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Abstract: In recent years, quasi-Monte Carlo (QMC) integration methods
have been successfully used in place of Monte-Carlo methods in many appli-
cations. However, in practice, QMC integration is often applied to integrands
on unbounded domains with non-uniform probability measures, integrals for
which there is little theoretical validation. We introduce group-theoretic meth-
ods to generate some non-uniform deterministic Weyl-like sequences. We also
introduce a new importance sampling technique, which can be used with these
group-theoretic sequences or lattice rules to create QMC integration rules with
a high asymptotic order of convergence.
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1. Introduction

The Monte Carlo method is widely used to perform numerical integration too
complicated to solve analytically. In the unit cube Id = [0, 1)d the Monte Carlo
approximation for the Lebesgue integral of f is

∫

Id

f(x)dx ≈ 1

N

N
∑

n=1

f(xn) , (1)

where {xn} is an independent identically distributed sequence of points sam-
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pled from the uniform distribution in Id. If f is an L2 integrand, the error is
O(1/

√
N). This error bound is statistical, and is therefore not guaranteed and

valid for only truly random sequences (which in practice are impractical, if not
impossible).

By replacing the random sequence {xn} with a well-chosen deterministic
one that converges to a uniform distribution faster than a random sequence,
it is possible in many circumstances to achieve faster convergence with guar-
anteed error bounds (as the sequence is predetermined). This is the essence
of the quasi-Monte Carlo method (see [17]), which has recently been gain-
ing acceptance as a substitute for the Monte Carlo method in such diverse
fields as statistics, physics, computer graphics, and mathematical finance, see
[18, 21, 12, 14].

The key quasi-Monte Carlo error estimate is the Koksma-Hlawka inequality,
[17], which is usually written in the form

∣

∣

∣

∣

∣

∫

Id

f(x)dx − 1

N

N
∑

n=1

f(xn)

∣

∣

∣

∣

∣

≤ DN ({xn})V (f) , (2)

where DN ({xn}) is the discrepancy of the first N terms of the sequence and
V (f) is the variation of the function.

The discrepancy is usually taken as the star discrepancy with the associated
variation being the variation in the sense of Hardy and Krause.

Definition 1. Let S = {xn}N
n=1 be a finite sequence in [0, 1)d. The star

discrepancy D∗
N (S) is defined by

D∗
N (S) = D∗

N (x1, . . . ,xN ) = sup
J

∣

∣

∣

∣

∣

1

N

N
∑

n=1

χJ(xn) − λ(J)

∣

∣

∣

∣

∣

,

where the supremum is over all subintervals of [0, 1)dof the form J =
∏d

i=1[0, ui). Moreover, λ denotes the k-dimensional Lebesgue measure.

The integration error (2) of a given function thus depends only on the
discrepancy of the sequence. The sequences with the lowest known discrepancy

have D∗
N (S) = O

(

logd N
N

)

for infinite sequences and D∗
N (S) = O

(

logd−1 N
N

)

for

sequences with predetermined length N . The regularity of the integrand is not
reflected in these estimates. For smooth periodic functions, better asymptotic
estimates are possible through a different QMC approach known as lattice rules,
[22].

Thus far, QMC theory has largely been confined to integration with respect
to the uniform distribution in the unit cube. The main problem is that, except
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possibly for functions whose discontinuities are parallel to the coordinate axes,
discontinuous functions are not of bounded variation in the sense of Hardy and
Krause. Thus, characteristic set functions as simple as triangles are not of
bounded variation. Special methods must be developed even for QMC integra-
tion using the uniform distribution on common domains such as spheres and
tetrahedra (see [7], [24]).

In the MC case, generating non-uniform random sequences is a difficult
but well studied problem. Common techniques for MC integration with re-
spect to non-uniform distributions include (see [4]) acceptance-rejection meth-
ods, importance sampling, and inverse CDF transformations. Limited work has
been done on generating non-uniform quasi-random sequences. The acceptance-
rejection method in general cannot be used with QMC integration as decision-
making processes can introduce characterstic functions into our integrand. How-
ever, in [24], a smoothed QMC acceptance-rejection method was introduced
using importance sampling for bounded domains.

In many applications, we need to integrate unbounded functions over a
tailed probability distribution. For instance, this occurs in statistics, when find-
ing moments of tailed distributions, or in finance, when pricing options. For
example, when pricing a European option, we must find the discounted expec-
tation of a payoff function, which has unbounded linear growth, with respect to
the risk-neutral transition probability distribution, which has log-normal tails
for geometric Brownian motion. For typical “out of the money” options en-
countered, the “tail performance” is important, as the value of the option is
related to the upside (i.e., making extreme events in the tails significant).

For QMC, unbounded functions with respect to tailed distributions are
problematic. For instance, computing the mean of any tailed probability dis-
tribution P is equivalent (after transformation) to computing the integral in
the unit cube of an improper integral (with singularities at 0 and/or 1), as
∫∞
−∞ xdP (x) =

∫ 1
0 P−1(u)du. The integrand is unbounded and thus not of

bounded variation. This is an example of how the inverse CDF method can
fail with QMC methods. The MC method does not have the same shortcoming
due to the law of large numbers.

QMC integration rules have been studied only in the case of bounded do-
mains. However, recently there has been interest [5, 11] in the related problem
of QMC methods for functions which are unbounded on the boundary of the
unit cube. For unbounded domains, the following definition of a non-uniform
deterministic sequence is a natural extension, and is similar to what we would
expect for random sequences:
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Definition 2. The sequence {xn}∞n=1 of points in Rd is P -distributed if
and only if P is a cumulative distribution function satisfying

lim
N→∞

1

N

N
∑

n=1

χ(−∞,x](xn) = P (x) =

∫

Rd

χ(−∞,x](y)dP (y)

for every x ∈ Rd. Furthermore, we call such a P the distribution function of
the sequence {xn}.

The following definition, introduced in [7], is a natural extension of the
concept of star-discrepancy to non-uniform distributions.

Definition 3. If P is a cumulative distribution, the sequence {xn}∞n=1 of
points in Rd has P -discrepancy

DP (x1, . . . ,xN ) = sup
x∈Rd

∣

∣

∣

∣

∣

1

N

N
∑

n=1

χ(−∞,x](xn) − P (x)

∣

∣

∣

∣

∣

.

Like star-discrepancy, this notion of discrepancy measures the extreme dif-
ference between the empirical distribution function of the sample and the actual
CDF. In fact, DP (x1, . . . ,xN ) is the Kolmogorov-Smirnov statistic for goodness
of fit.

2. Quasi-Random Sequences from Rational Group Laws

A well-known theorem [6] of Weyl gives a method by which the additive group
on the torus can be used to generate infinite uniform sequences.

Theorem 4. (Weyl) The sequence {nα} mod 1 is uniformly distributed
in [0, 1) iff α is irrational.

In this section we use a group-theoretic Weyl-like method to directly gen-
erate a sequence that converges to the Cauchy distribution.

Given G = R ∪ {∞}, G can be made into a group under the operation

x ⊕ y =
x + y

1 − xy
, for all x, y ∈ G.

This is clear, as the tangent function satisfies the identity

tan(x + y) =
tan(x) + tan(y)

1 − tan(x) tan(y)
.
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Let us define the sequence

xn =
xn−1 + x0

1 − xn−1x0
.

This is equivalent to xn = tan(nα), where α = arctan x0, and thus, provided
α/π is irrational, by Weyl’s Theorem the sequence converges to the density

p(x) =
1

π
(tan−1(x))′ =

1

π

1

1 + x2
,

which is the density for the Cauchy distribution.

The irrationality of α/π follows from Corollary 3.12 of [15], in which it is
proved that given a rational r, the only rational values of tan 2πr are 0, ±1.
Thus arctan(x)

π cannot be rational for rational x 6= 0,±1. However, we can make
a stronger claim.

Theorem 5. If x is rational and x 6= 0,±1, then arctan x
π is transcendental.

To see this, we use the identity

log(c + id) = log
√

c2 + d2 + i arctan(
c

d
)

and rewrite it as
arctan( c

d )

π
=

log(c/
√

c2 + d2 + di/
√

c2 + d2)

log(−1)
.

The right-hand side is a ratio of logarithms of algebraic numbers, and so we
can apply the Gelfond-Schneider Theorem [15].

Theorem 6. (see Gelfond-Schneider) If α and γ are non-zero algebraic
numbers, and if α 6= 1, then (log γ)/(log α) is either rational or transcendental.

We see that if c
d is rational and not equal to −1, 0, or 1, then as

arctan( c
d
)

π
is not rational, it must, in fact, be transcendental.

Thus, we have the following proposition.

Proposition 7. Given a rational x0 6= 0,±1, the recursion xn+1 = xn+x0

1−xnx0

defines a sequence which converges to the standard Cauchy distribution.

Although sequences generated in this manner are uniform, the quality of the
sequence depends on the Diophantine properties of the underlying irrational.

We will examine the Diophantine properties of the multivariate case, where
we have a Cartesian product of Cauchy distributions. Consider the linear form
of logarithms

Λ = β0 log α0 + β1 log α1 + · · · βn log αn
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and let us assume that β’s are integers and also that

α0 = −1, αj = cj/
√

c2
j + d2

j + dji/
√

c2
j + d2

j ,

where cj and dj are integers. Then, according to Baker, [1], if Λ 6= 0,

|Λ| > (max
j≥0

(4, |βj |) log A)−K log A,

where K > 0 and A are independent of the β’s.

It follows that if Λ 6= 0, then
∣

∣

∣

∣

∣

∣

β0 +
n
∑

j=1

βj

arctan
cj

dj

π

∣

∣

∣

∣

∣

∣

>
K ′

(maxj≥0 (4, |βj |))k
,

for some K ′ and k independent of the β’s.

Hence, there exists constants k′ and K ′′ such that
∣

∣

∣

∣

∣

∣

β0 +
n
∑

j=1

βj

arctan
cj

dj

π

∣

∣

∣

∣

∣

∣

>
K ′′

(

∏n
j=0 max(1, |βj |)

)k′
.

And so, finally we can conclude that if
{

1,
arctan c1

d1

π
, . . . ,

arctan cn

dn

π

}

is an independent set over the rationals, then there exist constants σ,C(σ), such
that

min
m∈Z

∣

∣

∣

∣

∣

m −
n
∑

i=1

βi

arctan ci

di

π

∣

∣

∣

∣

∣

>
C

(
∏n

i=1 max(1, |βi|))σ .

This follows as the absolute value of the summand on the left-hand side is
bounded by 0.5n maxj≥1 |βj |. If we take η to be the minimum σ that satisfies
the above inequality, then

[

arctan a1

b1

π
, . . . ,

arctan an

bn

π

]

is by definition (see [16]) a type-η vectors of irrationals. So we have shown:

Theorem 8. If ai and bi are non-zero integers such that

1,
arctan a1

b1

π
, . . . ,

arctan an

bn

π
are independent over the rationals, then the vector

[

arctan a1

b1

π
, . . . ,

arctan an

bn

π

]

is of finite type.
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It would be of interest to find all group laws x ⊕ y = R(x, y) defined by a
rational function R. Unfortunately, by a theorem in [3], the rational group laws
over Q are of the form:

R(x, y) =
x + y + cxy

1 − dxy
, c, d,∈ Q.

As will be shown in the next section, this converges to the density
K

1 + cx + dx2
,provided d > c2/4, where K is a normalizing constant.

As there are no other interesting groups defined by rational group laws, a nat-
ural extension is to look at formal group laws, where we replace R(x, y) with a
formal power series F (x, y).

3. Formal Groups and Weyl-Sequences

Definition 9. (see [10]) A formal group law over a ring R is a power series
F (x, y) ∈ R[[x, y]] satisfying:

i. F (x, 0) = F (0, x) = x.

ii. F (y, x) = F (x, y).

iii. F (x, F (y, z)) = F (F (x, y), z).

From this definition, the following lemma holds.

Lemma 10. (see [10]) Let F(x, y) be a formal group law over a ring R.
Then there exists a power series l(x) = −x + bx2 + · · · with coefficients in R
such that F (x, l(x)) = 0.

From now on, we assume that R is a real number field. Now, suppose
F is continuous. If u < v, then by property (i), F (u, 0) < F (v, 0). If there
exists s such that F (u, s) ≥ F (v, s), then by continuity there exists t such that
F (u, t) = F (v, t). It follows from properties (i) and (iii), and the above lemma
that

u = F (F (u, t), l(t)) = F (F (v, t), l(t)) = v.

Hence, F is monotone in its first variable, and can be similarly shown to be
monotone in its second variable. It follows that the sequence xn = F (xn−1, x0),
n > 1 must be either increasing or decreasing and so will not converge to a
density.
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Thus, instead of assuming that F is continuous, we will need to allow F
to have infinite discontinuities. However, we will assume near y = 0 that F is
monotone, i.e. that ∂F

∂y (x, 0) > 0.

Theorem 11. Given a formal group law F (x, y) with on R ∪ {−∞} such
that F (x, y) is analytic (where is finte) and that

∂F

∂y
(x, 0) is positive and analytic with ω =

∫ ∞

−∞

(

∂F

∂y
(x, 0)

)−1

dx < ∞

it follows that the sequence xn = F (xn−1, x0), n > 1 converges to a distribution
with density

(

ω
∂F

∂y
(x, 0)

)−1

iff x0 is a point of infinite order in the group.

Proof. Using formal calculations, we will show the existence of a group
isomorphism with the additive group.

Suppose F (x, y) =
∑

cijx
iyj , then, by property (i), F (y, 0) = F (0, y) = y,

and so ∂F
∂y (0, 0) = 1 and thus ∂F

∂y (x, 0) is invertible in R[[x]].

Hence, we may define a bijection φ : R ∪ {−∞} → [0, 1) by

φ(x) =

∫ x

−∞

(

ω
∂F

∂y
(t, 0)

)−1

dt.

Letting g(x, y) = φ(F (x, y)) − φ(x) − φ(y), we will show that g(x, y) ≡ 0.

∂g

∂y
(x, y) = φ′(F (x, y))

∂F

∂y
(x, y) − φ′(y)

=

(

ω
∂F

∂y
(F (x, y), 0)

)−1 ∂F

∂y
(x, y) −

(

ω
∂F

∂y
(y, 0)

)−1

But by property (iii), F (F (x, y), z) = F (x, F (y, z)), we have, differentiating
with respect to z and evaluating at z = 0:

∂F

∂y
(F (x, y), 0) =

∂F

∂y
(x, y)

∂F

∂y
(y, 0).

Thus ∂g
∂y ≡ 0, and so φ(F (x, y)) = φ(x) + φ(y), and hence φ is in fact a

group isomorphism from the formal group to the additive group.

Now, using the convergence of φ(x0) and the fact ω is finite, we can establish
that there is in fact an isomorphism with the torus [0, 1). Since the Weyl-
sequence {nφ(x0)}, n > 1 is uniformly distributed in [0, 1) iff φ(x0) is irrational,
it follows that the sequence xn = F (xn−1, x0), n > 1 converges to φ′(x) iff x0

is a point of infinite order.
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The above theorem provides an explicit “logarithm” from a 1-dimensional
formal group to a torus. In general, there is a logarithm that provides an iso-
morphism from a d-dimensional formal group to an additive group [8]. The
quality of the sequences constructed in this fashion is dependent on the Dio-
phantine properties in the torus of the logarithm of the initial seed value, with
“low-type” initial seed vectors being highly desirable.

Several examples of type-1 vectors are known. For example in [16], if
1, α1, . . . , αd are algebraic numbers independent over the rationals, then (α1, . . . , αd)
is a vector of type-1. Also, if r1, . . . , rd are distinct rationals, then (er1 , . . . , erd)
is a type-1 vector.

Jacobian groups of algebraic curves have formal group representations [8].
In particular, Jacobians of hyperelliptic curves are isomorphic to additive groups
on tori, and have effective algorithms for computation, see [2]. We will present
a sequence derived from elliptic curves in the next section.

4. Non-Uniform Quasi-Random Sequences and Elliptic Curves

In this section, we will provide examples of the generation of non-uniform de-
terministic sequences by using formal groups from elliptic curves.

Definition 12. (see [13]) The elliptic curve over a field K defined by

y2 = x3 + ax + b , (3)

where a, b ∈ K with 4a3 + 27b2 6= 0, is the set of points (x, y) ∈ K2 that satisfy
equation (3) in addition to a “formal point at infinity” denoted by O.

Given two points P = [x1, y1] and Q = [x2, y2] on an elliptic curve y2 =
x3 + ax + b we may define addition by

P ⊕ P =

[

(

3x2
1 + a

2y1

)2

− 2x1,
(3x2

1 + a)(x1 − x3)

2y1
− y1

]

,

where x3 denotes the x-coordinate of P ⊕ P , and for P 6= Q,
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P ⊕ Q =

[

(

y2 − y1

x2 − x1

)2

− x1 − x2,
(y2 − y1)(x1 − x3)

x2 − x1
− y1

]

,

where x3 again denotes the x-coordinate of P ⊕ Q. Also, the point O will be
taken to be the additive identity.

Under this definition the elliptic curve becomes an additive group.

Definition 13. A lattice L is an additive subgroup of C which is generated
by two elements ω1, ω2 ∈ C that are linearly independent over R.

Definition 14. The Weierstrass ℘-function relative to the lattice L is the
function ℘L : C → C given by:

℘(z) =
1

z2
+

∑

ω∈L\{0}

(

1

(z − ω)2
− 1

ω2

)

.

Note that, although ℘ depends on L, it is customary to omit it from the nota-
tion.

The map

z → P = (1, ℘(z), ℘′(z))

into the projective plane induces an isomorphism between the elliptic curve
y2 = 4x3 − g2x − g3 over the field C, denoted by E(C) and C/L

C/L → E(C) ⊂ P2(C) ,

where P2(C) denotes the projective plane over C.

Here the modular invariants g2(L) and g3(L) can be calculated by

g2(L) = 60
∑

ω∈L\{0}

1

ω4
, g3(L) = 140

∑

ω∈L\{0}

1

ω6
.

Conversely, given any elliptic curve y2 = 4x3 + ax + b, there exists a lattice
whose modular invariants satisfy g2 = −a and g3 = −b.

The inverse of the above map is provided by the elliptic logarithm of the
point P ∈ E(C), which can be defined by the following elliptic integral

ELog(P ) =

∫ P

O

dz√
z3 + az + b

(mod L).

Let us work over the field R and take ω = ω1 to be real and ω2 purely
imaginary.

Any cubic equation has either one or three real roots. If x3 + ax + b = 0
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has one real root γ then we may write

ELog(x(P )) =

∫ x(P )

O

dx√
x3 + ax + b

(mod ω).

However, if x3 + ax + b = 0 has three roots (say γ1 < γ2 < γ3), then E(R)
has two components

E0(R) = {P ∈ E(R) | x(P ) > γ3} , EC(R) = {P ∈ E(R) | γ1 < x(P ) < γ2}.
Thus, we write

ELog(x(P )) =



















∫ x(P )

γ1

dx√
x3 + ax + b

, if x(P ) ∈ EC(R) ,

ω

2
+

∫ x(P )

γ3

dx√
x3 + ax + b

, if x(P ) ∈ E0(R) .

Now the map

x(P ) → 1

ω
ELog(x(P ))

induces an isomorphism between E(R) and [0, 1).

To use the above properties to generate a non-uniform sequence, let ℘(z)
denote the Weierstrass ℘-function relative to the lattice L and (3), and P be a
point of infinite order on (3).

Now, using addition on the elliptic curve, we define a sequence of points
by using the x-coordinates of nP , i.e., xn = (nP )x. As P is a point of infinite
order, the sequence un = ELog(nP ) = nELog(P )(mod ω) defines a uniform
sequence in [0, ω).

The Weierstrass ℘-function is the inverse of the elliptic logarithm, and thus
xn = (nP )x must converge to the density function (for those values of x in the
domain):

p(x) =
1

ω
(℘−1(x))′ =

1

ω

1√
x3 + ax + b

.

We can summarize this in the following proposition.

Proposition 15. Given an elliptic curve y2 = x3 + ax + b over Q, and a
point of infinite order P on the curve, then xn = (nP )x defines a sequence with
distribution proportional to 1√

x3+ax+b
.

If the initial seed is a rational point of infinite order, then the sequence is a
rational sequence whose Diophantine properties follow from the Baker-Feldman
Theorem, see [13]. In fact, if 1, α1, . . . , αd are independent over the rationals,
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where each αi is the elliptic logarithm with respect to some rational, then using
the Baker-Feldman Theorem and a similar calculation to that in Section 2, we
see that (α1, . . . , αd) is of finite type.

5. Integration with Respect to Smooth Distributions

Consider the problem of integrating a function f with respect to a distribution
P . Often P is difficult to generate directly by transformation, and it is likely
that we do not have a group law to generate it indirectly. In this case, we can
use importance sampling, in which we try to find a distribution G(x) that is
similar to P (x) by using the fact that

∫

Rd

f(x)dP (x) =

∫

Rd

f(x)p(x)
g(x)

g(x)
dx =

∫

Rd

f(x)
p(x)

g(x)
dG(x),

where g(x) and f(x) are the respective densities of the distributions.

Thus, if we can generate the distribution G(x), we can perform the integra-
tion. The problem with importance sampling is that if p(x) 6≈ g(x), then, in
general, the constant in the order of convergence becomes quite large (variance
in the Monte Carlo case). This technique is used quite often with Monte Carlo
method. However, if you do not know if p(x) ≈ g(x), it is in general better not
to use importance sampling, see [20]. As the Monte Carlo error is proportional
to the standard deviation σ(f), this is an issue for QMC methods as well. This
follows from the Koksma-Hlawka inequality and the fact that discrepancy is
bounded by 1:

σ(f) ≤ sup(f) − inf(f) ≤
∣

∣

∣

∣

∣

∫

[0,1]d
f(x)dx − sup(f)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

[0,1]d
f(x)dx − inf(f)

∣

∣

∣

∣

∣

≤ 1 · V (f) + 1 · V (f) ≤ 2V (f).

We will now show how importance sampling can be used with Weyl-like
sequences to create QMC rules with high orders of convergence.

Letting

h(u) =
f(G−1(u))p(G−1(u))

g(G−1(u))
,

we may write
∫

Rd

f(x)dP (x) =

∫

[0,1]d

f(G−1(u))p(G−1(u))

g(G−1(u))
du =

∫

[0,1]d
h(u)du.
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If g is thick-tailed enough in comparison with p, then (f · p/g)(x) will
approach zero for large |x|, and so h will be zero on the boundary of the unit
cube. In fact, when g is sufficiently thick-tailed and f, g, p are sufficiently differ-
entiable, h can be extended into a periodic function with high-order derivatives.

For clarity, let us consider the situation, where as the importance sampling
distribution we use a product of Cauchy distributions, i.e.,

g(x) =
1

πd

d
∏

i=1

1

1 + x2
i

.

The inverse cumulative distribution function is given by:

G−1(u) = (tan π(u1 − 1/2), tan π(u2 − 1/2), . . . , tan π(ud − 1/2)).

Definition 16. We will say that f has smooth tails of order k if |xk
i

∂jf

∂xj
i

(x)| →
0 as xi → ±∞, and

∫

Rd

xk
i f(x)p(x)dx

exists for i = 1, 2, . . . , d and j = 1, 2, . . . , k.

This definition aims to avoid any pathological distributions whose tails ap-
proach zero in measure but not point-wise. This condition is reasonable, as by
integration by parts we should expect:

∣

∣

∣

∣

∫ ∞

−∞
f(x)dxi

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

−∞
xi

∂f

∂xi
(x)dxi

∣

∣

∣

∣

= . . . =

∣

∣

∣

∣

∫ ∞

−∞
xk

i

∂kf

∂xk
i

(x)dxi

∣

∣

∣

∣

.

We will formalize this idea with the following theorem.

Theorem 17. Let the product z(x) = (f ·p)(x) be a k-times differentiable
integrand on Rd with smooth tails of order k. Then, using a product Cauchy
distribution g(x) as an importance sampling distribution, the integral of z(x)
is equivalent to an integral of a (k − 2)-times differentiable integrand in the
unit cube such that all partial derivatives of order k − 2 or less vanish on the
boundary of the cube.

Proof. The differentiability is clear everywhere except possibly on the bound-
ary of the unit cube. However, since the transformed integrand is zero on this
boundary, the only partial derivatives we need to check are those perpendicular
to the coordinate axes.

Thus, as the case ui → 1− will hold analogously, so letting yi = tan(π(ui −
1/2)), all we need to show is that
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lim
ui→0+

∂j

∂uj
i

f(y1, y2, · · · , yd)p(y1, y2, · · · , yd)

g(y1, y2, · · · , yd)
= 0 (4)

for j = 1, 2, . . . , k and i = 1, 2, . . . , d.

Accordingly we need to compute the limit as ui → 0+ for j = 1, 2, . . . , k of

∂j

∂uj
i

z(y1, y2, · · · , tan π(ui − 1/2), · · · , yd)(sec π(ui − 1/2))2.

Upon taking a number of derivatives, the differentiand can be written in the
form

q
∑

r=1

cr seclr π(ui − 1/2) sinnr π(ui − 1/2)
∂mr

∂xmr

i

z(y1, · · · , · · · , yd)

for some constants cr.

Now performing one additional differentiation the above summand becomes

πcr

(

seclr+2 π(ui − 1/2) sinnr π(ui − 1/2)
∂mr+1

∂umr+1
i

z(y1, · · · , yd)

+lr seclr+1 π(ui − 1/2) sinnr+1 π(ui − 1/2)
∂mr

∂umr

i

z(y1, · · · , yd)

+ nr seclr−1 π(ui − 1/2) sinnr−1 π(ui − 1/2)
∂mr

∂umr

i

z(y1, · · · , yd)

)

. (5)

The effect is that in the second term the order of the secant factor increases
by one and in the third term it decreases by one.

If z has smooth tails of order at least m, then

lim
ui→0+

secm π(ui − 1/2) · ∂m

∂um
i

z(y1, · · · , tan π(ui − 1/2), · · · , yd)

= lim
ui→0+

tanm π(ui − 1/2) · ∂m

∂um
i

z(y1, · · · , tan π(ui − 1/2), · · · , yd)

= lim
xi→−∞

xm
i

∂m

∂xm
i

z(x1, · · · , xi, · · · , xd) = 0. (6)

So in essence, although the secant factor increases by two in the first term of
equation (5), it can effectively be thought of as increasing by at most one, since
the other factor can be grouped with the increased derivative. Thus, if we start
with a secant factor of order 2 (as in equation (4)), we see that the transformed
integrand can be extended into a periodic (k − 2)-times differentiable function.
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Increasing the regularity of the integrand does not have an effect on Koksma-
Hlawka error bounds. However, for smooth periodic integrands, increasing the
smoothness provides greatly improved asymptotic bounds when using Weyl-like
sequences and Fourier-based estimates for a special class of smooth integrands
which we will now define.

Definition 18. (see [17]) Let α > 1 and C > 0 be real numbers. Then
Ed

α(C) is defined to be the class of all continuous periodic functions f on Rd

with period interval [0, 1]d such that for all non-zero h = (h1, . . . , hd) ∈ Zd

|f̂(h)| ≤ C

(h̄1h̄2 · · · h̄d)α
,

where h̄i = max(1, |hi|) and f̂(h) are the Fourier coefficients of f .

A sufficient condition that f ∈ Ed
α(C) for an explicit value of C, see [25], is

that α > 1 is an integer and all partial derivatives

∂m1+···+mdf

∂xm1

1 · · · ∂xmd

d

with 0 ≤ mi ≤ α for 1 ≤ i ≤ d

exist and are continuous on Rd.

From the definition of Ed
α(C), the following theorem, which is an easy ex-

tension of one found in [23], follows.

Theorem 19. Let w(k)(x) = (2k+1)!
k!k! xk(1 − x)k, where k is a positive

integer. If f ∈ Ed
ηk+λ(C), λ > 0 and {xj} = j(β1, . . . , βd) mod 1 is a Weyl-

sequence, where βi are type-η irrationals such that 1, β1, . . . , βd are linearly
independent over the rationals, then,

∣

∣

∣

∣

∣

∣

∫

Id

f(x)dx − 1

N

N−1
∑

j=0

w(k)

(

j

N

)

f(xj)

∣

∣

∣

∣

∣

∣

= O(N−k).

Proof. Following the proof in [23] we have that the integration error is
∣

∣

∣

∣

∣

∣

∫

Id

f(x)dx − 1

N

N−1
∑

j=0

w(k)

(

j

N

)

f(xj)

∣

∣

∣

∣

∣

∣

≤ 2(2k + 1)!

Nk(2π)kk!



|f̂(0)|ζ(k) + (1 + ζ(k))
∑

h6=0

|f̂(h)|
(minm∈Z |m −∑n

i=1 hiβi|)k



 .

Using the fact that |f̂(h)| ≤ C
∏

i(max(1, |hi|))−kη−λ for some constant C
we have that the error is bounded by



94 M. Pollanen

Figure 1: Star-discrepancy of a Halton sequence versus transformed
group-theoretic elliptic curve and Cauchy sequences

1

Nk



C1 + C2

∑

h6=0

∏

i(max(1, |hi|))−kη−λ

(minm∈Z |m −∑n
i=1 hiβi|)k





≤ 1

Nk



C1 + C3

∑

h6=0

∏

i(max(1, |hi|))−η−λ/k

(minm∈Z |m −
∑n

i=1 hiβi|)





by equation (2), where C1, C2 and C3 are constants. Sums of the form in the
last expression were shown to be convergent in the proof of Theorem 8.1 in [16].
Thus, the desired result follows.

Incorporating the above sufficient conditions on smoothness we have:

Theorem 20. Let w(k)(x) = (2k+1)!
k!k! xk(1 − x)k, where k is a positive

integer. Suppose (f · p)(x) is such that all partial derivatives

∂m1+···+md(f · p)

∂xm1

1 · · · ∂xmd

d

with 0 ≤ mi ≤ ηk + 1 for 1 ≤ i ≤ d

exist and are continuous on Rd, and that (f · p)(x) has smooth tails of order
ηk + 3. If {xj} is distributed as a product of Cauchy distributions generated
by a Weyl-sequence of type-η irrationals βi such that 1, β1, . . . , βd are linearly
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Figure 2: Comparison of error propagation for a Cauchy sequence

Figure 3: Integration with respect to a trivariate mixture of Gaussians

independent over the rationals, then,
∣

∣

∣
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∣

∫

Rd

f(x)dP (x) − 1

N

N−1
∑

j=0

w(k)

(

j

N

)

πd(1 + x2
j )(f · p)(xj)

∣
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∣

∣

∣

∣

= O(N−k).
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Figure 4: Integration with respect to a six-variate t-distribution using
Cauchy importance sampling

6. Empirical Results

In the first figure we plot the star-discrepancy between the Halton sequence [17],
the group-theoretic sequence associated with the elliptic curve y2 = x3 + 8 and
initial point (1, 3), which has been transformed to the standard uniform distri-
bution, as well as the transformed group-theoretic Cauchy sequence generated
with initial starting value 1/2. The discrepancies of all three sequences are very
close, with the elliptic curve sequence being consistently the best. Comparing
the P -discrepancy, for instance, of the elliptic curve sequence and transformed
Halton sequence would have the same result, as by its definition P -discrepancy
is invariant under transformation of the sequences.

It is interesting to note that for both group-theoretic methods presented, if
the initial starting values are rational, then so are the entire sequences. How-
ever, if a large number of terms are needed, it will ultimately be necessary
to use floating point arithmetic. Both the Cauchy sequence and elliptic curve
sequences can be generated with inverse CDF methods. However, while the
Cauchy distribution can be generated easily from a standard uniform sequence
ui with the transformation xi = tan(π(ui − 1/2)), the elliptic curve sequences
will require relatively more demanding computations of Weierstrass functions.

To compare the inverse method to the group-theoretic method, a version of
the Cauchy sequence generator was implemented in Java on a 3.4GHz Pentium
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IV computer running Linux using v1.5 of Sun Microsystems’ Java environment.
Using double precision arithmetic to generate one term of the Cauchy sequence
using the group law took on average 19ns. This is considerably faster than using
the inverse CDF transformation of a Weyl sequence, which took on average
254ns per term of the sequence. For comparison purposes, the Java internal
random number generator took on average 137ns to generate a random number
on [0, 1].

Although the group-law algorithm for the Cauchy distribution involves
floating point division, which is not usually numerically stable, it appears that
the Diophantine properties of the transformed sequence (see equation (2)) force
the sequence away from 0 and 1 (points of instability). This is illustrated in
the second figure, where the absolute error of the group law with initial value
1/2 is compared to the error using a transformed Weyl sequence. Using double
precision arithmetic, after 100 million terms of the sequence the error for the
group-law method starting with initial value 1/2 is 4× 10−13, while transform-
ing the corresponding Weyl sequence, i.e. xn = n(arctan(1/2)/π + 1/2) mod 1,
yields a considerably larger error of 1 × 10−8. For comparison purposes, the
precision of double arithmetic in the Java implementation is 1 × 10−16.

The third figure summarizes the results of calculating the moment E[x1

x2x3] of a mixture of two trivariate (in variables x1, x2, x3) standard Gaussian
distributions with means (0, 0, 0) and (1, 1, 1). The Monte Carlo method, the
QMC-method with the Halton sequence (with the standard prime bases), and
rank-1 Korobov-type lattice rules with optimal coefficients [22] were used to
evaluate the integrand without importance sampling. In this case, the Gaus-
sians are generated by transformation and the mixture is obtained by adding a
fourth variable and characteristic function to select the Gaussian. It is impor-
tant to note that, for the QMC-method and the lattice rules method, this is
equivalent to an inverted problem of integrating a function in the unit cube that
is unbounded on the boundary, as discussed in Section 1, and so has not been
theoretically validated. However, by using a thick-tailed importance sampling
distribution, the inverted problem becomes smooth and zero on the boundary
of the cube. The above results were compared to Cauchy importance sampling
using a transformed Halton sequence and two Fourier-based methods, rank-1
lattice rules and a product of group-theoretic sequences using Theorem 20, with
initial point (1/3, 1/5, 1/7) and weight function w(4)(x), to take advantage of
the smoothness. In this case the inverted problem is infinitely differentiable.
The fact that the Fourier methods converge quickly, while importance sampling
with the Halton sequence does not, demonstrates the effect of the smoothing.
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The final figure summarizes the results of integrating the function (x1x2 −
1/3)(x3x4−1/2)(x5x6−1)(x7x8−2)(x9x10−3) with respect to the t-distribution
given by the density

33

200π3(1 + (x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6)/20)
13

.

In this case, Cauchy importance sampling is applied to the MC method, the
QMC method with the Halton sequence, rank-1 lattice rules, as well as the
Weyl-sequence with initial point (

√
2,
√

3,
√

5,
√

7,
√

11,
√

13) mod 1, which is
of type-1. In this last case Theorem 20 is applied with weight function w(1)(x).
Once again the Fourier methods perform the best, but they have lost some of
their advantage.

7. Conclusion

In this paper we have introduced a group-theoretic method to generate a few
Weyl-like non-uniform quasi-random sequences. We have also introduced a
thick-tailed quasi-random importance sampling technique that can be used for
some problems involving distributions which we cannot generate directly. This
importance sampling technique creates an equivalent smooth inverse problem
in the cube that provides not only a theoretical validation for QMC methods
involving unbounded integrands, but higher rates of convergence when used
with Fourier-based techniques such as lattice rules or our weighted integration
rule of Theorem 20. While lattice rules are simple to evaluate and very effective,
finding a good lattice point as an initial seed can be computationally intensive
and is dependent on both dimension and number of required evaluations. In
comparison, Theorem 20 provides a very simple method to integrate smooth
integrands of a moderate dimension (perhaps ≤ 6) with respect to smooth
distributions.
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