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Abstract

The paper introduces a financial market model with transactions costs and uncertain
volatility. This model is a modification of the well-known Black–Scholes model. The solution
to the problem of the pricing of the European call option is obtained by solving a nonlinear
parabolic partial differential equation. The presented option pricing formula relates the price
of an option to the underlying asset price and the bounds of the volatility of the underlying
asset. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most practitioners have adapted the famous Black–Scholes model as the premier
model for pricing and hedging of options. The Black–Scholes model of a financial
market consists of two assets: the risk free bond or bank account and the risky
stock. It is assumed that the dynamics of the stock is given by a random process
with some standard deviation of the stock returns (the volatility coefficient, or
volatility). The dynamics of bonds is deterministic and exponentially increasing with
a given risk-free rate. In the classic Black–Scholes model, the volatility is assumed
to be given and fixed and transaction costs are not taken into account. However, in
any real financial market, transaction costs have to be taken into account.
Furthermore, empirical research shows that the real volatility is timevarying, random
and correlated with stock prices (see Black and Scholes, 1973).
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Because the volatility coefficient appears in the formulas defining the fair price
and the structure of hedging strategies, the estimation of the volatility from usually
incomplete statistical data of stock prices is of a special importance (see Day and
Levis, 1992; Derman et al., 1996; Gannon, 1996; Johnson, 1996; Kupiec, 1996;
Mayhew, 1995; Taylor and Xu, 1994; Wilkie, 1995). Many authors emphasise that
the main difficulty in modifying the Black–Scholes model is taking into account the
fact that the volatility does (as it is shown by statistics) depend on both time and
stock prices. Christie (1982) has shown that the volatility is correlated with stock
prices. Lauterbach and Schultz (1990) notice that the Black–Scholes option pricing
model consistently misprices warrants (see also Hauser and Lauterbach, 1997), and
one of possible explanations of this fact is the invalidity of the Black–Scholes
assumption that the equity return variance is constant.

In modified Black–Scholes models, a number of formulas and equations for
volatility were proposed (see e.g. Christie, 1982; Finucame, 1989; Johnson and
Shanno, 1987; Hcube, 1996; Hull and White, 1987; Masi et al., 1994; Scott, 1987).
The principal assumption of the current paper is related to the bounds of the
volatility.

Another problem arises out of the desire to take into account transaction costs.
Black and Scholes (1972) noticed that in real financial markets transaction costs are
quite large. Many authors remark that the return volatility is correlated with the
trade volume, transactions costs and stock prices (Grossman and Zhou, 1996;
Kupiec, 1996). A number of mathematical models with transaction costs were
proposed (see Davis and Norman, 1990; Edirisinghe et al., 1993; Leland, 1985;
Taksar et al., 1998). In this paper, we introduce and investigate a financial market
model where the costs of jumps and of the high frequency component of the portfolio
are taken into account.

In the present paper, the Black–Scholes model of a financial market is modified
and investigated under the assumption that the volatility coefficient may be time-
varying, uncertain and random. Moreover, in our modified model, transaction costs
are taken into account. We prove that there exists a hedging strategy for the
European call option. The rational price of the European call option is obtained by
solving a nonlinear parabolic partial differential equation. The formula for the
rational price leads to some quantitative conclusions relating the implied volatility
and the pricing of option.

2. Definitions

The diffusion Black–Scholes model of a financial market consists of two assets:
the risk free bond or bank account B=(B

t
)
t≥0 and the risky stock S=(S

t
)
t≥0. In this

model, it is assumed that the dynamics of the stock is described by the following
stochastic differential equation

dS
t
=aS

t
dt+sS

t
dw

t
, t>0, (1)
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where a is the appreciation rate, s is the volatility coefficient, w(t) is the standard
Wiener process. The initial price S0>0 is a given non-random value. The dynamics
of the bond is described by the equation

B
t
=ertB

0
, (2)

where r≥0 and B0 are given constants.
Let X0>0 be the initial wealth at time t=0 of the investor. The total wealth of

the investor at time t>0 is

X
t
=b

t
B
t
+c

t
S
t
. (3)

Here b
t

is the number of the bonds, c
t

is the number of shares or the stock. The
pair (b

t
, c
t
) describes the state of the securities portfolio at time t. We call such pairs

strategies. Some constraints will be imposed later on operations in the market, or,
in other words, on strategies. We will consider the problem of investment or choosing
a strategy and the corresponding problem of hedging of the European call option.

In practice, the volatility coefficient can be estimated from the measurement, S
t
,

and the task is more difficult for the. appreciation rate a, which is harder to estimate
than s. In the classic Black–Scholes model, s is supposed to be known and fixed,
and a is arbitrary and unknown. Our aim is to take into account transaction costs
and the fact that the volatility coefficient s does depend on both time t and the
stock price S

t
. In our model, the main assumptions are related to upper and lower

bounds of the volatility coefficient and the nature of transaction costs.
Consider a right-continuous monoton increasing filtration of complete s- algebras

of events F
t
, t>0, such that w(t) is F

t
-measurable and F

t
does not depend on

w(t+h)−w(t) for h>0. We assume that a=a(t) and s=s(t) are square integrable
random processes which are progressively measurable with respect to the filtration
F

t
.

Assumption 1. The volatility coefficient s=s(t) satisfies the following condition:
s1≤s(t)≤s2 for some constants s1, s2, where 0<s1<s2.

The main constraint in choosing a strategy in the classical problem without
transaction costs is the so-called condition of self-financing.

Definition 1. A pair (b
t
, c
t
) is said to be self-financing in a financial market model

without transaction costs, if

dX
t
=b

t
dB

t
+c

t
dS

t
(4)

Our aim is to extend this definition and the corresponding results to the case of
transaction costs and uncertain volatility.

Definition 2. A pair (b
t
, c
t
) is said to be an admissible strategy if the following

conditions hold:
(1) c

t
, b

t
are square integrable F

t
-adapted random processes;

(2) the process c(t) is piecewise continuous a.s. (almost surely);
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(3) there exists a set of open random time intervals I
k
5[0,T ],I

k
=(t−

k
, t+
k

), such
that t−

k
, t+

k
are Markov time moments, I

k
mI

m
=0 for k≠m a.s., mes { [0,T ]

nN
k=1 I

k
}=0 a.s.,2 where N≤+2 is a random number of intervals, and Ic(t)

has the differential

dc
t
=c̃

t
dt+ĉ

t
dw(t) for tµI

k
,

where c̃t, c̃t are square integrable random processes which are progressively
measurable with respect to the filtration F

t
;

(4) there exists a function G(x,t): R×R�R such that

c
t
=G(S

t
, t), (5)

and G(x, t) is bounded on any bounded domain;
(5) the processes a(t)c

t
and c

t
S
t

are square integrable.
In this definition, I

k
=(t−

k
, t+
k

) are time intervals when c
t

evolves continuously,
and t−

k
, t+

k
are times of jumps. We do not require that t+

k
=t−

k+1 , because in an
important case of strategies described below, the set [0,T ]SnN

k=1 I
k

may be an a.s.
continuous (or non-countable) Kantor type set with zero Lebesgue measure.

We give now constructive sufficient conditions of the admissibility of strategies.
For this, we notice that a strategy (b

t
, c
t
) is admissible, if b

t
satisfies all the above

assumptions, c
t
=G(S

t
, t), where G(x, t): R×[0,T ]�R is a function bounded on any

bounded domain and of a polynomial growth, and there exists a set of open domains
D
k
, k=1,2,…, with piecewise C1-smooth boundaries ∂D

k
, such that

R×[0,T ]=n
k
≥1 (D

k
n∂D

k
), D

k
mD

m
=0 if k≠m, G|

D
k

µW2, 1
2

(D
k
).3 In this case, the

corresponding intervals I
k

are maximum connected open intervals
I
k
={t: (S

t
, t)µD

m
}, [0,T ]SnN

k=1 I
k
={t: (S

t
, t)µnk≥1∂D

k
}.

For any admissible strategy, we introduce some transaction cost for the time
interval [0, t] as

P
0

t
l
t

dt+ ∑
k:t−
k
<t

C
k
,

where l
t

is a given non-negative F
t
-adapted random function which depends on

(b
t
, c
t
) and on S

t
, t≤t, and C

k
are the costs for jump of the stock portfolio value.

Definition 3. An admissible strategy (b
t
, c
t
) is said to be self-financing in a financial

market with transaction costs if

X
t
=X

0
+P

0

t
b
t

dBt+P
0

t
c
t

dS
t
−P

0

t
l
t

dt− ∑
k:t−
k
<t

C
k

(Yt>0) (6)

Assumption 2. We assume that l
t
=c(t)|ĉ(t)S

t
|, where c(t) is a random F

t
-adapted

function and c(t)µ[0, c:] for all t>0, where c:≥0 is a given constant. Furthermore,

2 mes denotes the Lebesgue measure.
3 We denote W2, 1

2
(D) the Sobolev space of functions u=u(x, t) such that u, ut∞, ux∞ , uxx◊ belong L2(D) for

a domain D5R×R.
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we assume that C
k
=Q(|c

t−
k

−c
t+
k−1

|), where Q(x) is a given non-negative deterministic
function.

In other words, the transaction cost over the time period (0, t] is

P
0

t
c(t)|ĉ

t
S
t
| dt+ ∑

k:t−
k
<t

Q(|c
t−
k

−c
t+
k−1

|)

Notice that if c
t
¬const then l

t
¬0, C

k
¬0 and transactions costs are zero.

Moreover, l
t
¬0, C

k
¬0 if c

t
is a smooth enough process such that ∂c

t
/∂t exists. But

the transaction costs are non-zero, if c̃t≠0 or c
t

has jumps. In other words, in this
assumption, the continuous ‘slow’ change of the value of stocks portfolio c

t
is not

taken into account. A similar assumption was used by Leland (1985) in a hidden
form for a limit of discrete time jump strategies as a number of jumps converges to
infinity in a diffusion market model. A similar assumption has been used also by
Grossman and Zhou (1996) for the analysis of the trade volume and the volatility
in a financial market.

We have from Eq. (6) that the the class of admissible self-financing strategies does
depend on the functions c(t), Q. But we show below that the optimal option hedging
strategy does not depend on c(t), Q and does depend only on c: (see Remark after
Theorem 1 below). The case of c:=0, Q¬0 corresponds to zero transaction cost.

We can now rewrite Definition 3.

Definition 4. An admissible strategy (b
t
, c
t
) is said to be self-financing in a financial

market with transaction costs if

X
t
=X

0
+P

0

t
b
t

dB
t
+P

0

t
c
t

ds
t
−P

o

t
c(t)|ĉ

t
S
t
| dt− ∑

k:t−
k
<t

Q(|c
t−
k

−c
t+
k−1

|).

Consider the problem of finding the price of options. Let F(x):R�R be a given
non-negative function and T>0 be a given time. Consider a call option of European
type with the option writer obligation F(S

t
).

In the case of the standard call option of European type, the function
F(x)=(x−K )+=max(0, x−K ), where K is the option striking price. We consider
more general F(x) which may describe exotic options.

The approach of Black and Scholes is based on the idea that the option price
dynamics can be determined by the dynamics of a risk free (hedging) strategy in
the investment problem (see Black and Scholes, 1973).

Definition 5. A strategy (b
t
, c
t
) is said to be a hedge in a financial market with

transaction costs and uncertain volatility if the following conditions holds:
(1) (b

t
, c
t
) is admissible and self-financing, and the function G in Eq. (5) depends

on parameters s1, s1, c:, Q( · ), T, F( · );
(2)

X
t
≥0(Ytµ[0, T ])a.s. (7)



358 N.G. Dokuchaev, A.V. Savkin / Journal of Multinational Financial Management 8 (1998) 353–364

(3)

X
T
≥F(S

T
)a.s. (8)

for all admissible c(t), s(t).
In the approach of Black and Scholes, the option price is the initial wealth which

may be raised to the option writer obligation by some investment transactions.
Following this approach, we define the fair (rational ) price of options.

Definition 6. Let a be the set of all values of the initial wealth X0 such that there
exists an admissible strategy which is a hedge. Then, the fair (rational ) price Ĉ for
the option in this class of admissible strategies is defined as

Ĉ= inf
X
0
µa

X
0
.

We will extend the Black and Scholes results to the case of the uncert volatility
coefficient and transactions costs.

3. The main results

In this section, we assume for the sake of simplicity, that r=0 in Eq. (2) (It is
not essential because of the deterministic character of B

t
). We assume that F(x) is

piecewise smooth and |F(x)|+|dF(x)/ dx|≤const(|x|+1). Furthermore, we assume
that one of the following conditions holds:
(1) The function F(x) is a convex function and there are non-zero transaction costs

(in other words, c:≠0, Q≠0).
(2) The function F(x) may be non-convex, but the transaction costs are absent (in

other words, c:=0, c(t)¬0, Q(x)¬0).
Notice that the function F(x)=(x−K )+ from the standard European call option

is convex.
Suppose H(x, t) is a solution of the boundary value problem for the following

nonlinear parabolic equation

∂H

∂t
(x, t)+

1

2
max

sµ[s
1
, s
2
]
Gs2x2

∂2H

∂x2
(x, t)H+c:s2 K∂2H

∂x2
(x, t)K x2=0, (9)

H(x, T )=F(x), (10)

in the domain x>0, tµ[0, T ]. It is known, that this equation has an unique solution
with locally square integrable derivatives (see Krylov, 1987).

Furthermore, let

X
t
=H(S

t
, t)+P

0

t
a(t) dt, (11)
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where

a(t)= max
sµ[s

1
, s
2
]
Gs2−s(t)2

2
S2
t

∂2H

∂x2
(S
t
, t)H+[c:s2−c(t)s(t)] K∂2H

∂x2
(S
t
, t)K S2t .

(12)

Let

c
t
=

∂H

∂x
(S
t
, t), b

t
=

X
t
−c

t
S
t

B
t

. (13)

Now we are in a position to present the main results of this paper.

Theorem 1. The strategy Eq. (13) is a hedge, and the corresponding total wealth X
t

is defined in Eq. (11).

Theorem 2. The rational price of the option is

Ĉ=H(S
0
, 0). (14)

Theorem 3. Let F(x) be a convex function. Then

H(x, t)=
1

E2p P−2

+2
F Ax exp GŝyEt−

tŝ2

2 HB exp A− y2

2 B dy, (15)

where

ŝ=Es2
2
+2c:s2 . (16)

Moreover, if F(x)=(x−K)+, where K>0 is a constant, then the rational price of
the option is

Ĉ=H(S
0
, 0)=S

0
N(d+)−KN(d_), (17)

where

d±=(ŝET)−1 Aln
S
0

K
±

Tŝ2

2 B.

N(d±) is the cumulative standard normal distribution evaluated at d±,

N(x)=
1

E2p P−2

x
e− y2

2 dy

Remark. The process c
t
has no jumps for the strategy which is optimal in the problem
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of the option pricing. Hence we have proved that we can not improve hedge by
using discontinuous strategies either in a case of C

k
¬0 or C

k
≠0.

4. Proof of results

Proposition. Let F(x) be a convex function. Then the solution of the Eqs. (9) and
(10) coincides with the solution of the equations

∂H

∂t
(x, t)+

1

2
ŝ2x2

∂2H

∂x2
(x, t)=0 (18)

H(x, T )=F(x), (19)

where ŝ=Es2
2
+2c:s2 .

Proof of Proposition. Let H(x, t) be a solution of Eqs. (18) and (19). Suppose that
there exists t0µ[0, T ) such that the function H( · , t0) is not convex. Since T is
arbitrary and the coefficients of the equations are constants, it is enough to consider
only t0=0. Suppose, the function H( · , 0) is not convex. Then there exist
x1>0, x2>0 such that H(x1, 0)+H(x1, 0) <2H((x1+x2)/2, 0). Consider the classi-
cal problem of the option pricing with the volatility coefficient or and without
transaction costs. Let

S
0
=

x
1
+x

2
2

, S(i)
t
=

2x
i
S
t

x
1
+x

2

, c(i)
t
=

∂H

∂x
(S(i)
t

,t), i=1,2.

Then c:t=[c(1)
t
+c(2)

t
]/2 is admissible. Let b:

t
be such that(b:

t
, c:t) is a self-financing

strategy, x: t be the corresponding wealth. It is obvious that (b:
t
, c:t)is a hedge, and

X9 0<H(S0, 0). However, it contradicts the Black and Scholes formula for the rational
price. Hence, H( · , 0) is a convex function and H( · , t) is convex for any time t,
and Hxx◊ (x, t)≥0. Hence, Eq. (9) holds. This completes the proof of Proposition.

Proof of Theorem 1. Let F( · ) be a convex function. From Proposition, the Eqs. (15),
(18) and (19) hold for H defined by Eqs. (9) and (10). Let

G(x, t)=
∂H

∂x
(x, t)

The fundamental solution for Eqs. (18) and (19) is known (see Shiryaev et al.,
1994). Using this solution, we can easily obtain the formula for G and make the
conclusion that G has continuous derivatives Gt∞, Gx∞ , Gxx◊ in Q for any domain
Q=D×(0, T*), where D5R+, T*µ(0, T ) (or GµC22,1 (Q)).

It is obvious that this strategy is admissible with

ĉ
t
=

∂G

∂x
(S
t
, t)s(t)S

t
=

∂2H

∂x2
(S
t
, t)s(t)S

t
, (20)
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l
t
=c(t) K∂2H

∂x2
(S
t
, t)s(t)K S2t . (21)

¿From the Ito’s formula and Eqs. (11) and (12), we have that

dX
t
=d

t
H(S

t
, t)+a(t) dt=G(S

t
, t) dS

t
+C∂H

∂t
(S
t
, t)+

1

2
s(t)2S2

t

∂2H

∂x2
(S
t
, t)D

×dt+a(t) dt=G(S
t
, t) dS

t
−l

t
dt.

Hence the strategy is self-financing. Furthermore, it is obvious that a(t)≥0 and
Eqs. (7) and (8) hold.

In the case of zero transaction cost, we do not need the existence of derivatives
Gt∞, Gx∞ , Gxx◊ and the proof is similar. This completes the proof of Theorem 1

Proof of Theorem 2. In the classic case of zero transaction costs and a known
constant volatility (when c:=0, Q¬0, s1=s2), we have X

T
=F(S

T
) for a hedge, and

fair price is Ĉ=E*F(S
T

), where E* is the expectation by such probability measure
that S

t
is martingale, and, hence, Ĉ is the rational (fair) price. We cannot use this

method in our general case because we have only inequality X
T
≥F(S

T
) and the

values X
T
−F(S

T
) depend on strategies. However, we can use another approach

which does not use martingale properties of hedge wealth. Note, that a different
non-martingale approach was proposed by Wilmott and Atkinson (1993).

Let (b̃
t
, c̃
t
) be some other hedge, c̃

t
=G̃(S

t
, t),X̃t be the corresponding wealth, Ĉ=

X̂O<Ĉ. Suppose that s(t)¬s2, c(t)¬c:. Introduce the following function

H̃(x, t)=P
0

x
G̃(y, t) dy.

Let I
k

be the random time intervals introduced in Section 2 for admissible strate-
gies, k=1,…,N. We have from the Ito’s formula that

H̃(S
T

, T )−H̃(S
0
, 0)=P

0

T
G̃(S

t
, t) dS

t
+ ∑

k=1
N GH̃(S

t−
k+1

, t−
k+1)−H̃(S

t
k+

, t+
k

)

+P
I
k

C∂H̃

∂t
(S
t
, t)+

1

2
s2
2
S2
t

∂2H̃

∂x2
(S
t
, t)D dtH.

Here we use some version of the Ito’s formula for a function with non-smooth
derivatives (see Krylov, 1980; Dokuchaev, 1994). The condition of self-financing
and Eq. (8) give us that

P
0

T
G̃(S

t
, t) dS

t
=X̃

T
−X̃

0
+P

0

T
l
t

dt+∑
k

C
k
=F(S

T
)+j+P

0

T
l
t

dt−X̃
0
.
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Here j≥0 is some random value. Denote

LH̃=
∂H̃

∂t
+

1

2
s2
2
x2

∂2H̃

∂x2
+c:s2 K∂2H̃

∂x2 K x2 .

Then

∑
k=1
N G P

I
k

LH̃ (S
t
, t) dt+H̃(S

t−
k+1

, t−
k+1)−H̃(S

t
k

+t+
k

)H
=H̃(S

T
, T )−H̃(S

0
, 0)−F(S

T
)−j̃+X̃

0
,

where ĵ≥0 is some random value. Denote by X the space W2, 1
2

(Q)* which is dual
to the Sobolev space W2, 1

2
(Q), Q=D×[0, T ], where D5(0, +2) is an arbitrary

interval. The element jµX is said to be non-negative if j, f�≥0 for every fµ
W2, 1

2
(Q) such that f(x, t)≥0. In this sense, LH̃≤0 as an element of X. Then

H(x, 0)≤Ĥ(x, 0) because of Eq. (9). This completes the proof of Theorem 2.

Proof of Theorem 3. The fundamental solution for Eqs. (18) and (19) is known and
Eqs. (18) and (19) hold for H defined by Eq. (15) (see Shiryaev et al., 1994). From
Proposition, the Eqs. (9) and (10) hold for this H. For F(x)=(x−K )+, the formula
for Ĉ is a consequence of the Black–Scholes result. This completes the proof of
Theorem 3.

5. Conclusions

In the classic Black–Scholes model, the volatility is assumed to be known and
fixed. Moreover, in this model, transaction costs are not taken into account. This
paper introduces a modification of the Black–Scholes model which includes time-
varying, uncertain and random volatility, and takes transaction costs into account.
The rational price of the European call option is obtained for this model. The
formula for the rational price may have an interesting economic interpretation.
According to this formula, the presence of transaction costs is analogous to the
increase of the implied volatility. This can be interpreted as a mathematically rigorous
confirmation of the empirical results of Kupiec (1996) and Derman et al. (1996).
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