6= mntlf DetB(a:, t,w)ﬁ(a:,t,w)T, K, = sup |f(m t, w)l
bW

z,t,w

K, = sup |ﬂ(a: t, w)| K3 = sup

E, W x,t ,w|a

(,t, w)|

(cf. estimates in [1, §§ I1.2-11.3]).

Proof of Theorem 5.1. Let assumptions a) or b) hold. For a function n(z) €
Ly(R™) the symbol (n). will denote its averaging (convolution) with the kernel of
the Sobolev averaging ((z/e)e”". Here the function {(z) = 0 for |z| 2 1, {(z) =
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s, exp {|z|*(|z|° —1)} for |z| < 1; 5, is a normalizing factor such that Jrn ¢(z)dz = 1.
Ifne H 'andn= O€/0dx;, where £ = Ly(R"), j € {1,---,n}, then we assume that

(e == [ 5 (L )ewan

€

Let D = R". For functions u € X° or u € X', the symbol (u), denotes a function
in CJ coinciding with (u(-,t,w)), for all ¢,w such that u(-,t,w) € H® = Ly(R") or
u(-,t,w) € H ~! . respectively (i.e., for a.e. t, w).

Let D # R". In this case, functions defined on Q x Q are assumed to be extended
to R" x [0,7] x Q, and the operation (-). is applied to them according to the rule
indicated above.

Everywhere in the proof of this theorem, C2, will be the space Cy* = Lz([O, T] x
Q, P, A x P, C™(R")). So, for m =0,1,2,--- and u € X° or u € X', we have
(). € C3 for the spaces X°, X' defined for D = R" as well as D # R".

For D # R" we denote by D, a region with a C*-smooth boundary which contains
the union of 2e-neighborhoods for all z € D and which itself is contained in the
union of 3e-neighborhoods for all £ € D. The symbol 77"*(w) denotes the random
time T A inf {t: y™°(t,w) ¢ D.}. For D = R" we assume that D, = D = R",
W) =7"%w)=T.

LetD=R"orD;ER",g=R<p€X'1,v=L<p,x=gg,xj=gjg.Then
veX'n Co, Xj € x° and, for all s, z, we have

T T
(©)e(z,5,0) = [ (4v-+ g)u(o,tw) dt - [ 0ctatw) dute),

(v)e(z,t,w)|zeop, =0  inthecase D#R"”, v (z,T,w)=0
with probability 1.
We introduce the functions A, = (Av), — A(v),, . = A.+ (¢)e. These functions
belong to the class C3. The function (v)e € cé is a solution of the problem of the form
(2.1), (2.2) with the free term (g). + A, € C3 N X' in the cylinder D, x (0,T). By

Theorem 2.5, for any s € [0, T for a.e. (s,w) € D, x Q and for a.e. (s,w) € [0,T] x Q,
we have

x,8

o (w)
(©)e(@,8,0) = E{ [© et telan fs}
758 (w)
(5.1) - E{ / &, [y (t,w), t,w]dt | f,}
8
2 w)
+ E{/ ®. [y (t,w), t,w|dt | .7’,}

=)

for any = € D,.
Let us estimate A,. For a.e. ¢, w we have v(-,t,w) € H' and

Az, t,w)=¢"" /D ‘g':é W tw[f(y,t,w) - f(z, t,w)]((m ; y)dy'

Under assumption a) this value is equal to zero.
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The Hoélder inequality and the inequality ¢ (:1:)2 < 3,((z) imply that
|Ac(z,t,w)|

seae™( sup 1£et0) = )] ) [t ([, nc(””“y)zdy)”z

|z—ylse €

- 0
e "025( sup ’—6—f-(a:,t,w)|) ”v(.’t,w)”Hlan - fl(t,w)sn/2—n+l
z,t,w T

for a.e. t,w, where c; > 0 are constants and §;(¢,w) is some function in L*([0,T) x
Q, P, \ x P, R).
Let € — 0. For the function

&o(t,w) = 2 sup lo(z,t,w)| € L2([0,T] x @, P, \; x P, R),
€

we have |(¢):(z,t,w)| + |p(z,t,w)| £ &(t,w) for a.e. t, w. Moreover, for a.e. t, w,
(p)e(z,t,w) — @(z,t,w) for any z € D. We have also A, — 0 in the metric of Cy for
n = 1. Thus,

T
B [ @ ) to] - ol ko) bl [ @ —0
0

T
/0

From these relations and the Lebesgue theorem we see that the first term in the right-
hand side of equality (5.1) tends, in the metric of L*(Q, F,P,R), to the right-hand
side of equality (1.3). Moreover, the left-hand side of (5.1) tends to v = L¢ in the
metrics of C and X° as a function of (z, s,w).

To complete the proof of the theorem for the case of assumptions a) and b) we
prove that the second term in the right-hand side of (5.1) tends to zero in the metric
of L*(Q, F, P, R). Obviously this term is equal to zero in case D = R". For D # R"
and n = 1, we obtain

A [y™° (¢ w), tw] rdt — 0.

q)e [ym’s(t, w)’ t, w] s 51 (ta w)el/Z + 62 (t7w)

for a.e. t,w. Moreover, 7°°(w) | 7°°(w) a.s. since 7°(w) = T'Ainf {t: y™°(t,w) ¢ D}
and for a.e. w there exists § = §(w) > 0 such that y™°(t,w) € R™\D for 7°°(w) < T,
t =1°(w) + 0, 6 € (0,6(w)]. Hence we obtain the required assertion for assumptions
a) and b). _

Let assumption c) hold. We introduce the operator L defined on L,(Q), mapping
functions ¢ € Ly(Q) into values ¥ = Ly of the functional (1.3) regarded as functions
of (z, s,w). B

Assume ¢ € Ly(Q), 7 = Ly, the sequence {cp,};":f - C('Q—l: 9; = Lyp;, and
@; — ¢ in the metric of Ly(Q) as i — +oo. By the above proof, Lyp; = Lyp; € Co.
Theorems I1.2.4 and I1.3.4 of [1] imply that, for some constant ¢ > 0,

- 2
sup E||9(z,t,w) — vi(z, t,w)”Ho < clle = villLa(@)-
te[0,T]

Completeness of the space Cp implies that 9; — v in Cp as t — +oo and ¥ € Co. We
have Ly; = Lyp; and, by Theorem 4.1, Ly; = Ly; — Ly in Cp as i — +oo. Hence
= Ly = Le.



474 N. G. DOKUCHAEV

Theorem 5.1 has been proved.

6. On distributions of It6 processes. Let D = R" or D # R", d < dy and
let po(z) € Lo(D) be some nonrandom functions. We consider in the cylinder @ the
boundary value problem

d
61)  dip(z,t,w) = A" (e, t,w)p(z,t,w) dt = Y (9, B;(x, t,w)p(w,t,w))duw; (t),

i=1

(6'2) p(-’l?, 0, W) = po(ll)), p(x, t, w)'wE@D =0.

The boundary condition on 8D in (6.2) is not considered for D = R".

Equation (6.1) is a superparabolic It equation [2]. A solution of the problem
(6.1)—(6.2) is understood to be analogous to [2]; this problem has a solution p €
x'n Cp. The boundary conditions (6.2) for p € X 'n Cp are said to be satisfied if
p(z,0,w) = po(z) for a.e. z, w.

LEMMA 6.1. For ¢ € X° and s € [0,T], the equality

(6.3) /;)p(m, s,w)v(z, s,w)dr = E{ /ST dt/Dp(w,t,w)<p(a;,t,w) dz | .7-'3}

holds with probability 1. Here v = Ly € X' N Cy is a solution of the problem (2.1),
(2.2), (2.5).

Let, in (1.1), (1.2), s = 0 and let z = z(w) be a random n-vector. We assume
that E|z(w)]® < 400, 2(w) € D a.s., the vector z(w) does not depend on W(t)
for any ¢ 2 0 and has a probability density po(x) € Ly(D). Let ym(“’)’o(t,w) be the
corresponding solution of equations (1.1), (1.2) and let the random time 7°)° (W)=
T Ainf {: *“°(t,w) ¢ D}. The symbol I,(t,w) denotes the indicator function of
the event {r*“*°(w) 2 t}. For D = R" we have @0 =T, I, = (r,w) = 1, for
0tsT.

THEOREM 6.1. Letyp € ’éncg NnX 0, and let the assumptions of Theorem 5.1 hold.
Then for a.e. (t,w) € [0,T] x Q (and even for any t € [0,T] almost surely if D = R™)
the following equality holds:

64 B{LEwelr wu) el | F) = [ o twee o) de.

This theorem establishes the distribution of the process ym(“’)’o (t,w) (broken off
at the exit of D if D # R"); Ep(x,t,w) is the distribution density of the process. A
close result is proved in (2, Thm. 5.3.1], where equality (6.4) is obtained for D = R"
and coefficients f, 8 of general form (no restrictive assumptions of Theorem 5.1 are
required). Moreover, in [2] another method of the proof is used, and equality (6.4) is
obtained only for nonrandom ¢ and D = R", which is essential. Theorem 5.3.1 of [2]
establishes the distribution of the Ité process y“”(“’)’0 (t,w); therefore with its help we
can obtain the following analogue of Theorem 5.1 (less strong, however, for functions
f and S of general form).

THEOREM 6.2. Let D =R", d < dy, and let the function p(z,t) € C(Q)N Ly(Q)
be nonrandom. Then

T
65 E /0 o[y, w), £t = /R po(@)a(a,0) de = Eo[z(w),0]
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Here 9(z,0) € Ly(R") is a nonrandom modification of the function v(z, 8, w)|e=0,
where v =Ly € x'nec, (in other words, v(z,0) = v(z,0,w) for a.e. z, w).
The proof of Lemma 6.1 follows from equalities (2.4), (2.5) and the equality

E{(p(z, s,w),v(z, s,w))H0 | %}

= B{ 6o T, 00, 1) o - [ 0t (A (@8, 0002 0), (0,60 o
-

8

d
9x;
p(.’L’, t,LU), A(.’II, t,w)v(ma t9w) + J=Zl _5';7 (.’l!, taw)ﬁj (.’l?, t,(U) + (p(.’l?,t,(d)) Ho

d

- Z ((V, ,Bj(ﬂ?,t,(U)p((L', t,(.&))), Xj(z’ taw))Ho] l }-s}'
j=1

Proof of Theorem 6.1. Let ¢ € L*([0,7]xQ, P, AxP, R) be an arbitrary function.
Consider the functions ¢(z,t,w) = p(z,t,w)é(t,w) and v = v(z, s,w) = Lp € X'ney.
We have v(z,0,w) € Lz(Q,]-'o, P, Ly(D)). The probability of any event of Fy is equal
to 0 or 1. Thus the function v(z,0,w) has a nonrandom modification ¥(z,0) € Ly(D)
such that v(z,0) = v(z,0,w) for a.e. z, w.

For z € D we consider the (n + 1)-dimensional process

t
nm(t’w) = ”yz,O(t’w), zz(t, w)“’ where zz(taw) = /0 95[3!2'0(/’, w), p, w] dp.

Analogously we define the process 7
process y°“)(t,w) instead of y™°(t,w).

On functions of the form n(t) = |ly(t),2(t)|, where y(-) € C([0,7] — R")
and z(-) € C([0,7] — R), we define the functional F[n(-)] = 2(7), where 7 =
min {7, inf {t: y(t) € D}}. By Theorem 5.1, %(z,0) = EF[p°(-,w)] for a.e. z. By
virtue of Theorem I1.9.4 of [1] establishing an analogue of the Markov property for It6
processes, we have Eo[z(w), 0] = EF[n"“)(-,w)]. Thus

®@) (¢ w) for a random vector z(w) using the

Tz(w),O(w

/ po(2)9(x,0) dz = Ev[z(w),0] = E/ ¢[ym(“’)’°(t,w),t,w]{-"(t,w) dt.
D 0

From these equalities and equality (6.3), where s = 0, we obtain

E/OT (/Dp(a;, t,w)p(z, t,w) da:)&(t,w) dt

—E / " L w)e [
= H(tw)e[y™ T (t w), tw]E(t, w) dt.
0

Since ¢ is arbitrary, this relation implies the assertion of the theorem.

Proof of Theorem 6.2. The existence of a nonrandom modification for the func-
tion v(z,0,w) can be established as in the proof of Theorem 6.1. By virtue of The-
orem 5.3.1 of [2] the left-hand member of equality (6.5) coincides with E fQ p(z,t,w)
x(x,t) dr dt. By Lemma 6.1 this value is equal to the middle member of equality
(6.5) (and hence to the right-hand member of this equality). The theorem has been
proved.
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