International Journal of Pure and Applied Mathematics

Volume 42 No. 4 2008, 563-568

GROUP-THEORETIC GENERATION OF NON-UNIFORM PSEUDO-RANDOM SEQUENCES FOR SIMULATION

Marco Pollanen

Department of Mathematics Trent University 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8, CANADA e-mail: marcopollanen@trentu.ca

Abstract: Many applications involving statistical simulation, such as Monte Carlo methods, require non-uniform random sequences. These are usually created by first generating a uniform sequence and then using techniques such as rejection sampling or transformation. In this paper we introduce a new method to directly generate, without transformation or rejection, some non-uniform pseudo-random sequences. This method is a group-theoretic analogue of linear congruential pseudo-random number generation. We provide examples of such sequences, involving computations in Jacobian groups of plane algebraic curves, that have both good theoretical and statistical properties.

AMS Subject Classification: 14H40, 65C10, 65C05, 68W20

Key Words: pseudo-random sequences, non-uniform sequences, Jacobian groups, stochastic simulation

1. Introduction

Pseudo-random numbers are a critical part of modern computing, especially for use in simulations and cryptography, and consequently there are a myriad of algorithms for generating pseudo-random sequences. Thus far, almost all of the pseudo-random number literature has focused on generating sequences with uniform distribution.

The most popular and well-studied pseudo-random number generator is the linear congruential generator (LCG), proposed by Lehmer in 1948, which is defined by $x_n \equiv ax_{n-1} + b \mod m$, where a, b, m, and seed x_0 , are integers. In

Received: August 17, 2007

© 2008, Academic Publications Ltd.

this paper we study the analogous problem of *multiply sequences*, where b = 0, m = 1, and x_0 is a real number.

Let S_n be a sequence of propositions about the sequence y_n . Following the definition by Franklin [3], we define

$$P(S_n) = \lim_{N \to \infty} \frac{1}{N} \sum_{\substack{S_n \text{ is true} \\ 1 \le n \le N}} 1,$$

when the limit exists.

A sequence y_n is ∞ -distributed (Knuth [6]) if, for every value of k,

 $P(a_1 \le y_n < b_1, \cdots, a_k \le y_{n+k-1} < b_k) = (b_1 - a_1) \cdots (b_k - a_k)$ for all real a_j, b_j , with $0 \le a_j < b_j \le 1$ for $1 \le j \le k$.

 ∞ -distributed sequences are of interest in that they automatically pass a large number of asymptotic statistical tests for randomness, including: the frequency test, serial test, gap test, poker test, coupon collector's test, permutation test, run test, maximum-of-t test, collision test, birthday spacings test, serial correlation test, and tests on subsequences (Knuth [6]).

It was shown by Franklin [3] and Pollanen [10] that as a approaches ∞ , multiple sequences are ∞ -distributed and thus have good statistical properties. This is not only of theoretical interest, as we will show that we can construct sequences with non-uniform densities, by using multiply sequences over Jacobian groups of certain algebraic curves, that empirically pass many statistical tests for randomness. Similar sequences have also been used by Pollanen [9] for quasi-random number generation.

2. Multiply Sequences in Jacobian Groups

Consider a hyperelliptic curve C of genus g defined by $y^2 = f(x)$, where f(x) is a polynomial of degree 2g + 1 with distinct roots in \mathbb{C} . The basic theory of algebraic curves can be found in [2]. Associated with each hyperelliptic curve is a Jacobian group \mathbb{J} with an Abelian structure. An efficient algorithm for adding points in the Jacobian was described by Cantor [1]. Thus, if we let P_0 be a point in \mathbb{J} of infinite order, we may define a sequence in \mathbb{J} by $P_{n+1} = aP_n$, $n \geq 0$.

To determine the distribution our sequence defines, we need to take another view of the Jacobian, namely the Jacobian variety. Using a basis of first order differentials of the first kind,

$$\left\{\frac{dx}{y}, \frac{xdx}{y}, \cdots, \frac{x^{g-1}dx}{y}\right\},\,$$

and the associated lattice of their periods $\Lambda \subset \mathbb{C}^g$, we define a natural embedding $L: C \to \mathbb{C}^g / \Lambda$ by

$$P \to \left(\int_{\infty}^{P} \frac{dx}{y}, \int_{\infty}^{P} \frac{xdx}{y}, \dots, \int_{\infty}^{P} \frac{x^{g-1}dx}{y}\right)$$

Obviously $L(\infty) = (0, \ldots, 0)$. Now, given two points P and Q in J, the Abel-Jacobi Theorem guarantees that:

$$\left(\int_{\infty}^{P} \frac{dx}{y}, \dots, \int_{\infty}^{P} \frac{x^{g-1}dx}{y}\right) + \left(\int_{\infty}^{Q} \frac{dx}{y}, \dots, \int_{\infty}^{Q} \frac{x^{g-1}dx}{y}\right)$$
$$= -\left(\int_{\infty}^{P \oplus Q} \frac{dx}{y}, \dots, \int_{\infty}^{P \oplus Q} \frac{x^{g-1}dx}{y}\right) \mod \Lambda.$$

As there is a natural bijection between \mathbb{C}^g/Λ and $\mathbb{R}^{2g}/\mathbb{Z}^{2g}$ given by linear transformation, the sequence $P_{n+1} = aP_n$ has a natural identification to $\mathbf{y}_n = c^n \mathbf{y}_0 \mod \mathbb{Z}^{2g}$ for $\mathbf{y}_0 \in \mathbb{R}^{2g}/\mathbb{Z}^{2g}$ and c some integer. It was shown by Franklin [4] that, for almost all choices of y_0 , the sequence defined as y_n is uniformly distributed in \mathbb{R}^{2g} . Thus, the Jacobian determinant of our map L can be used to calculate the density to which our sequence of points P_n converges.

3. Empirical Results

In the case when g = 1, we have an elliptic curve $y^2 = x^3 + ax^2 + bx + c$. The points of the curve coincide with the Jacobian group. Accordingly, we can derive a group law for addition on the curve (see Lang [7]). Given a point P = [x, y] on the elliptic curve, the duplication formula defines the x-coordinate of 2P as

$$x(2P) = \frac{x^4 - 2bx^2 - 8cx + b^2 - 4ac}{4(x^3 + ax^2 + bx + c)}$$

Note that, although the use of elliptic curves over finite fields has recently been used by Hess and Shparlinski [5] for uniform random number generation, our method is fundamentally different and focuses on non-uniform distributions.

For our tests, a sequence was calculated by taking the x-coordinates of the sequence of points $P_n = 2^{101}P_{n-1}$ on an elliptic curve, with initial point P_0 having the x-coordinate equal to 100 (the y-coordinate was not relevant, as

Elliptic Curve RNG

Figure 1: Comparison of pseudo-random versus theoretical density for the elliptic curve $y^2 = x^3 - x$ with 3524322 samples

Figure 2: Scatter plot of density generated from the hyperelliptic curve $y^2 = x^5 + x^4 - 2x^3 + 7x^2 - x + 4$ versus contour plot of bivariate density proportional to $\frac{|x-y|}{\sqrt{(x^5+x^4-2x^3+7x^2-x+4)(y^5+y^4-2y^3+7y^2-y+4)}}$ on $[-2,2] \times [0,2]$

all our operations were duplications). Thus, the algorithm used was a simple execution of the following recursion (101 iterations per sample):

$$x \to \frac{x^4 - 2bx^2 - 8cx + b^2 - 4ac}{4(x^3 + ax^2 + bx + c)},$$

which theoretically leads to a density proportional to

$$1/\sqrt{x^3 + ax^2 + bx + c}$$
.

The curve used for the arithmetic was $y^2 = x^3 - x$, and so the expected density was proportional to $\frac{1}{\sqrt{x^3-x}}$. Note that, as x_0 was rational, the entire sequence was rational (although we would expect rounding errors to propagate). As there is an isomorphism between the elliptic curve and a fundamental parallelogram in the complex plane, the asymptotic results for multiply sequences in Section 2 apply. Thus, for a multiplier as large as 2^{101} , we anticipate excellent statistical results. Some theoretical statistical bounds are given by Pollanen [10].

We performed an empirical test in which a total of 3,524,322 samples were generated on the interval [-1, 1] using double precision arithmetic with the GNU *C* compiler. Normalized elliptic logarithms were used to convert the samples into 24-bit "uniform" samples in [0, 1). The resulting sequence of bits was subjected to Marsaglia's *DIEHARD* testing standard [8], which even some supposedly good pseudo-random number generators can fail. With a threshold of $\alpha = 0.001$ for the resulting *p*-values, the sequence passed each of the *DIEHARD* tests. A histogram of the actual density plotted against the theoretical density is presented in figure 1.

In Figure 2, we plotted a scatter plot of 10,000 samples of a bivariate density generated from the curve $y^2 = x^5 + x^4 - 2x^3 + 7x^2 - x + 4$, with an overlayed contour plot of the theoretical density. This method shows promise for generating classes of multivariate pseudo-random sequences related to hyperelliptic curves, and perhaps could be generalized to larger classes of distributions by employing more general plane algebraic curves (see Volcheck [11]).

References

- D.G. Cantor, Computing in the Jacobian of a hyper-elliptic curve, Math. Comp., 48 (1987), 95-101.
- [2] C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable, AMS Surveys VI, New York (1951).
- [3] J.N. Franklin, Deterministic simulation of random processes, Math. of Comp., 17 (1963), 28-59.
- [4] J.N. Franklin, Equidistribution of matrix-power residues modulo One, Math. of Comp., 18 (1964), 560-568.

- [5] F. Hess, I. Shparlinski, On the linear complexity of multidimensional distribution of congruential generators over elliptic curves, *Design. Code. Cryp*togr., **35** (2005), 111-117.
- [6] D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Volume 2, Addison-Wesley, New York (1998).
- [7] S. Lang, *Elliptic Curves: Diophantine Analysis*, Springer-Verlag, New York (1978).
- [8] G. Marsaglia, Diehard: A battery of tests for randomness, http://www.stat.fsu.edu/pub/diehard/ (1996).
- [9] M. Pollanen, Formal group laws and non-uniform quasi-random sequences, Int. J. Pure Appl. Math., 37 (2007), 79-100.
- [10] M. Pollanen, Bounds on equipartition tests for multiply sequences, *Preprint* (2007).
- [11] E.J. Volcheck, Computing in the Jacobian of a plane algebraic curve, In: Proceedings of the First Algorithmic Number Theory Symposium, Cornell University (1994).