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Abstract—In this paper, we explore the applicability of the Sinc-
Collocation method to a three-dimensional (3D) oceanography model.
The model describes a wind-driven current with depth-dependent
eddy viscosity in the complex-velocity system. In general, the
Sinc-based methods excel over other traditional numerical methods
due to their exponentially decaying errors, rapid convergence and
handling problems in the presence of singularities in end-points.
Together with these advantages, the Sinc-Collocation approach that
we utilize exploits first derivative interpolation, whose integration
is much less sensitive to numerical errors. We bring up several
model problems to prove the accuracy, stability, and computational
efficiency of the method. The approximate solutions determined by
the Sinc-Collocation technique are compared to exact solutions and
those obtained by the Sinc-Galerkin approach in earlier studies. Our
findings indicate that the Sinc-Collocation method outperforms other
Sinc-based methods in past studies.

Keywords—Boundary Value Problems, Differential Equations,
Sinc Numerical Methods, Wind-Driven Currents

I. INTRODUCTION

IN many fields of study, modelling the governing phe-
nomena leads to a specific set of differential equations,

called boundary value problems (BVPs). In most cases, de-
riving analytical solutions of BVPs is extremely hard or
completely impossible. Therefore, various numerical methods
were developed to attack these problems. Some of the well-
known numerical approximations to BVPs are finite-difference
method [1], finite-element method [2], [3], boundary element
method [4], shooting method [5], spline method [6], and Sinc
methods.

It is well-known that Sinc-based methods are dominant over
other numerical methods, especially in the presence of singu-
larities and semi-infinite domains [7]. They are also character-
ized by exponentially decaying errors and rapid convergence
[8]. Sinc methods reduce the governing differential or integral
equations to a system of algebraic equations which makes
the solution easier. Sinc-based methods have been applied to
diverse scientific and engineering problems comprising heat
conduction [9], [10], population growth [11], inverse problems
[12], [13], astrophysics problems [14], [15], medical imaging
[16], elastoplastic problems [17], and oceanography [18], [19].
Very recently, the application of Sinc-Collocation approach to

the telegraph equation [20] and the second type of the Painlevé
equations [21] has been studied.

In general, there are two equivalent but distinct Sinc ap-
proaches: Sinc-Galerkin and Sinc-Collocation. In earlier stud-
ies, it has been evidenced that the Sinc-Collocation approach
is superior to the Galerkin one regarding its simple implemen-
tation and possible extensions to more general BVPs [22].

In the past century, hydrodynamic models and their nu-
merical solutions obtained many accomplishments. The first
wind-driven current models were one-dimensional systems
based on the work of Ekman [23]. Eventually two- and three-
dimensional models were developed [24], [25]. To derive
approximate solutions to 3D models, several numerical meth-
ods employing spectral methods [26], B-spline approach [27],
Chebyshev and Legender polynomials [28] and eigenfunction
approach [29] were developed. Recently, Sinc-Galerkin ap-
proaches have been applied to a 3D wind-driven current model
[18], [19].

The intent of this paper is to demonstrate an application of
the Sinc-Collocation technique to a steady state 3D model of
wind-driven currents with a depth-dependent eddy viscosity
in coastal regions and semi-enclosed seas. The model is
found in the work of Winter et al. [18]. They formulated
the model as a complex-valued ordinary differential equation
(ODE) and applied the original Sinc-Galerkin approach to
solve it. Later, Koonprasert and Bowers [19], developed a
block matrix formulation for the Sinc-Galerkin technique and
applied it to the same model. In this paper, we apply the
Sinc-Collocation approach to the complex-valued system and
compare the results with those in earlier studies and exact
solutions when available.

Following the introduction, we provide a brief explanation

the Sinc-Collocation treatment that we apply to the model. In
Section 4, several model problems have been used to examine
the accuracy and stability of the method. Finally, in the last
section we discuss the results.

II. PROBLEM FORMULATION

In this section we provide a brief explanation of the model
found in the work of Winter et al. [18]. We refer interested
readers to [18], [19] and references there in.

To develop this model one needs to construct a right-handed
coordinate system with the vertical coordinate z∗ directed
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Fig. 1. A schematic description of the 3D oceanography model with depth-
dependent eddy viscosity

positive downward from the free surface, and with x∗ and
y∗ directed positive northward and eastward, respectively. We
suppose that z∗ changes from 0 to D0 = 100 m, and the plane
at z∗ = D0 = 100 m is an impermeable boundary at the
seabed [18]. This model is simplified by several assumptions.
The ocean depth, D0, and ocean mass density, ρ, are assumed
constant, and the effects of tides, inertial terms, free surface
slope, and variations in atmospheric pressure are neglected
[18]. For a better understanding, a schematic form of the model
is provided in Figure 1. Assuming τw as the magnitude of a
tangential surface wind stress, the currents will be represented
by τ(0) = τw(cos(χ)x̂

∗ + sin(χ)ŷ∗) where χ is the angle
between the positive x∗-axis and the wind direction and x̂∗ and
ŷ∗ are unit vectors in the positive direction of x∗-axis and y∗-
axis, respectively. The horizontal wind-drift current, q∗(z∗), is
the difference between the total velocity and the geostrophic
current and given by q∗(z∗) = U∗(z∗)x̂∗ + V ∗(z∗)ŷ∗. As
well, Internal frictional stresses are parameterized as τ(z∗) =
−ρA∗

v(z
∗) dq

dz∗ , where the specified effective vertical eddy
viscosity coefficient Av

∗(z∗) is a continuously differentiable
function of z∗ ∈ (0, D0) [18]. Considering all earlier assump-
tions, the wind-drift current, q∗, will be driven by solving the
following BVP:

d

dz∗
(A∗

v(z
∗)
dq∗

dz∗
) = −fẑ∗ × q∗, 0 < z∗ < D0, (1)

where the boundary conditions (BCs) are given by

−ρAv
∗(0)

dq∗(0)
dz∗

= τw (cos(χ)x̂∗ + sin(χ)ŷ∗) (2)

−ρAv
∗(D0)

dq∗(D0)

dz∗
= kf ρ q

∗(D0) (3)

The Coriollis parameter at latitude θ is given by f ≡
2Ω sin(θ), while Ω = 7.29×10−5 rad s−1. Since the Coriollis
force acts inversely in northern and southern hemisphere,
Winter et al. [18] assumed that the sea is located in northern
hemisphere, so 0 < θ < π

2 . The parameter kf , is defined as the
linear slip bottom stress coefficient. Substituting the definition
of q∗(z∗) in (1), leads to

d

dz∗

(
A∗

v(z
∗)
dq∗

dz∗

)
= −fẑ∗ × q∗ (4)

= −fẑ∗ × [U∗(z∗)x̂∗ + V ∗(z∗)ŷ∗]

= −f (U∗(z∗)ŷ∗ − V ∗(z∗)x̂∗) .

which would be separated to its parts as

− d

dz∗

(
A∗

v(z
∗)
dU∗(z∗)
dz∗

)
= −fV ∗(z∗), 0 < z∗ < D0

(5)

− d

dz∗

(
A∗

v(z
∗)
dV ∗(z∗)
dz∗

)
= −fU∗(z∗), 0 < z∗ < D0

(6)
Similarly, the separated BCs at the sea surface, and the

seabed are given by

−ρA∗
v(0)

dU∗(0)
dz∗

= τw cos(χ), (7)

−ρA∗
v(0)

dV ∗(0)
dz∗

= τw sin(χ)

ρA∗
v(D0)

dU∗(D0)

dz∗
= kfρU

∗(D0), (8)

ρA∗
v(D0)

dV ∗(D0)

dz∗
= kfρV

∗(D0).

With the help of the non-dimensional variables

z ≡ z∗

D0
, Av(z) ≡ A∗

v(z
∗)

A∗
v(0)

, (9)

q(z) ≡ q∗(z∗)
U0

≡ U(z)x̂+ V (z)ŷ

and non-dimensional constants, κ (depth ratio) and σ (bottom
friction parameter)

κ ≡ D0

DE
= D0

√
f

2A0
, σ ≡ A0Av(1)

kfD0
=
A∗

v(D0)

kfD0
. (10)

where A0 ≡ A∗
v(0), DE ≡

√
2A0

f , and U0 = τwDE

(ρA0)
=

√
2τw

(ρ
√
A0f)

, equations (5) and (6) are transfered to non-
dimensional equations

− d

dz

(
Av(z)

dU(z)

dz

)
= −2κ2V (z), 0 < z < 1, (11)

− d

dz

(
Av(z)

dV (z)

dz

)
= 2κ2U(z), 0 < z < 1. (12)

Likewise, the non-dimensionalizing procedure on BCs leads
to

dU(0)

dz
= −κ cos(χ), dV (0)

dz
= −κ sin(χ) (13)

U(1) + σ
dU(1)

dz
= 0, V (1) + σ

dV (1)

dz
= 0. (14)

For the purpose of transforming the nonhomogenous BCs
to homogeneous ones, the following linear transformations are
applied.

U(z) = u(z) + κ(1 + σ − z) cos(χ), (15)

V (z) = v(z) + κ(1 + σ − z) sin(χ)

The first derivative of the transformations are given by

dU(z)

dz
=
du(z)

dz
− κ cos(χ), (16)
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dV (z)

dz
=
dv(z)

dz
− κ sin(χ)

Hence the ”reduced velocity” components u(z) and v(z)
satisfy

− d

dz

(
Av(z)

du

dz

)
+ κ cos(χ)A′

v(z) (17)

= −2κ2v(z)− 2κ3(1 + σ − z) sin(χ), 0 < z < 1.

− d

dz

(
Av(z)

dv

dz

)
+ κ sin(χ)A′

v(z), (18)

= 2κ2u(z) + 2κ3(1 + σ − z) cos(χ), 0 < z < 1.

where the BCs at the surface and seabed are respectively given
by

du(0)

dz
= 0,

dv(0)

dz
= 0 (19)

u(1) + σ
du(1)

dz
= 0, v(1) + σ

dv(1)

dz
= 0 (20)

The system defined by (17)-(20) could be written in the
complex-velocity system. To obtain the complex-velocity for-
mulation, we need to multiply equation (18) by the imaginary
unit i, and add the result to equation (17). Afterwards by
defining a complex velocity w(z) = u(z) + iv(z), we have

L(z) ≡ Lu(z) + iLv(z)
≡ − d

dz
27

(
Av(z)

du(z)

dz

)
− i

d

dz

(
Av(z)

dv(z)

dz

)

≡ − d

dz

(
Av(z)

dw(z)

dz

)

Hence the complex velocity formulation is shown by

Lw(z)− i2κ2w(z) = F (z), 0 < z < 1, (21)

where

F (z) = [−κA′
v(z) + i2κ3(1 + σ − z)]eiχ.

BCs, evolved by the same procedure, are given by

w′(0) = 0, (22)

w(1) + σw′(1) = 0. (23)

III. THE SINC-COLLOCATION APPROACH

In this section, we briefly describe a Sinc-Collocation ap-
proach via first derivative interpolation, that has been recently
developed by Abdella [30]. We refer the readers to paper [30]
where a comprehensive explanation of the method and Sinc
preliminaries are provided.

Assume the general second-order two-point BVP:

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = d(x), x ∈ (a, b), (24)

αay(a) + βay
′(a) = γa, (25)

αby(b) + βby
′(b) = γb. (26)

where αa, αb, βa, βb, γa, and γb are constants.

The Sinc-Collocation approach introduced by Abdella [30],
transforms the BVP as follows such that the BCs become
homogeneous [31]:

u(x) = y(x)− η(x) (27)

where

η(x) = y′(a)H1 + y(a)H2 + y(b)H3 + y′(b)H4 (28)

is the univariate Hermite interpolation with the cardinal func-
tions given by:

H1 =
(x− a)(x− b)2

(b− a)2
, H2 =

(x− b)2(2x− 3a+ b)

(b− a)3
,

H3 =
(x− a)2(2x− 3b+ a)

(a− b)3
, H4 =

(x− b)(x− a)2

(b− a)2
.

Employing (27) and considering η(a) = y(a), η′(a) =
y′(a), η(b) = y(b), η′(b) = y′(b), leads to a new BVP with
homogeneous BCs given by:

a(x)u′′(x) + b(x)u′(x) + c(x)u(x) = e(x), x ∈ (a, b), (29)

u(a) = u(b) = 0, (30)

u′(a) = u′(b) = 0, (31)

where

e(x) = d(x)− a(x)η′′(x)− b(x)η′(x)− c(x)η(x).

Here is the point that our method changes its way from the
original sinc-collocation technique, i.e. it first approximates
u′(x) at sinc points xi by:

u′(xi) =
N∑

k=−N

S(k, h)(ϕ(xi))u
′(xk) =

N∑
k=−N

δ
(0)
i,ku

′(xk)

(32)
Then u(x) is approximated by:

u(xi) =
N∑

k=−N

hk(xi)u
′(xk) =

N∑
k=−N

hδ
(−1)
i,k

u′(xk)
ϕ′(xk)

(33)

Finally, we can approximate u′′(x) via:

u′′(xi) =
N∑

k=−N

gk(xi)u
′(xk) =

N∑
k=−N

δ
(1)
i,kϕ

′(xi)
u′(xk)
h

(34)
where φ(x) is given by

ξ = φ(x) =
1

π
log

(
x− a

b− x

)
(35)

with inverse

x = ψ(ξ) =
b+ a

2
+
b− a

2
tanh

(π
2
sinh(ξ)

)
(36)

and xk = ψ(kh). As well

δ
(0)
i,k =

⎧⎨
⎩

0, i �= k

1, i = k,
(37)
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δ
(1)
i,k =

⎧⎨
⎩

(−1)i−k

i−k , k �= i

0, k = i,

(38)

δ
(−1)
i,k =

⎧⎨
⎩

1
2 +

∫ i−k

0
sin(πt)

πt , i �= k

1
2 , k = i.

(39)

Hence, the discretized version of the equation (29) will be:
N∑

k=−N

Mi,ku
′(xk) = e(xi) (40)

where

Mi,k = a(xi)δ
(1)
k,i

ϕ′(xi)
h

+ b(xi)δ
(0)
k,i + c(xi)h

δ
(−1)
k,i

ϕ′(xk)
(41)

Note that (40) leads to a system of n = 2N + 1 equations
for (n + 4) unknowns including y′(a), y(a), y′(b), y(b) and
u′(xi), i = −N,−N + 1, ..., N − 1, N.
We define the (n+ 4)× 1 vector C by:

C = [C−N−2, C−N−1, C−N , ...C0, ..., CN , CN+1, CN+2]
T

= [y(a), y′(a), u′(x−N )...u′(x0), ...u′(xN ), y′(b), y(b)]T.

The four conditions required to close the system consists of
the two BCs given by equations (25) and (26) and two more
conditions obtained by requiring that u(x) vanishes at the
outside Sinc nodes (−N − 1) and (N + 1):

αaC−N−2 + βaC−N−1 = γa, (42)

αbCN+2 + βbCN+1 = γb, (43)

N∑
k=−N

hδ
(−1)
−N−1,kCk = 0, (44)

N∑
k=−N

hδ
(−1)
N+1,kCk = 0. (45)

The matrix representation of the (n + 4) × (n + 4) system
corresponding to equations (40) and (42)-(45) is given by

AC = E (46)

where E, a (n + 4) × 1 vector, and A, a (n + 4) × (n + 4)
matrix are given by

E = [γa, γb, e(x−N ), ..., e(x0), ..., e(xN ), 0, 0]T,

A =

⎛
⎜⎜⎜⎜⎝

B1

B2

B
B3

B4

⎞
⎟⎟⎟⎟⎠ , (47)

where B1, B2, B3 and B4 are 1× (n+ 4) matrices given by

B1 = [αa, βa, 0, ..., 0],

B2 = [0, 0, ..., βb, αb],

B3 = [0, 0, hδ
(−1)
−N−1,−N , ..., hδ

(−1)
−N−1,N , 0, 0],

B4 = [0, 0, hδ
(−1)
N+1,−N , ..., hδ

(−1)
N+1,N , 0, 0],

and B as a n× (n+ 4) matrix is given by

B = [0, 0,M, 0, 0]

where
0 = [0, 0, ..., 0, 0]T

is a (n×1) vector and M is the (n×n) matrix format of (41).
Once equation (46) is solved, the coefficients are used to

determine the unknown function u(x) and its first and second
derivatives at the Sinc nodes using equations (32)-(34). The
original unknown, y(x) is then determined from equation (27).
Note also that the values of y(x) and y′(x) at the two end
points are also determined directly from the system solutions.

IV. NUMERICAL ILLUSTRATIONS

A. Constant Eddy Viscosity

In this section, we examine the accuracy of the Sinc-
Collocation method in the complex velocity system while the
eddy viscosity is constant. To make reliable comparisons, all
the examples, parameters and variables are same as those
carried out in [18], [19], [32]. For more information readers
may refer to earlier studies.

Since the governing equations and variables were non-
dimensionalized, the only operative constants in (21)-(23), are
κ = D0

DE
= 5, σ = A∗

v(D0)
(kfD0)

= 0.1, and χ = 45◦ [18]. As
well, the nominal values: f = 0.0001 s−1, sea water density
ρ = 1 × 103 kgm−3, and air density ρair = 1.25 kgm−3 are
adopted. The surface wind stress given by τw = CDρairWw

2,
is set at 0.1414 in all model problems. The linear slip bottom
stress coefficient, kf is set at 0.002 ms−1. A∗

v(0) in units of
m2s−1 is given by

A∗
v(0) ≈ 0.304× 10−4Ww

3 (48)

together with the parameters and relationships above, the
constant eddy viscosity is chosen to be

A∗
v(z

∗) ≡ 0.02m2s−1 (49)

In the case of constant eddy viscosity, the exact solution is
available and given by W ∗(z∗) = U0[U(z) + iV (z)] where
U(z) and V (z) are respectively represented by

U(z) = R(Wc(z)) cos(χ)− I(Wc(z)) sin(χ) (50)

V (z) = R(Wc(z)) sin(χ) + I(Wc(z)) cos(χ) (51)

R(Wc(z)) and I(Wc(z)), respectively refer to the real and
imaginary parts of Wc(z), where

Wc(z) =
κ(1− i)σ cosh(κ(1− i)(1− z)) + sinh(κ(1− i)(1− z))

(1− i)[cosh(κ(1− i)) + κ(1− i)σ sinh(κ(1− i))]
(52)

The results of the Sinc-Collocation approach shown by Uc(zj)
and Vc(zj) were compared with the exact solutions, U(zj) and
V (zj), at the sinc grid points S with the mesh size of

h =
log(πdγN/β)

γN
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TABLE I
ERRORS OF EXAMPLE 1 (CONSTANT EDDY VISCOSITY) WHILE
σ = 0.1, χ = 45◦, κ = 5, D0 = 100 m AND DE = 20 m.

N m h ‖EU‖ ‖EV ‖ ‖EW ‖
4 13 0.3163 2.99× 10−3 3.47× 10−3 3.47× 10−3

8 21 0.2015 1.26× 10−4 8.41× 10−5 1.26× 10−4

16 37 0.1224 2.49× 10−6 1.23× 10−6 2.49× 10−6

32 69 0.0720 2.96× 10−8 1.43× 10−8 2.96× 10−8

64 133 0.0414 1.23× 10−10 1.82× 10−10 1.82× 10−10

where d, γ, and β are equal to π
4 , 2, and π

2 respectively. In
order to provide dimensional representation of the velocities
we need to multiply the results by the natural velocity scale
U0.

To demonstrate the accuracy of the method, the maximum
absolute errors are defined by

‖EU‖ = max
−N−2≤j≤N+2

{U0|Uc(zj)− U(zj)|},

‖EV ‖ = max
−N−2≤j≤N+2

{U0|Vc(zj)− V (zj)|},

and
‖EW ‖ = max{‖EU‖, ‖EV ‖}, (53)

where the units are ms−1.
Example 1.(seabed linear stress condition)

To keep the parameters and variables identical to those in [18],
[19], [32], we choose χ = 45◦, the linear stress condition
at the seabed, σ = 0.1, D0 = 100 m, DE = 20 and κ =
5. In this example we solve a discrete system of size (m ×
m) given by (46), where m = 2N + 5. To demonstrate the
numerical convergence of the method we repeat the process
for N=4,8,...,64. The errors are listed in Table I and exhibit a
very high degree of accuracy.

Fig. 2. The Sinc-Collocation Ekman Spiral projection of Example 1 for
different values of N against the exact solution while σ = 0.1, χ = 45, κ =
5, D0 = 100 m,DE = 20 m.

In Figure 2, we depict the exponential convergence of the
solutions by the horizontal projection of the Ekman spiral
(HPES). Our solution for N=64, has a high degree of accuracy
which makes it hard for us to distinguish it from the exact
solution.

In Table II, we exhibit the comparison we made between
our findings and those in papers [18], [32]. EW , E2 and E3

convey the maximum errors of our method, the one in [18]
and [32] respectively.

TABLE II
A COMPARISON BETWEEN THE ERRORS IN EXAMPLE 1 AND THOSE IN

PAPERS [18], [32], WHILE σ = 0.1, χ = 45◦, κ = 5, D0 = 100 m AND
DE = 20 m.

N m h ‖EW ‖ ‖E2‖ ‖E3‖
4 13 0.3163 3.47× 10−3 1.10× 10−3 5.38× 10−2

8 21 0.2015 1.26× 10−4 2.50× 10−4 4.57× 10−2

16 37 0.1224 2.49× 10−6 2.76× 10−5 1.86× 10−2

32 69 0.0720 2.96× 10−8 8.99× 10−7 8.19× 10−3

64 133 0.0414 1.82× 10−10 5.78× 10−9 7.13× 10−4

TABLE III
ERRORS OF EXAMPLE 2 (CONSTANT EDDY VISCOSITY) WHILE

σ = 0, χ = 45◦, κ = 5, D0 = 100 m AND DE = 20 m.

N m h ‖EU‖ ‖EV ‖ ‖EW ‖
4 13 0.3163 3.06× 10−3 3.38× 10−3 3.38× 10−3

8 21 0.2015 1.25× 10−4 8.42× 10−5 1.25× 10−4

16 37 0.1224 2.48× 10−6 1.23× 10−6 2.48× 10−6

32 69 0.0720 2.95× 10−8 1.43× 10−8 2.95× 10−8

64 133 0.0414 8.26× 10−11 8.37× 10−11 8.37× 10−11

Example 2.(No-slip condition at the seabed)
In this example, we assume σ = 0 and all other parameters
similar to Example 1. The absolute errors of our solutions
are listed in Table III and a very close similarity to those in
Example 1 is explored. The HPES for different values of N,
against the exact solution are portrayed in Figure 3. Likewise,
Table IV provides the maximum errors of our method, and
those in [18], [32] respectively.

Fig. 3. The Sinc-Collocation Ekman Spiral projection of Example 2 for
different values of N against the exact solution while σ = 0, χ = 45, κ =
5, D0 = 100 m,DE = 20 m.

B. Variable Eddy Viscosity

In the real world the eddy viscosity is a depth- and time-
dependent variable. In this paper, we specifically study the
depth-dependent eddy viscosity. Likewise, we study a specific

TABLE IV
A COMPARISON BETWEEN THE ERRORS IN EXAMPLE 2 AND THOSE IN
PAPERS [18], [32], WHILE σ = 0, χ = 45◦, κ = 5, D0 = 100 m AND

DE = 20 m.

N m h ‖EW ‖ ‖E2‖ ‖E3‖
4 13 0.3163 3.38× 10−3 1.10× 10−3 5.33× 10−2

8 21 0.2015 1.25× 10−4 2.48× 10−4 4.55× 10−2

16 37 0.1224 2.48× 10−6 2.75× 10−5 1.85× 10−2

32 69 0.0720 2.95× 10−8 8.96× 10−7 8.17× 10−3

64 133 0.0414 8.37× 10−11 5.76× 10−9 7.1× 10−4
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case of time-dependent eddy viscosity in which when t→ ∞,
it can be considered as a constant.

In seas of shallow to intermediate depth, the eddy viscosity
has the maximum values of A∗

v(z
∗) at the intermediate depths

and the minimum values near the surface and seabed. But in
deeper seas, it is expected that A∗

v(z
∗) has the maximum

values near the surface and its value decreases going towards
the seabed. The latter case is illustrated by

A∗
v(z

∗) = 0.02[1− (0.0075)z∗]2, 0 < z∗ < D0. (54)

which decreases quadratically from the value of 0.02 m2 s−1

to the minimum value of 0.00125 m2 s−1. The eddy viscosity
in the first case, follows a quadratic model given by

A∗
v(z

∗) = 0.02[1 + (0.12)z∗(1− (0.01)z∗)], 0 < z∗ < D0.
(55)

increasing from the initial value of 0.02 m2s−1 to the peak
value of 0.08 and then decreasing to 0.02 m2 s−1.

Example 3.(The decreasing eddy viscosity)
In this example, we find the approximate solutions Uc(z)
and Vc(z) via the complex velocity discrete system while the
variable eddy viscosity is given by (54). The parameters are
chosen identical to those in Example 1. Since there is not
any closed form solution of this case, we depict the HPES
of decreasing eddy viscosity against that of constant eddy
viscosity for different values of N in Figure 4.

Fig. 4. The Sinc-Collocation Ekman Spiral projection of Example 3 for
different values of N against the exact solution of the constant eddy viscosity
case while σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

Example 4. (The quadratic eddy viscosity)
This example is similar to Example 3, but the eddy viscosity is
given by (55). Since no exact solution for this case is reported,
we portray the HPES of quadratic eddy viscosity for different
values of N, against that of constant eddy viscosity in Figure
5.

Example 5. (A steady-state problem with a no-slip bottom
condition)
In realistic oceanography problems, eddy viscosity is a func-
tion of depth and time. Field studies show that the value
of eddy viscosity near the surface is dependent to the wind
stress which relies on time. Therefore, in shallow seas (D0 <
100 m), the eddy viscosity is assumed dependent of time but
independent of depth. There is an interesting example of this
case studied in below.

Assume the non-dimensional time-dependent eddy viscosity
Av(t) = 4 − 3e−t. At the steady-state condition (t → ∞), it

Fig. 5. The Sinc-Collocation Ekman Spiral projection of Example 4 for
different values of N against the exact solution of the constant eddy viscosity
case while σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

TABLE V
ERRORS OF EXAMPLE 5 (TIME-DEPENDENT EDDY VISCOSITY IN THE

COMPLEX SYSTEM) WHILE σ = 0, χ = 45◦, κ = 3.14, D0 = 60 m AND
DE = 19 m.

N m h ‖EU‖ ‖EV ‖ ‖EW ‖
4 13 0.316 2.00× 10−4 8.58× 10−5 2.00× 10−4

8 21 0.201 4.59× 10−7 6.78× 10−7 6.78× 10−7

16 37 0.122 1.45× 10−7 6.00× 10−8 1.46× 10−7

32 69 0.072 1.74× 10−9 7.15× 10−10 1.74× 10−9

64 133 0.041 3.94× 10−11 8.03× 10−11 8.03× 10−11

will be equivalent to A∞ ≡ 4. This example is similar to
Example 2, in which the eddy viscosity is constant. Consider
the steady-state boundary value problem

A∞
d2w(z)

dz2
+ 2κ2iw(z) = −2κ3i

(
1− z

A∞

)
eiχ (56)

with time-independent BCs

dw(0)

dz
= 0, (57)

w(1) = 0. (58)

and the no-slip boundary condition σ = 0.
The exact solution of this problem is W (z) = U0(U(z) +

iV (z)) where U(z) and V(z) are given by

U(z) = R(Wc(z)) cos(χ)− I(Wc(z)) sin(χ),

V (z) = R(Wc(z)) sin(χ)− I(Wc(z)) cos(χ).

and

Wc(z) =

(
1 + i

2

) sinh
(
(1− i)κ(1− z)

√
1

A∞

)
√
A∞ cosh

(
(1− i)κ

√
1

A∞

) (59)

The results comparing to the exact solution is depicted in Table
V. Figure 6, displays the HPES of the current problem for N =
4,8,...,64 against the exact solution. In Table VI, we compare
our results to those in [32].

V. CONCLUSION

In this paper, we applied a Sinc-Collocation approach devel-
oped by Abdella [30] to numerically approximate the solution
of a 3D oceanography model observed in [18]. The validity,
stability and accuracy of our approach is examined by solving
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Fig. 6. The Sinc-Collocation Ekman Spiral projection of Example 5 for
different values of N against the exact solution while σ = 0, χ = 45, κ =
3.14, D0 = 60 m,DE = 19 m.

TABLE VI
A COMPARISON BETWEEN THE ERRORS IN EXAMPLE 5 AND THOSE IN

PAPER [32], WHILE σ = 0, χ = 45◦, κ = 3.14, D0 = 60 m AND
DE = 19 m.

N m h ‖EW ‖ ‖E3‖
4 13 0.3163 2.00× 10−4 2.13× 10−1

8 21 0.2015 6.78× 10−7 2.74× 10−1

16 37 0.1224 1.46× 10−7 8.61× 10−2

32 69 0.0720 1.74× 10−9 2.26× 10−2

several examples found in [18], [32] and comparing the results
with the exact solutions and those in prior studies. Our results
show that the presented Sinc-Collocation approach is very
promising in oceanographic problems. In Particular, we would
claim that the Sinc-Collocation method is superior to the
Galerkin version due to its simple implementation and higher
accuracy. As expected, the errors of our method exponentially
converges to zero depending on the values of N. In closing, we
would claim that the current method is eligible to be a proper
alternative to other methods which have been used thus far.

Future research may include an investigation of the model
with the time-dependent eddy viscosity which leads to solving
partial differential equations using the approach discussed in
this paper.
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