
  
  

A model for effective real-time entry of mathematical expressions 

Marco Pollanen*,1 and Michael Reynolds2 
1 Department of Mathematics, Trent University, Peterborough, ON, K9J 7B8, Canada  
2 Department of Psychology, Trent University, Peterborough, ON, K9J 7B8, Canada  

Many science and engineering courses contain substantial mathematical content. In addition, the rapid 
development of online learning, in both traditional and Web-based courses, and the ubiquitous presence of laptop 
computing, is placing increased demands on students to enter mathematical expressions into a computer. 
Furthermore, it is often required that the expressions are written in real-time (e.g., in class note-taking, automated 
assessment in a timed testing environment, or for a live online discussion).  Technology-based difficulties that 
affect the writing of expressions will result in inaccurate assessment or may impede the transfer of knowledge.  
Obstacles to the easy input of mathematical expressions include the large number of specialized symbols in 
mathematics and the two-dimensional layout structure of many mathematical expressions. Most software 
packages, such as Microsoft Word, that allow complex mathematical content to be input employ a structure-based 
approach, where symbols and structural elements are chosen from palettes and input separately.  
In this paper, we argue that structure-based expression editors, which were largely designed for document 
creation, are not appropriate for real-time tasks in education. They force a user to write expressions differently 
than they would on paper, and so interfere with normal thought processes. As an alternative, we introduce a new 
model for expression entry that, like a structure-based approach, uses palettes for symbol selection, but for 
structures allows users to freely place symbols as they would on paper. Supported by usability studies, we argue 
that this hybrid approach allows for the much more effective entry of mathematical content.  

Keywords Formula Input; Mathematical Communication; Mathematical User Interfaces 

1. Introduction 

Digital communication tools are evolving at an astonishing pace due to the growth of the Internet.  Indeed, 
recent evidence suggests that 98% of U.S. post-secondary faculty use the Internet to communicate with their 
students and that many are quick to embrace new digital communication tools [1]. The adoption of digital 
communication tools is widely seen as a an important pedagogical development since it is known that increased 
outside-the-classroom student-teacher contact (e.g., office hours, e-mail) in a post-secondary environment 
correlates positively with key educational indicators (e.g., academic performance, student retention, and student 
satisfaction) [2].  The use of text-based communication technologies is ubiquitous (e.g., e-mail, discussion 
groups, chat rooms, and instant messaging). In contrast, none of the faculty in the survey used video or audio 
conferencing to communicate with students.  The heavy reliance on text-based communication technologies is 
problematic for academic subjects that make extensive use of mathematical expressions or other non-text 
content. The purpose of the present paper is to examine different mathematics user-input models and to 
determine which one would be most effective for real-time communication, especially by novice users (e.g., 
students). 
 The most common platform for accessing the Internet is the personal computer equipped with a keyboard and 
mouse (or equivalent pointing device). The hardware user-input interface for the common personal computer, 
which has evolved from the English-language QWERTY typewriter, originally relied solely on a keyboard and 
later on a keyboard/mouse combination, with digital pens and speech recognition playing a small but growing 
role. The QWERTY keyboard and mouse interface is not well suited for languages that do not use the alphabet-
based writing systems. This is true both for logographies (e.g., Kanji) and mathematics, as can be seen by 
considering the following expression from a first-year calculus course: 
  

dx
x

x
∫ −

−≥∆
β

α

3

2

1
1

.                                                                                                          (1) 

 
 From Expression (1) it is apparent that the digital communication of mathematics faces several major 
challenges not present in text-based communication. Firstly, there many more symbols than there are simple key 
combinations on a keyboard (e.g., “ctrl r” for √) and many of the symbols are not visually similar to alphabet 
characters, resulting in unintuitive mapping of symbols (the symbol problem). The second major challenge is 
 
* Corresponding author: e-mail: marcopollanen@trentu.ca 

Research, Reflections and Innovations in Integrating ICT in Education

320



  
  
that many mathematical expressions have a non-sequential layout (the layout problem). A third factor that 
compounds the challenges of writing mathematics is that, it is difficult to communicate expressions in everyday 
language; even “oral” mathematical communication relies on a facilitating interface, such as a chalkboard, for 
effective communication.  
 To date, most digital writing methods for mathematics have focused on document creation, predominantly for 
mathematically sophisticated users.  Consequently, their primarily goal is to produce mathematical expressions 
with a clear, idealized, visual presentation. It is currently unclear whether traditional mathematical input 
methods are well-suited for real-time communication applications. Arguably, real-time communication 
interfaces need to balance speed and ease of communication with readability and usability for novices (i.e., 
students) if they are to be adopted in an educational setting.  For instance, communicating with a student in real-
time when they made an error requires user behaviours not present during document creation. This should 
influence interface design choices.  

2. Software Methods for Mathematical Expression Input 

During the past several decades a number of approaches have been developed for the digital input of 
mathematical expressions. Before the widespread use of graphical user interfaces (GUIs), text-based languages 
such as TeX [3] were developed for mathematical input. With the advent of the GUI, graphical editors were 
developed (e.g., Microsoft Equation Editor). In the this section we provide an overview of several methods of 
mathematical expression input. In Section 3 we discuss which of these models is most effective and efficient for 
communication applications for novice users.  

2.1 Text-Based Communication of Mathematics 

As most tools for communicating over the Internet are text-based, it is common for students to communicate 
mathematics via text-based technologies such as e-mail. For simple expressions, this can be a quick and efficient 
method for communicating mathematics. However, more complex expressions may contain mathematical 
symbols and have a two-dimensional layout. 
 For many symbols it is possible to write text-based synonyms that would be universally known. For example, 
most post-secondary students would known that alpha and α describe the same character. However, many 
students would not know that Ξ is capital xi, while other symbols, such as ∟, have no commonly accepted 
name. Even common symbols such as ≥ can present difficulties. The description “greater than or equal to” is 
long, and so is sometimes written as >=, which may not be clear to somebody who has never seen it before. 
Writing it as => is also possible, but could be misinterpreted visually as an arrow.   
 The layout problem represents an even greater challenge for text-based mathematics. It is hard to 
unambiguously describe the structure of many mathematical expressions using natural language. This is due, in 
part, to the two-dimensional layout of mathematical expressions resulting in nested substructures.  Structural 
ambiguities are often overcome by introducing parentheses or braces to indicate the precedence of structures. 
However, many students in introductory university mathematics courses have difficulty with precedence and the 
proper use of parentheses. In other cases, ambiguities can be introduced by representation styles. For example, 
consider the expression 1/2x. Interpreting this sequentially would lead one to believe that it represents 0.5*x. 
However, some readers could interpret the division sign pictorially as a structural element and assume it 
represents a horizontal division bar, in which case the expression is 0.5/x. Without a pre-defined standard, the 
communication of mathematics using text can be problematic.    
 There are many text-based languages for describing mathematics. For example, using the popular typesetting 
language TeX, Expression (1) can be written as “\Delta \ge int_{\alpha}^{\beta} \sqrt[3]{\frac{x^2-1}{x-1}} 
dx”. The difficulty of using this approach is apparent; the reader(s) and writer(s) of such an expression need to 
(1) know the text-based synonyms, and (2) be able to parse this expression to appreciate its two-dimensional 
layout. While TeX is text-based, many TeX editors allow synonyms to be inserted by selecting symbols from 
graphical palettes. This alleviates the symbol problem for the writer(s), and so allowing symbol synonyms to be 
inserted from palettes should be a design consideration for any text-based environment designed specifically for 
mathematics.  

2.2 Structure-Based Graphical Input 

The most common non-text method for digitizing mathematical expressions is the graphical structure-based 
editor. An editor of this type (e.g., Microsoft Equation Editor) is found in most office productivity software 
suites.  
 Graphical structure-based editors (see Fig. 1), typically require that a user enter a mathematical expression by 
selecting separate structural and symbol elements from palettes. The structure elements subdivide the writing 

Research, Reflections and Innovations in Integrating ICT in Education

321



  
  
space into regions (often represented by boxes in the element) that can then contain a sequential expression or 
further nested structural elements. 
 One fundamental problem with these editors is that, like text-based methods, they force the writer of the 
expression to pre-parse their expression and change their natural writing order [4]. For example, the expression 

x

y
would normally be handwritten in the order √, x, −, y, however, structure-based editors typically force the 

user to first input the fraction bar and then the root before populating the structure with the x and y.   
 

 
Fig. 1 The Structure-Based Editor BreDiMa [5]. The structural elements are in the first row, followed by 
symbol elements in the next two rows. Structurally subdivisions of the expression are represented by outlined 
boxes. 

 
 Another problem with structure-based editors is that the nested nature of structures makes it difficult to edit 
the overall structure of an expression (e.g., to simplify an expression once it has been written). Consequently, 
users commonly restart an expression from scratch, rather than try to edit it [4]. It is also difficult to navigate the 
sub-expressions in an intuitive way, and generally these editors violate many WYSIWYG design principles [6]. 

2.3 Drawing Mathematical Expressions 

A common software interface that allows users to communicate ideas visually is a whiteboard. Whiteboards can 
be found in many learning management systems as well as some instant messaging applications. Conceptually, a 
whiteboard interface is meant to emulate a physical whiteboard, and therefore typically contains a multi-user 
shared canvas that allows users to “draw’’ as they would using a paint program. Usually, drawing tools for 
objects such as arrows, boxes, and circles, are provided to facilitate image creation.  
 The concept of a whiteboard has been specialized for mathematics in the communication package enVision 
[7]. In addition to the typical whiteboard drawing tools like boxes and circles, enVision also contains similar 
resizable drawing tools for mathematical symbols such as integrals, radicals, and brackets (see Fig. 2). 
Arguably, as most users have had experience with a paint application, they should be familiar with the interface 
concept and so new users should find it intuitive. Users who have a digital pen, or equivalent, input device could 
also use enVision to handwrite mathematics on the whiteboard surface.  
  Since enVision is modelled after a paint program, the drawing is treated like an image. Although it has some 
basic editing features, such as undo, most deleting is done using a graphical pixel-based eraser tool. This makes 
modifying expressions inefficient, because the expression is a single image and not a collection of objects.  
Deleting part of an expression, therefore, often requires many strokes with the eraser tool, similar to how one 
erases an image on a chalkboard, instead of indicating what symbols/structures to delete. Another drawback of 
the enVision interface is that, as the images are only visualizations of mathematical ideas, they cannot be 
exported into other formats, such as the Microsoft Equation Editor format. However, there are experimental 
pen-based interfaces that recognize handwritten mathematics, for example FFES [8], so improvements may be 
possible in this regard in the future. 

Research, Reflections and Innovations in Integrating ICT in Education

322



  
  

 
Fig. 2 The whiteboard interface enVision. There is a chat window as well as a shared mathematics whiteboard. 
In addition to drawing tools found in a typically whiteboard, it contains sizeable drag-and-drop mathematics 
symbols.  

2.4 Diagrammatic Input of Mathematical Expressions 

 
Another type of user interface that allows direct access to a two-dimensional canvas for writing mathematics can 
be found in XPRESS [9]. However, unlike enVision, which is modelled after a paint application, XPRESS is 
modelled after a diagram editor (see Fig. 3).    
 

 
Fig. 3 The Diagrammatic Editor XPRESS. This is a palette-based expression input system that allows users to 
draw mathematical expressions in a similar way to a diagram editor. Note: in this figure the Operators symbol 
palette is expanded and one of the square root objects is selected showing its resizing widgets.   

 

Research, Reflections and Innovations in Integrating ICT in Education

323



  
  
 XPRESS allows users to select symbols from a palette and place them freely anywhere on the canvas. In 
contrast to a paint application, which is usually for creating pixel-based drawings, each object in XPRESS has a 
set of attributes, such as location and size, and can be independently moved and resized. Consequently, it is 
possible to select, move, delete, and resize the symbols (or groups of symbols) at a later time. Once an 
expression is in its final form, XPRESS is able to apply a spatial analysis algorithm to recognize the expression, 
and so that it could then be exported in a format usable by other applications.  

3. Discussion    

Each of the graphical models, and some implementations of the text-based model, solves the symbol problem by 
having users graphically select symbols from palettes. So the fundamental difference between the four 
approaches is how spatial structures are created and modified. In the structure-based approach the user is 
constrained as to where and in what order they can place symbols, whereas both the drawing approach and the 
diagrammatic approach allow users to place symbols freely anywhere and in any order on a virtual canvas.  All 
three graphic editors differ in how symbols are manipulated. A structure-based approach affords only minimal 
editing. The drawing approach best resembles pen-and-paper in that the entire canvas is treated like a single 
drawn image, and so symbols cannot be easily manipulated, and deleting is accomplished by a applying a digital 
eraser to the overall image. Only the diagrammatic approach, in which each mathematical symbol is an 
individual object on the canvas, allows for the easy resizing, deleting, and moving of symbols and structures. 
This is an important consideration in a teaching environment where a problem is worked on step-by-step, or 
where users are expected to make many mistakes. 
 In  the study [4] comparing how novice users write expressions with a diagrammatic editor versus a structure-
based editor, it was shown the novice users wrote expressions in a similar order than they would on paper with a 
diagrammatic approach, while a structure-based approach forced users to change their writing style. This 
suggests the diagrammatic approach is more intuitive. Furthermore, the subjects wrote a set of expressions 
marginally faster (5%) using a diagrammatic editor than with a structure-based editor. However, a large 
percentage of the time (24%) with the diagrammatic editor was spent on aesthetic changes to the expression that 
did not alter the expression meaning. It is possible that users might spend less time making these cosmetic 
changes in a real-time communication setting where time pressure is a factor. For example, in text-messaging 
spelling and punctuation are often sacrificed for speed.  

4. Conclusion   

In this paper we considered some of the difficulties communicating mathematics online in real-time. We also 
examined solutions to this problem currently implemented in user-interfaces available for mathematical input: 
text-based input, structure-based input, drawing environments, and diagrammatic environments.     
 Overall, given that the diagrammatic model appears to be the most intuitive for novice users, potentially has a 
speed advantage, and is the only graphical approach that allows for the easy editing and manipulation of content, 
suggests that it is the best underlying model for future mathematical communication interfaces.  

Acknowledgements This research was supported by a grant from the Social Sciences and Humanities Research Council of 
Canada (SSHRC). 

References 

  [1] S. Jones and C. Johnson-Yale, First Monday  10, online (2005) 
  [2] M.K. Nadler and L.B.  Nadler, Communication Studies 51, 176-188 (2004) 
  [3] D.E. Knuth. The TeXbook, (Addison-Wesley, Reading, MA, 1984)  
  [4] D. Gozli, M. Pollanen, and M. Reynolds, preprint (2009)  
  [5] Y. Nakano and H. Murao, Proceedings of MathUI 2006, Workingham, UK, 10 August 2006, online. 
  [6] L. Padovini and R. Solmi, Lecture Notes in Computer Science 3119, pp. 302-316 (2004) 
  [7] M. Pollanen, Journal of Online Mathematics and its Applications 4, online (2006) 
  [8] R. Zanibbi, D. Blostein, and J.R. Cordy, Proceedings of the 6th International Conference on Document Analysis and 
        Recognition, Seattle, USA, 10-13 September 2001, pp. 768-773.   
  [9] M. Pollanen, Proceedings of MathUI 2007, Linz, Austria, 27 June 2007, online. 
 

Research, Reflections and Innovations in Integrating ICT in Education

324




