UNIFORM EQUIPARTITION TEST BOUNDS
FOR MULTIPLY SEQUENCES

Marco Pollanen
Department of Mathematics
Trent University
Peterborough, ON K9J 7B8, CANADA
marcopollanen@trentu.ca

Abstract: For almost all \(x_0 \in [0,1) \), the multiply sequence \(x_n = ax_{n-1} \mod 1 \), with \(a > 1 \) an integer, is equidistributed. In this paper we show that equidistributed multiply sequences are not \(m \)-equipartitioned for any \(m > 2 \). We also provide uniform asymptotic bounds for equipartition tests for such sequences.

AMS Subject Classification: 11K06, 11J71
Key Words: multiply sequences, equipartition, \(\infty \)-distribution

1. Introduction

The sequence \(x_n = ax_{n-1} + c \mod 1 \), where \(a \) is a non-negative integer, is an important sequence that arises in number theory, fractals, and applied mathematics [4].

A sequence \(\langle y_n \rangle \) is equidistributed in \([0,1)\) if for all \(0 \leq a < b \leq 1 \),

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \chi_{[a,b)}(y_n) = b - a,
\]

where \(\chi_A \) is the characteristic function of a set \(A \).

For the case when \(a = 1 \), the sequence \(\langle x_n \rangle \) was studied by Weyl [7] and shown to be equidistributed if and only if \(c \) is irrational. In the case when \(a > 1 \), the sequence is referred to as a multiply sequence. It was first shown by Borel that, for \(a > 1 \) and \(c = 0 \), the sequence is equidistributed for almost all \(x_0 \).
As in [2], let \(\langle S_n \rangle \) be a sequence of propositions about the sequence \(\langle y_n \rangle \). We define
\[
P((S_n)) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \leq n \leq N} 1_{S_n \text{ is true}},
\]
when the limit exists.

A sequence \(\langle y_n \rangle \) is \(\infty \)-distributed [3] if, for every value of \(k \),
\[
P(a_1 \leq y_n < b_1, \ldots, a_k \leq y_{n+k-1} < b_k) = (b_1 - a_1) \cdots (b_k - a_k)
\]
for all real \(a_j, b_j \), with \(0 \leq a_j < b_j \leq 1 \) for \(1 \leq j \leq k \).

As an example, \(u_n = \theta^n \mod 1 \) is \(\infty \)-distributed for almost all real numbers \(\theta > 1 \) [2].

\(\infty \)-distributed sequences are of interest in that they automatically pass a
large number of asymptotic statistical tests, including: the frequency test, serial
test, gap test, poker test, coupon collector’s test, permutation test, run test,
maximum-of-t test, collision test, birthday spacings test, serial correlation test,
and tests on subsequences [3].

One test of particular importance is whether a sequence is \(m \)-equipartitioned.
A sequence \(\langle x_n \rangle \) is \(m \)-equipartitioned if for any permutation \(i_1, \ldots, i_m \) of the
index set \(\{i, \ldots, i + m - 1\} \) we have
\[
P(x_{i_1} > \ldots > x_{i_m}) = \frac{1}{m!}.
\]

Multiply sequences and their generalizations have been extensively studied
by Franklin [1, 2], and have been shown to be not \(3 \)-equipartitioned. It was,
however, shown in [2] that, for almost all \(x_0 \), as \(a \to \infty \), multiply sequences
become \(\infty \)-distributed and \(m \)-equipartitioned, so in a sense multiply sequences
are almost \(\infty \)-distributed.

In the next section we demonstrate that for \(c = 0 \) and almost all \(x_0 \), multiply
sequences are only \(m \)-equipartitioned for \(m = 2 \). However, we also show that
for all \(m \), as \(a \to \infty \) they are uniformly \(m \)-equipartitioned by exhibiting an
explicit uniform bound. Thus, for large \(a \) we might expect multiply sequences
to have good statistical properties.

To prove these results we will use the concepts of generating functions (see
[8]) and tetrahedral numbers, which we will now briefly introduce.

A generating function for a sequences of real numbers \(\langle a_n \rangle \), \(n \geq 0 \) is an
infinite series \(G(x) = \sum_{n=0}^{\infty} a_n x^n \). This is a formal series, with questions about
convergence being ignored. Given a generating function, the sequence it repre-
sents can be determined by calculating the coefficients of \(x^n \), for all \(n \geq 0 \), in
its formal power series expansion.
The n-th triangular number is the sum $1 + 2 + \cdots + n$. It derives its name from the fact that the number can be represented graphically by a triangular lattice with n rows, with the summands representing the number of points in each row.

The n-th tetrahedral number is the sum of the first n triangular numbers, and can graphically be represented in three dimensions as an n-row tetrahedron, where the i-th row contains the i-th triangular number of points. Likewise, for $d > 3$ an integer, the n-th d-dimensional tetrahedral number will be the sum of the first n $(d-1)$-dimensional tetrahedral numbers.

2. Uniform Bounds for Multiply Sequences

We will first use a generalization of a technique found in [2] to show that multiply sequences with $c = 0$ are not m-equipartitioned for $m > 2$.

Theorem 2.1. Let $x_n = ax_{n-1} \mod 1$ be an equidistributed sequence, with $a > 1$ an integer and $x_0 \in [0,1)$. Then

\[
P(x_i > x_{i+1} > \cdots > x_{i+k}) = \frac{1}{a^k(a-1)} \binom{a+k-1}{k+1},
\]

Proof. Assume $x_i > x_{i+1} > \cdots > x_{i+k}$. Now, for $i < j < i+k$, we have $x_j = \frac{A_j}{a} + \frac{x_{j+1}}{a}$ where A_j are integers between 0 and $a-1$.

Clearly, if $A_j = 0$, then $x_{j+1} = ax_j > x_j$ for $a > 1$. Thus, $A_j \neq 0$.

Now, if $x_j > x_{j+1}$, then

\[
\frac{A_j}{a} + \frac{x_{j+1}}{a} > x_{j+1} \text{ or equivalently } x_{j+1} < \frac{A_j}{a-1}.
\]

If $A_{j+1} > A_j$, then

\[
x_j = \frac{A_j}{a} + \frac{x_{j+1}}{a} < \frac{A_j + 1}{a} \leq \frac{A_{j+1}}{a} \leq x_{j+1},
\]

which is a contradiction.

Thus, if $x_i > x_{i+1} > \cdots > x_{i+k}$, then

\[
a - 1 \geq A_i \geq A_{i+1} \geq \cdots \geq A_{i+k-1} \geq 1 \text{ and } 0 \leq x_{j+1} < \frac{A_j}{a-1}. \tag{1}
\]

Conversely, the inequalities (1) imply

\[
x_{j+1} < \frac{A_j}{a} + \frac{x_{j+1}}{a} = x_j,
\]
and so $x_i > x_{i+1} > \ldots > x_{i+k}$.

Now, for each $x_i \in [0, 1)$, we have the unique a-ary representation

$$x_i = \frac{A_i}{a} + \frac{A_{i+1}}{a^2} + \cdots + \frac{A_{i+k-1}}{a^k} + \frac{x_{i+k}}{a^k}.$$

For each possible set $\{A_i, \ldots, A_{i+k-1}\}$, the length of the interval of permissible x_i’s is $\frac{A_{i+k-1}}{a-1}$. Hence, the measure of the set of x_i’s is:

$$\sum_{A_i=1}^{a-1} \sum_{A_{i+1}=1}^{A_i} \cdots \sum_{A_{i+k-1}=1}^{A_{i+k-2}} \frac{1}{a^k} = \frac{1}{a^k(a-1)} \sum_{A_i=1}^{a-1} \sum_{A_{i+1}=1}^{A_i} \cdots \sum_{A_{i+k}=1}^{A_{i+k-1}} 1.$$

Ignoring the factor in front, the last sum is a tetrahedral number, so combinatorially the sum is

$$\binom{a+k-1}{k},$$

and so we are done. This follows since triangular numbers have a generating function $x/(1-x)^3$ [6] and, by convolution, the d-dimensional tetrahedral numbers have a generating function $x/(1-x)^{d+1}$. Accordingly, the n-th d-tetrahedral number can be combinatorially represented as

$$T_d(n) = \sum_{A_i=1}^{n} \sum_{A_2=1}^{A_i} \cdots \sum_{A_d=1}^{A_{d-1}} 1 = \binom{n+d-1}{d}.$$ \hspace{1cm} (2)

From this theorem, the following corollary of [2] is immediate.

Corollary 1. Let $x_n = ax_{n-1} \mod 1$ be an equidistributed sequence, with $a > 1$ an integer and $x_0 \in [0, 1)$. Then $P(x_i > x_{i+1}) = P(x_i < x_{i+1}) = \frac{1}{2}$

and $P(x_i > x_{i+1} > x_{i+2}) = \frac{1}{3!} + \frac{1}{6a}$.

The multiply sequence is not 3-equipartitioned. However, as the next corollary demonstrates, in a sense the case of 3-equipartitioning is the worst case.
Corollary 2. Let \(x_n = ax_{n-1} \mod 1 \) be an equidistributed sequence, with \(a > 1 \) an integer and \(x_0 \in [0, 1) \). Then

\[
\left| P(x_i > x_{i+1} > \cdots > x_{i+k}) - \frac{1}{(k+1)!} \right| \leq \frac{1}{6a},
\]

Proof. We have equality for \(k = 2 \). Accordingly, we will proceed by induction, by assuming

\[
\frac{1}{a^k(a-1)} \left(\frac{a+k-1}{k+1} \right) \leq \frac{1}{(k+1)!} + \frac{1}{6a},
\]

that is,

\[
\frac{6(a+k-1)!}{a!} \leq 6a^{k-1} + a^{k-2}(k+1)!.\]

Now, as \(a \geq 2 \), \(6a \leq (a-1)(k+1)! + a(k+1)(k-1)! \) holds for \(k = 2 \). It also holds for \(k \geq 2 \). Thus, if we expand the first term on the right hand side and multiplying both sides by \(ka^{k-1} \), we have

\[
6ka^{k-1} + ka^{k-2}(k+1)! \leq ka^{k-1}(k+1)! + a^{k-1}(k+1)! = a^{k-1}(k+2)! - a^{k-1}(k+1)!.
\]

Thus, using our induction hypothesis:

\[
\frac{6(a+k)!}{a!} \leq (a+k)(6a^{k-1} + a^{k-2}(k+1)!)
\]

\[
= 6a^k + a^{k-1}(k+1)! + 6ka^{k-1} + ka^{k-2}(k+1)!
\]

\[
\leq 6a^k + a^{k-1}(k+2)!.
\]

Hence, by induction, the desired result holds for all \(a, k \geq 2 \).

We now show that, for all possible equipartition tests, the error in the estimate in the last corollary is uniformly bounded as \(a \to \infty \).

Theorem 2.2. Let \(x_n = ax_{n-1} \mod 1 \) be an equidistributed sequence, with \(a > 1 \) an integer and \(x_0 \in [0, 1) \). Then, for any permutation \(i_1, \ldots, i_m \) of the index set \(\{1, \ldots, i + m - 1\} \), we have

\[
\frac{3}{a} \leq P(x_{i_1} > x_{i_2} > \cdots > x_{i_m}) - \frac{1}{m!} \leq \frac{3}{a - 1}.
\]

Proof. Suppose \(x_0 \in [0, 1) \) and \(x_n = ax_{n-1} \mod 1 \), with \(a > 1 \) an integer, is an equidistributed sequence. We may write \(x_i \) with a unique \(a \)-ary expansion

\[
x_i = \frac{A_1}{a} + \frac{A_2}{a^2} + \cdots + \frac{A_k}{a^k} + \frac{x_{i+k}}{a^k},
\]
where $0 \leq A_j < a$ for all $j \in \{1, \ldots, k\}$. Now it follows that

\[
x_{i+1} = \frac{A_2}{a} + \frac{A_3}{a^2} + \cdots + \frac{A_k}{a^{k-1}} + \frac{x_{i+k}}{a^{k-1}}
\]

\[
\vdots
\]

\[
x_{i+j} = \frac{A_{i+j}}{a} + \frac{A_{i+j+2}}{a^2} + \cdots + \frac{A_k}{a^{k-j}} + \frac{x_{i+k}}{a^{k-j}}
\]

\[
\vdots
\]

\[
x_{i+k-1} = \frac{A_k}{a} + \frac{x_{i+k}}{a}
\]

Let us define a reordering of the index set $\{i, \ldots, i+k-1\}$, say $\{j_1, \ldots, j_k\}$, such that

\[
x_{j_1} \geq x_{j_2} \geq \cdots \geq x_{j_k}
\]

(4)

and, for some $l \in \{1, \ldots, k-1\}$,

\[
x_{j_l} > x_{i+k} > x_{j_{l+1}}
\]

(5)

The last assumption (5) is for notational convenience. The following calculation could be easily repeated, and is in fact simpler, with x_{i+k} being either the smallest or largest of the consecutive members of the sequence.

Now, if we compare the first terms in the expansions of x_{j_1}, \ldots, x_{j_k}, it follows that

\[
a - 1 \geq A_{j_1} \geq A_{j_2} \geq \cdots \geq A_{j_k} \geq 0,
\]

(6)

and so by inequality (5) we have

\[
\frac{A_{j_1}}{a} + \frac{A_{j_1+1}}{a^2} + \cdots + \frac{A_k}{a^{k-j_l+1}} + \frac{x_{i+k}}{a^{k-j_l+1}} > x_{i+k}
\]

\[
> \frac{A_{j_1}}{a} + \frac{A_{j_1+1}}{a^2} + \cdots + \frac{A_k}{a^{k-j_l+1}} + \frac{x_{i+k}}{a^{k-j_l+1}}.
\]

If we write this using common denominators and isolate x_{i+k}, we have

\[
\frac{A_j a^{k-j_l} + \cdots + A_k}{a^{k-j_l+1} - 1} > x_{i+k} > \frac{A_{j_1} a^{k-j_l+1} + \cdots + A_k}{a^{k-j_l+1} - 1}.
\]

(7)

We wish to calculate the measure of the set of initial values x_i that give us the ordering (4) and (5). To do this, for each combination of A_j’s, we will establish upper and lower estimates for the length of the interval of x_{i+k}’s that satisfy the inequality (7). Thus, we want to calculate

\[
I(A_1, \ldots, A_k) = \frac{A_j a^{k-j_l} + \cdots + A_k}{a^{k-j_l+1} - 1} + \frac{A_{j_1} a^{k-j_l+1} + \cdots + A_k}{a^{k-j_l+1} - 1},
\]
which we will abbreviate as I.

Note that for integers $a > 1$ and $b > 1$

$$
\frac{1}{a} < \frac{a^b}{a^{b+1} - 1} < \frac{1}{a-1},
$$

and so

$$
I \geq \frac{A_{j_1}a^{k-j_1}}{a^{k-j_1+1} - 1} - \frac{A_{j_{i+1}}a^{k-j_{i+1}} + (a-1)a^{k-j_{i+1}-1}\cdots + (a-1)}{a^{k-j_{i+1}+1} - 1}
$$

$$
= \frac{A_{j_1}a^{k-j_1}}{a^{k-j_1+1} - 1} - \frac{A_{j_{i+1}}a^{k-j_{i+1}}}{a^{k-j_{i+1}+1} - 1} - \frac{(a-1)(a^{k-j_{i+1}} - 1)}{(a-1)a^{k-j_{i+1}+1} - 1}
$$

$$
> \frac{A_{j_1}a^{k-j_1}}{a^{k-j_1+1} - 1} - \frac{(A_{j_{i+1}} + 1)a^{k-j_{i+1}}}{a^{k-j_{i+1}+1} - 1}
$$

$$
> \frac{A_{j_1}a^{k-j_1}}{a} - \frac{A_{j_{i+1}} + 1}{a-1}.
$$

Similarly,

$$
I < \frac{A_{j_1} + 1}{a} - \frac{A_{j_{i+1}}}{a-1}.
$$

We will now establish lower and upper bounds for

$$
P(x_{j_1} > \ldots > x_{j_i} > x_{i+k} > x_{j_{i+1}} > \ldots > x_{j_k}),
$$

which we will abbreviate as P.

From equation (3) we see that we can find an upper bound for (8) by calculating $I(A_1, \ldots, A_k)$ for each possible combination of A_1, \ldots, A_k, such that inequalities (6) are satisfied, that is

$$
P \leq \sum_{A_{j_1}=0}^{a-1} \sum_{A_{j_2}=0}^{A_{j_1}} \cdots \sum_{A_{j_k}=0}^{A_{j_{k-1}}} \frac{I(A_1, \ldots, A_k)}{a^k}
$$

$$
< \sum_{A_{j_1}=0}^{a-1} \sum_{A_{j_2}=0}^{A_{j_1}} \cdots \sum_{A_{j_k}=0}^{A_{j_{k-1}}} \frac{1}{a^k} \left(\frac{A_{j_1} + 1}{a} - \frac{A_{j_{i+1}}}{a-1} \right).
$$

For a lower bound, we note that if

$$
a - 1 > A_{j_1} > A_{j_2} > \ldots > A_{j_k} > 0,
$$
then surely \(x_{j_1} > \ldots > x_{j_k} \). Hence, we can establish the following lower bound:

\[
P \geq \sum_{A_{j_1} = 1}^{a-1} \sum_{A_{j_2} = 1}^{A_{j_1}-1} \cdots \sum_{A_{j_k} = 1}^{A_{j_{k-1}}-1} \frac{I(A_1, \ldots, A_k)}{a^k} \sum_{A_{j_1} = 1}^{a-1} \sum_{A_{j_2} = 1}^{A_{j_1}-1} \cdots \sum_{A_{j_k} = 1}^{A_{j_{k-1}}-1} \frac{1}{a^k} \left(\frac{A_{j_k} - A_{j_{k+1}} + 1}{a} \right).
\]

Thus, the key to estimating \(P \) is to calculate sums of the form

\[
\sum_{B_1 = 0}^{n} \sum_{B_2 = 0}^{B_1} \cdots \sum_{B_d = 0}^{B_{d-1}} B_{d-m+1} \tag{11}
\]

and

\[
\sum_{B_1 = 1}^{n-1} \sum_{B_2 = 1}^{B_1-1} \cdots \sum_{B_d = 1}^{B_{d-1}-1} B_{d-m+1} \tag{12}
\]

for integers \(m \), \(1 \leq m \leq d \).

The sum

\[
\sum_{B_1 = 0}^{n} \sum_{B_2 = 0}^{B_1} \cdots \sum_{B_n = 0}^{1}
\]

is the coefficient of \(x^n \) in the generating function \(1/(1-x)^{d+1} \) or, in other words, it is given by \(T_d(n+1) \).

Thus, the sum in (11) can be represented by the generating function

\[
\frac{x}{(1-x)^{d-m+1}} \frac{d}{dx} \left(\frac{1}{(1-x)^m} \right) = \frac{mx}{(1-x)^{d+2}}
\]

and so,

\[
\sum_{B_1 = 0}^{n} \sum_{B_2 = 0}^{B_1} \cdots \sum_{B_d = 0}^{B_{d-1}} B_{d-m+1} = m T_{d+1}(n) = m \left(\frac{n + d}{d + 1} \right).
\]

Likewise,

\[
\sum_{B_1 = 1}^{n-1} \sum_{B_2 = 1}^{B_1-1} \cdots \sum_{B_d = 1}^{B_{d-1}-1} B_{d-m+1} = m T_{d+1}(n - d) = m \left(\frac{n}{d + 1} \right).
\]
We will now show that P positive. By substituting $a = 1$, we see that they sum up to $(1+2k)! < 2(k+1)!$. Thus,

\[U > \frac{a^k(a-1) + 3a^k(k+1)! - (a^{k+1} + (2k + \sum_{i=1}^{k-1} i)a^k + 2a^k(k+1)!)}{a^k(a-1)(k+1)!} \]

Likewise, from (10) we have the following lower bound for (8):

\[\frac{k-l+1}{a^{k+1}(a-1)} \left(\frac{a}{k+1} \right) - \frac{k-l}{a^k(a-1)} \left(\frac{a}{k+1} \right) - \frac{1}{a^k(a-1)} \left(\frac{a}{k} \right) \]

Thus, we have shown that

\[\frac{a-2k-2}{a^{k+1}(a-1)} \left(\frac{a}{k+1} \right) < P < \frac{a+2k}{a^k(a-1)^2} \left(\frac{a+k-1}{k+1} \right). \]

We will now show that P has uniform bounds in terms of a and k, for all $a \geq 2$ and $k \geq 2$.

\[\frac{1}{(k+1)!} - \frac{3}{a} < P < \frac{1}{(k+1)!} + \frac{3}{a-1}. \]

Consider

\[U = \frac{1}{(k+1)!} + \frac{3}{a-1} - \frac{a+2k}{a^k(a-1)^2} \left(\frac{a+k-1}{k+1} \right) \]

\[= \frac{a^k(a-1) + 3a^k(k+1)! - (a^{k+1} + (2k + \sum_{i=1}^{k-1} i)a^k + 2a^k(k+1)!)}{a^k(a-1)(k+1)!} \]

Note that all the coefficients in the polynomial $f(a) = (a+2k)(a+k-1) \cdots a$ are positive. By substituting $a = 1$, we see that they sum up to $(1+2k)! < 2(k+1)!$. Thus,

\[U > \frac{a^k(a-1) + 3a^k(k+1)! - (a^{k+1} + (2k + \sum_{i=1}^{k-1} i)a^k + 2a^k(k+1)!)}{a^k(a-1)(k+1)!} \]
\[
\frac{a^k(k+1)! - 0.5(k+1)(k+2)a^k}{a^k(a-1)(k+1)!} \geq 0.
\]

The last inequality follows as \(2(k+1)! \geq (k+1)(k+2)\), for \(k \geq 2\).

Now, consider
\[
L = \frac{a - 2k - 2}{a^{k+1}(a-1)} \left(\frac{a}{k+1} \right) + \frac{3}{a} - \frac{1}{(k+1)!}
\]
\[
= \frac{(a - 2(k+1))(a-2) \cdots (a-k) + 3a^{k-1}(k+1)! - a^k}{a^k(k+1)!}.
\]

Consider the expansion of the polynomial \(f(a) = (a-2(k+1))(a-2) \cdots (a-k)\)
\[
f(a) = a^k - \left(2(k+1) + \sum_{2 \leq i \leq k} i \right) a^{k-1} + \]
\[
+ \left(2(k+1) \sum_{2 \leq i \leq k} i + \sum_{2 \leq i < j \leq k} ij \right) a^{k-2} - \cdots + (-1)^k 2(k+1)!.\]

In the expansion of the polynomial \((a-2) \cdots (a-k)\), the absolute value of
the coefficient of \(a^r\) will not exceed
\[
\left(\binom{k-1}{r} \right) r! = \frac{(k-1)!k!}{r!(k-r-1)!} \leq (k-1)!k!.
\]

Since, for \(a \leq (k+1)!\), \(L\) is trivially positive, we consider \(a \geq (k+1)!\). In this case, we see that, in the expansion of the polynomial \(f(a)\), the absolute value of the term involving \(a^r\), for \(k > 1\), will not exceed
\[
(2(k+1)(k-1)!k! + (k-1)!k!) a^r < 2(k+1)!k!a^r < 2k!a^{r+1}.
\]

Now, discarding the positive coefficients of \(a^r\), for \(r < k - 1\) and bounding the \(\left\lfloor \frac{k}{2} \right\rfloor - 1 \leq \frac{k}{2}\) negative terms by \(-2k!a^{k-1}\), we have
\[
f(a) > a^k - 0.5(k^2 + 5k + 2)a^{k-1} - kk!a^{k-1}.
\]

However, for \(k \geq 2\), \(2(k+1)! > 0.5(k^2 + 5k + 2)\) and so, \(f(a) > a^k - 3(k+1)!a^{k-1}\).

Thus,
\[
L > \frac{a^k - 3(k+1)!a^{k-1} + 3a^{k-1}(k+1)! - a^k}{a^k(k+1)!} = 0.
\]

Thus, the desired result follows. \(\square\)
3. Discussion

In Theorem 2.1 we demonstrated that equidistributed multiply sequences are not m-equipartitioned for any $m > 2$ by establishing an exact value for $P(x_i > x_{i+1} > \cdots > x_{i+m-1})$. Calculations for other individual permutations can be established in a similar fashion. For example, for $m = 3$ it is easy to show that:

$$P(x_i > x_{i+1} > x_{i+2}) = P(x_{i+2} > x_{i+1} > x_i) = \frac{1}{6} \left(1 + \frac{1}{a} \right),$$

$$P(x_{i+1} > x_i > x_{i+2}) = P(x_{i+2} > x_i > x_{i+1}) = \frac{1}{6} \left(1 - \frac{1}{a} \right),$$

and

$$P(x_i > x_{i+2} > x_{i+1}) = P(x_{i+1} > x_{i+2} > x_i) = \frac{1}{6}.$$

Exact values for $m > 3$ can likewise be established, although they become increasingly more complex.

However, in Theorem 2.2 we established a uniform bound for all equipartition tests of equidistributed multiply sequences. As multiply sequences are almost ∞-distributed in an asymptotic sense, these bounds can be thought of as one measure of how close a sequence is to ∞-distribution.

In comparing the general bounds of Theorem 2.2 to the above permutation tests for $m = 3$ it is apparent that the bounds can be improved. We have provided some alternate bounds, such as inequality (14), in intermediary steps. For large a and m, other bounds might be possible from our calculations by using Stirling-like approximations [5].

We conjecture in fact that Theorem 2.1 provides the worst case upper bound, and a symmetric worst case lower bound, as follows:

Conjecture 1. Let $x_n = ax_{n-1} \mod 1$ be an equidistributed sequence, with $a > 1$ an integer and $x_0 \in [0, 1)$. Then, for any permutation i_0, \ldots, i_k of the index set \{i, \ldots, i+k\}, we have

$$\left| P(x_{i_0} > x_{i_2} > \cdots > x_{i_k}) - \frac{1}{(k+1)!} \right| \leq \frac{1}{a^k(a-1)} \binom{a+k-1}{k+1} - \frac{1}{(k+1)!}.$$

Acknowledgments

This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).
References

