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Abstract

In this paper, the application of a Sinc-Collocation approach based on first derivative interpolation in
numerical oceanography is presented. The specific model of interest involves a hydrodynamic model of
wind-driven currents in coastal regions and semi-enclosed seas with depth-dependent vertical eddy viscosity.
The model is formulated in two different but equivalent systems; a complex-velocity system and a real-valued
coupled system. Even in the presence of singularities that are often present in oceanographic problems in-
volving boundary layers, the Sinc-collocation technique provides exponentially convergent approximations.
Moreover, the first derivative interpolation approach which uses Sinc-based integration to approximate the
unknown has advantages over the customary Sinc method of interpolating the unknown itself since integra-
tion has the effect of damping out numerical errors that are inherently present in numerical approximations.
Moreover, the approach presented in this paper preserves the appropriate endpoints behaviors of the Sinc
bases, resulting in a highly accurate and computationally efficient method. The accuracy and stability of
the proposed method is demonstrated through the solution of several model problems. It is further shown
that the proposed approach is more accurate and computationally less expensive than those obtained by the
Sinc-Galerkin approach reported in previous studies.

Keywords: Boundary Value Problems, Ordinary Differential Equations, Sinc Numerical Methods,
Wind-Driven Currents, Numerical Oceanography

1. Introduction

Since the pioneering work of Ekman in 1905,
the hydrodynamic problem of wind-driven current
systems have been receiving great attention [13].
While Ekman’s model was a one-dimensional ver-
tical model, many two and three dimensional sys-
tems were later developed [15, 16]. These mod-
els are often represented by boundary value prob-
lems (BVPs) for which analytic solutions are not
available. Therefore, numerical methods includ-
ing spectral techniques [20], B-spline approach [8],
Chebyshev and Legendre polynomials [9] and eigen-
function approach [7] have been applied to obtain

∗Corresponding author: Dr. Kenzu Abdella
Email address: kabdella@trentu.ca (Kenzu Abdella)

approximate solutions of these BVPs. More Re-
cently, the Sinc-Galerkin method was employed to
the wind-driven current model that is considered in
this paper [19, 36].

Due to the boundary layer formed by the large
magnitude of near-surface velocity shears that
is present in these models, traditional numerical
methods such as finite-difference methods [25] are
not able to resolve the physical processes repre-
sented in the models. However, numerical methods
based on the Sinc bases are particularly well-suited
to these types of Oceanographic problems involv-
ing boundary layers since singularities are naturally
handled with the Sinc approach. Moreover, Sinc
based approximations can be used to approximate
the solutions of BVPs over infinite and semi-infinite
domains [33] which commonly arise in numerical
oceanography. More importantly, they are also
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characterized by exponentially decaying errors and
rapidly converging solutions that can provide highly
accurate solutions [5, 6, 11, 12, 17, 30]. There-
fore, Sinc-based methods have been applied to di-
verse scientific and engineering problems including
in heat conduction [22, 24, 31], fluid mechanics
[27, 28], atomic physics [10, 29], population growth
[3], inverse problems [23, 32], astrophysics problems
[14, 26], medical imaging [34], elastoplastic prob-
lems [2], and in oceanography models[19, 36].

In this paper, a Sinc-Collocation technique based
on first derivative interpolation is used to approxi-
mate the solution of a steady state model of wind-
driven currents with a depth-dependent eddy vis-
cosity in coastal regions and semi-enclosed seas.
Winter et al. [36] formulated this model in terms
of a complex-valued ordinary differential equation
and solved it using the Sinc-Galerkin approach.
Recently, Koonprasert and Bowers [19] developed
a block matrix formulation for the Sinc-Galerkin
technique and applied it to same model but formu-
lated as a coupled system of ordinary differential
equations. The Sinc-Collocation approach used in
the current paper is applied to the complex as well
as the real-value coupled systems.

Following the Sinc function preliminaries in Sec-
tion 2, we discuss how the model of interest was
formulated in Section 3. Section 4 is dedicated to
our numerical solutions for both the complex veloc-
ity system and the real-value coupled system. Af-
terwards, we portray our results in Section 5. In
closing, concluding remarks are presented in Sec-
tion 6.

2. Sinc Function Preliminaries

On the real line < the Sinc function is defined as

sinc(x) ≡


sin(πx)

πx
, x 6= 0,

1, x = 0.

(1)

If f is a function defined on <, then for a step-size
h > 0 the series

C(f, h)(x) ≡
∞∑

k=−∞

f(kh)S(k, h)(x), (2)

where S(k, h)(x) is the scaled and translated kth

Sinc function given by

S(k, h)(x) = sinc

(
x− kh
h

)
(3)

is called the Whittaker Cardinal expansion of f
whenever the series converges. However, in prac-
tice, the infinite series defining these approxima-
tions are truncated as

CN (f, h)(x) ≡
N∑

k=−N

S(k, h)(x)f(kh), (4)

for a given positive integer N . Note that
CN (f, h)(x) defines an interpolation of f(x) with
CN (f, h)(x) = f(x) at all the Sinc grid points given
by xk = kh. For a class of functions which are an-
alytic only on an infinite strip containing the real
line and allowing specific growth restrictions, the
Sinc interpolations provide approximation that ex-
hibit exponentially decaying absolute errors as es-
tablished by the theorem subsequent to the follow-
ing definition [35].

Definition Let Dd denote the infinite strip of
width 2d (d > 0) in the complex plane:

Dd =
{
z = x+ iy

∣∣∣ |y| < d <
π

2

}
.

Then B1 (Dd) is defined as a the class of functions
f that are analytic in Dd such that

N(f,Dd) ≡ lim
ε→0

∫
∂Dd(ε)

|f(z)||dz| <∞

where

Dd(ε) =

{
z = x+ iy

∣∣∣∣|x| < 1

ε
, |y| > d(1− ε)

}
.

Theorem If f(x) ∈ B1(Dd) and decays expo-
nentially for x ∈ < such that

|f(x)| ≤ α exp (−βexp(γ |x|)) for all x ∈ <

where α, β and γ are positive constants, then the
error of the Sinc approximation is bounded by:

sup
−∞≤x≤∞

∣∣∣∣∣f(x)−
N∑

k=−N

S(k, h)(x)f(kh)

∣∣∣∣∣ ≤ CE(h)

for some positive constant C and where

E(h) = exp

(
−πdγN

log(πdγN/β)

)
and the mesh size h is taken as:

h =
log(πdγN/β)

γN
.
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In order to construct the approximation over the
finite interval [a, b], we use the change of variable
transformation

ξ = ϕ(x) =
1

π
log

(
x− a
b− x

)
with a corresponding inverse

x = ψ(ξ) =
b+ a

2
+
b− a

2
tanh

(π
2

sinh(ξ)
)

and xk = ψ(kh), that transfers the interval [a, b]
onto < and apply the above Sinc approximation on
< to the transformed function f(ψ(ξ)) so that:

f(x) ≈
N∑

k=−N

S(k, h)(ϕ(x))f(ψ(kh)), a ≤ x ≤ b,

(5)
where ϕ(a) = −∞ and ϕ(b) = ∞. Therefore, the
corresponding error bound theorem will be as fol-
lows:

Theorem If f(ψ(ξ)) ∈ B1(Dd) and decays expo-
nentially for ξ ∈ < such that

|f(ψ(ξ))ψ′(ξ)| ≤ α exp (−βexp(γ|ξ|)) for all ξ ∈ <

where α, β and γ are positive constants and x =
ψ(ξ) is the inverse of the transformation ξ = ϕ(x),
then the error of the Sinc approximation is bounded
by:

sup
a≤x≤b

∣∣∣∣∣f(x)−
N∑

k=−N

S(k, h)(ϕ(x))f(ψ(kh))

∣∣∣∣∣ ≤ CE(h)

for some positive constant C and where

E(h) = exp

(
−πdγN

log(πdγN/β)

)
and the mesh size h is taken as:

h =
log (πdγN/β)

γN
.

The typical strategy in using the Sinc method to
solve BVPs is to start with the Sinc interpolation
of the unknown function and to obtain its first and
higher derivatives through successive differentiation
in order to transform the BVP into discrete sys-
tems. However, this approach has a basic drawback
as it is well-known that numerical differentiation
process is highly sensitive to numerical errors [4].

Having recognized this difficulty Li and Wu pro-
posed a Sinc-method procedure based on the in-
terpolation of the highest derivative and obtaining

the lower derivatives through successive integration
[21]. While this has the advantage of averaging
and damping out the numerical errors inherently
present in the computation of the derivatives, their
approach needs to be modified since there are no
boundary conditions for the highest derivative in-
terpolation consistent with the Sinc functions which
by construction satisfy the homogeneous Dirichelet
boundary conditions. In this paper, we utilize the
recent approach of Abdella in which the first deriva-
tive is interpolated using the Sinc functions which
is then numerically integrated in order to obtain
the unknown solution [1]. The second derivative
is obtained by differentiation of the interpolated
function. Nonhomogeneous boundary conditions
are treated by making appropriate transformations
which convert them to homogeneous cases as re-
quired by the Sinc bases.

We approximate u′(x) as follows:

u′(x) ≈
N∑

k=−N

S(k, h)(ϕ(x))u′(xk), a ≤ x < b.

(6)
Therefore, an approximation to the unknown vari-
able u(x) can be obtained by integration:

u(x) =

∫ x

a

u′(x)+u(a) =

N∑
k=−N

hk(x)u′(xk), a ≤ x < b

(7)
where

hk(x) =

∫ x

a

S(k, h)(ϕ(x))dx. (8)

Similarly, an approximation to u′′(x) can be ob-
tained by differentiation:

u′′(x) =

N∑
k=−N

gk(x)u′(xk), a ≤ x < b (9)

where

gk(x) =
dS(k, h)(ϕ(x))

dx
. (10)

Therefore, at the Sinc points xi we have the follow-
ing approximations:

u′(xi) =

N∑
k=−N

δ
(0)
i,ku

′(xk), (11)

u(xi) =

N∑
k=−N

hδ
(−1)
i,k

u′(xk)

ϕ′(xk)
, (12)

3
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u′′(xi) =

N∑
k=−N

δ
(1)
i,kϕ

′(xi)
u′(xk)

h
, (13)

where

δ
(−1)
i,k =


1
2 +

∫ i−k
0

sin(πt)
πt , k 6= i,

1
2 , k = i,

(14)

δ
(0)
i,k =

 0, k 6= i,

1, k = i,
(15)

δ
(1)
i,k =


(−1)i−k

i−k , k 6= i,

0, k = i.

(16)

3. Problem Formulation

Over the last century, physical oceanography has
evolved from a descriptive to an explanatory and
predictive science. The oceanographic model pre-
sented here was developed by Winter et al. [36]
describing wind-driven currents in coastal regions
and semi-enclosed seas.

The model is constructed in a right-handed coor-
dinate system with the vertical coordinate z∗ di-
rected positive downward from the free surface,
and with x∗ and y∗ directed positive northward
and eastward, respectively. It is assumed that z∗

changes from 0 to D0 = 100 m, and the plane at
z∗ = D0 = 100 m is an impermeable boundary
at the seabed [36]. Several assumptions are made
in order to simplify this model. The ocean depth,
D0, and ocean mass density, ρ, are assumed con-
stant, and the effects of tides, inertial terms, free
surface slope, and variations in atmospheric pres-
sure are neglected [36]. For a better understanding,
a schematic form of the model is provided in Figure
1. Assuming τw as the magnitude of a tangential
surface wind stress, the currents are represented by
τ(0) = τw(cos(χ)x̂∗+sin(χ)ŷ∗) where χ is the angle
between the positive x∗-axis and the wind direction
and x̂∗ and ŷ∗ are unit vectors in the positive direc-
tion of x∗-axis and y∗-axis, respectively. The hor-
izontal wind-drift current, q∗(z∗), is the difference
between the total velocity and the geostrophic cur-
rent and given by q∗(z∗) = U∗(z∗)x̂∗ + V ∗(z∗)ŷ∗.
As well, Internal frictional stresses are parameter-
ized as τ(z∗) = −ρA∗v(z∗) dqdz∗ , where the specified
effective vertical eddy viscosity coefficient Av

∗(z∗)

Figure 1: A schematic description of the oceanography
model with depth-dependent eddy viscosity

is a continuously differentiable function of z∗ ∈
(0, D0) [36]. Therefore, the the wind-drift current,
q∗, is given by the second order differential equa-
tion:

d

dz∗
(A∗v(z

∗)
dq∗

dz∗
) = −fẑ∗ × q∗, 0 < z∗ < D0,

(17)
subject to the boundary conditions (BCs)

−ρAv∗(0)
dq∗(0)

dz∗
= τw (cos(χ)x̂∗ + sin(χ)ŷ∗) ,

(18)

−ρAv∗(D0)
dq∗(D0)

dz∗
= kf ρ q

∗(D0). (19)

The Coriolis parameter at latitude θ is given by
f ≡ 2Ω sin(θ), while Ω = 7.29×10−5 rad s−1. Since
the Coriolis force acts inversely in northern and
southern hemisphere, Winter et al. [36] assumed
that the sea is located in the northern hemisphere,
so 0 < θ < π

2 . The parameter kf , is defined as the
linear slip bottom stress coefficient. Substituting
the definition of q∗(z∗) in (17), leads to

d

dz∗

(
A∗v(z

∗)
dq∗

dz∗

)
= −fẑ∗ × q∗

= −fẑ∗ × [U∗(z∗)x̂∗ + V ∗(z∗)ŷ∗]

= −f (U∗(z∗)ŷ∗ − V ∗(z∗)x̂∗) .
(20)

which would be separated to its parts as

− d

dz∗

(
A∗v(z

∗)
dU∗(z∗)

dz∗

)
= −fV ∗(z∗), 0 < z∗ < D0,

(21)
and

− d

dz∗

(
A∗v(z

∗)
dV ∗(z∗)

dz∗

)
= −fU∗(z∗), 0 < z∗ < D0.

(22)

4
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Similarly, the separated BCs at the sea surface,
and the seabed are given by

−ρA∗v(0)
dU∗(0)

dz∗
= τw cos(χ), (23)

−ρA∗v(0)
dV ∗(0)

dz∗
= τw sin(χ),

ρA∗v(D0)
dU∗(D0)

dz∗
= kfρU

∗(D0), (24)

ρA∗v(D0)
dV ∗(D0)

dz∗
= kfρV

∗(D0).

With the help of the nondimensional variables

z ≡ z∗

D0
, Av(z) ≡

A∗v(z
∗)

A∗v(0)
, (25)

q(z) ≡ q∗(z∗)

U0
≡ U(z)x̂+ V (z)ŷ,

and nondimensional constants, κ (depth ratio) and
σ (bottom friction parameter)

κ ≡ D0

DE
= D0

√
f

2A0
, σ ≡ A0Av(1)

kfD0
=
A∗v(D0)

kfD0
.

(26)
where

A0 ≡ A∗v(0), DE ≡

√
2A0

f
,

U0 =
τwDE

(ρA0)
=

√
2τw

(ρ
√
A0f)

,

equations (21) and (22) are transferred to nondi-
mensional equations

− d

dz

(
Av(z)

dU(z)

dz

)
= −2κ2V (z), 0 < z < 1,

(27)

− d

dz

(
Av(z)

dV (z)

dz

)
= 2κ2U(z), 0 < z < 1. (28)

Similarly, the nondimensionalizing procedure on
BCs leads to

dU(0)

dz
= −κ cos(χ),

dV (0)

dz
= −κ sin(χ), (29)

U(1) + σ
dU(1)

dz
= 0, V (1) + σ

dV (1)

dz
= 0. (30)

For the purpose of transforming the nonhomoge-
nous BCs to homogeneous ones, the following linear
transformations are applied.

U(z) = u(z) + κ(1 + σ − z) cos(χ),

V (z) = v(z) + κ(1 + σ − z) sin(χ).
(31)

The first derivative of the transformations are
given by

dU(z)

dz
=
du(z)

dz
− κ cos(χ), (32)

dV (z)

dz
=
dv(z)

dz
− κ sin(χ).

Hence the “reduced velocity” components u(z) and
v(z) satisfy

− d

dz

(
Av(z)

du

dz

)
+ κ cos(χ)A′v(z) (33)

= −2κ2v(z)− 2κ3(1 + σ − z) sin(χ), 0 < z < 1,

and

− d

dz

(
Av(z)

dv

dz

)
+ κ sin(χ)A′v(z) (34)

= 2κ2u(z) + 2κ3(1 + σ − z) cos(χ), 0 < z < 1.

where the BCs at the surface and seabed are re-
spectively given by

du(0)

dz
= 0,

dv(0)

dz
= 0, (35)

u(1) + σ
du(1)

dz
= 0, v(1) + σ

dv(1)

dz
= 0. (36)

The system defined by (33)-(36) can be written
in two formats; the coupled u and v equation sys-
tems and complex velocity system. To extract the
coupled one, it is assumed that

Lu(z) ≡ − d

dz

(
Av(z)

du

dz

)
, (37)

Lv(z) ≡ − d

dz

(
Av(z)

dv

dz

)
.

Therefore, (33) and (34) will be altered to the cou-
pled u and v equation systems

Lu(z) + 2κ2v(z) = F1(z), 0 < z < 1, (38)

Lv(z)− 2κ2u(z) = F2(z), 0 < z < 1. (39)

where

F1(z) = −2κ3(1 + σ − z) sin(χ)− κ cos(χ)A′v(z),
(40)

F2(z) = 2κ3(1+σ−z) cos(χ)−κ sin(χ)A′v(z), (41)

and BCs at the surface and seabed are respectively
given by

du(0)

dz
= 0,

dv(0)

dz
= 0, (42)

5
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u(1) + σ
du(1)

dz
= 0, v(1) + σ

dv(1)

dz
= 0. (43)

To obtain the complex velocity formulation, we
need to multiply equation (34) by the imaginary
unit i, and add the result to equation (33). In terms
of a complex velocity w(z) = u(z) + iv(z), we have:

Lw(z) ≡ Lu(z) + iLv(z)

≡ − d

dz

(
Av(z)

du(z)

dz

)
− i

d

dz

(
Av(z)

dv(z)

dz

)
≡ − d

dz

(
Av(z)

dw(z)

dz

)
. (44)

Hence the complex velocity formulation is given by

Lw(z)− i2κ2w(z) = F (z), 0 < z < 1, (45)

where

F (z) = [−κA′v(z) + i2κ3(1 + σ − z)]eiχ

subject to the boundary conditions given by:

w′(0) = 0, (46)

w(1) + σw′(1) = 0. (47)

4. Numerical Solutions

In this section, we discuss our treatments to both
the complex velocity and coupled systems.

4.1. Solution to the Complex Velocity System

The complex velocity problem is given by equa-
tions (44)-(47).

As discussed in section 2, we first transform the
nonhomogenious BCs to homogeneous ones defin-
ing:

η(z) = w(z)− P (z), (48)

where

P (z) = w′(0)H1 + w(0)H2 + w(1)H3 + w′(1)H4,
(49)

is the univariate Hermite interpolation with the car-
dinal functions given by:

H1 = z(z − 1)2, H2 = (z − 1)2(2z + 1),

H3 = −z2(2z − 3), H4 = (z − 1)z2.

Employing (48) and considering

P (0) = w(0), P ′(0) = w′(0),

P (1) = w(1), P ′(1) = w′(1).

leads to a new BVP given by

a(z)η′′(z)+b(z)η′(z)+c(z)η(z)+Λ(z) = F (z), z ∈ (0, 1),
(50)

subject to the homogeneous boundary conditions

η(0) = η(1) = 0, (51)

η′(0) = η′(1) = 0, (52)

where

Λ(z) = w′(0)λ1(z)+w(0)λ2(z)+w(1)λ3(z)+w′(1)λ4(z),

in which

λ1(z) = a(z)H ′′1 + b(z)H ′1 + c(z)H1,

λ2(z) = a(z)H ′′2 + b(z)H ′2 + c(z)H2,

λ3(z) = a(z)H ′′3 + b(z)H ′3 + c(z)H3,

λ4(z) = a(z)H ′′4 + b(z)H ′4 + c(z)H4,

a(z) = −Av(z), b(z) = −A′v(z), and c(z) = −2κ2i.

Now we substitute η′′(z), η′(z), and η(z) in equa-
tion (50) with those given in (13), (11) and (12)
respectively. Therefore, the discretized version of
equation (50) will be:

N∑
k=−N

Mi,k η
′(zk) + Λ(zi) = F (zi), i = −N, ..., N.

(53)
where

Mi,k = a(zi)δ
(1)
k,i

ϕ′(zi)

h
+ b(zi)δ

(0)
k,i + c(zi)h

δ
(−1)
k,i

ϕ′(zk)
.

(54)
Note that equation (53) leads to a system of
(2N + 1) linear equations for (2N + 5) un-
knowns including w′(0), w(0), w′(1), w(1) and
η′(zi), i = −N, ..., N .

We define the (2N + 5)× 1 vector C by:

C = [C−N−2, ..., C0, ..., CN+2]T

= [w(0), w′(0), η′(z−N ), ..., η′(zN ), w′(1), w(1)]T.
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Two of the four extra conditions required to close
the system are obtained from equations (46) and
(47):

C−N−1 = 0, (55)

CN+2 + σCN+1 = 0, (56)

and the other two from the assumption that w van-
ishes at the N + 1 and −N − 1 nodal points:

N∑
k=−N

hδ
(−1)
−N−1,k

Ck
φ′(zk)

= 0, (57)

N∑
k=−N

hδ
(−1)
N+1,k

Ck
φ′(zk)

= 0. (58)

The matrix representation of the (2N+5)×(2N+5)
system corresponding to equations (53) and (55)-
(58) is given by

AC = F (59)

where F is a (2N + 5)× 1 vector given by

F = [0, 0, F (zN ), ..., F (z0), ..., F (zN ), 0, 0]T,

and A is a (2N + 5)× (2N + 5) matrix given by

A =


B1

B2

B
B3

B4

 , (60)

in whichB1, B2, B3 andB4 are 1×(2N+5) matrices
given by

B1 = [0, 1, 0, ..., 0],

B2 = [0, 0, ..., σ, 1],

B3 = [0, 0,
hδ

(−1)
−N−1,−N

φ′(zk)
, ...,

hδ
(−1)
−N−1,N

φ′(zk)
, 0, 0],

B4 = [0, 0,
hδ

(−1)
N+1,−N

φ′(zk)
, ...,

hδ
(−1)
N+1,N

φ′(zk)
, 0, 0],

and B as a (2N + 1)× (2N + 5) matrix is given by

B = [ΛT2 ,Λ
T
1 ,M,ΛT4 ,Λ

T
3 ],

where M is the (2N + 1)× (2N + 1) matrix format
of (54) and

Λi = [λi(x−N ), ..., λi(x0), ..., λi(xN )].

Once equation (59) is solved, the coefficients are
used to determine the unknown function η(z) and

η′′(z) at the Sinc nodes using equations (12) and
(13). The original unknown, w(z) is then deter-
mined from equation (48). Note that the values of
w(z) and w′(z) at the two end-points are also de-
termined directly from the system solutions. The
unknowns u(z) and v(z) are the real and imaginary
parts of w(z) respectively obtained via

u(z) = Re[w(z)],

and
v(z) = Im[w(z)].

It should be noted that by construction, the Sinc
method is able to handle BVPs involving singular-
ities. Therefore, the linear system arising from the
discretization is well posed and do not involve large
condition numbers. This was the case for the nu-
merical problems considered in this paper.

4.2. Solution to the Coupled System

The model of interest is also given by the coupled
system of differential equations given by equations
(37)-(43).

In order to apply our Sinc-Collocation approach
to the coupled system, we first transform the
boundary value problem as follows:

yu(z) = u(z)− Pu(z), (61)

yv(z) = v(z)− Pv(z), (62)

where Pu(z) and Pv(z) are defined by

Pu(z) = u′(0)H1 + u(0)H2 + u(1)H3 + u′(1)H4,

and

Pv(z) = v′(0)H1 + v(0)H2 + v(1)H3 + v′(1)H4.

Employing (61), (62) and considering

Pu(0) = u(0), P ′u(0) = u′(0),

Pu(1) = u(1), P ′u(1) = u′(1),

Pv(0) = v(0), P ′v(0) = v′(0),

Pv(1) = v(1), P ′v(1) = v′(1).

the BVP given by (37)-(43) is transformed into

a(z)y′′u(z) + b(z)y′u(z) + c1(z)yv(z) + Γ(z) = F1(z),
(63)

a(z)y′′v (z) + b(z)y′v(z) + c2(z)yu(z) + Φ(z) = F2(z),
(64)
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subject to the homogeneous boundary conditions

yu(0) = yu(1) = 0, y′u(0) = y′u(1) = 0,

yv(0) = yv(1) = 0, y′v(0) = y′v(1) = 0,

where

Γ(z) = γ1u
′(0) + γ2u(0) + γ3u(1) + γ4u

′(1)

+ζ1v
′(0) + ζ2v(0) + ζ3v(1) + ζ4v

′(1),

Φ(z) = γ1v
′(0) + γ2v(0) + γ3v(1) + γ4v

′(1)

+ζ ′1u
′(0) + ζ ′2u(0) + ζ ′3u(1) + ζ ′4u

′(1),

in which

γ1 = a(z)H ′′1 + b(z)H ′1, γ2 = a(z)H ′′2 + b(z)H ′2,

γ3 = a(z)H ′′3 + b(z)H ′3, γ4 = a(z)H ′′4 + b(z)H ′4,

ζ1 = c1(z)H1, ζ2 = c1(z)H2,

ζ3 = c1(z)H3, ζ4 = c1(z)H4,

ζ ′1 = c2(z)H1, ζ ′2 = c2(z)H2,

ζ ′3 = c2(z)H3, ζ ′4 = c2(z)H4.

and
a(z) = −Av(z), b(z) = −A′v(z),

c1(z) = 2κ2, c2(z) = −2κ2,

Approximate solutions yu(z) and yv(z) and their
derivatives at the Sinc points zi are given by

y′u(zi) =

N∑
k=−N

δ
(0)
i,k y

′
u(zk), (65)

yu(zi) =

N∑
k=−N

hδ
(−1)
i,k

y′u(zk)

ϕ′(zk)
, (66)

y′′u(zi) =

N∑
k=−N

δ
(1)
i,kϕ

′(zi)
y′u(zk)

h
, (67)

y′v(zi) =

N∑
k=−N

δ
(0)
i,k y

′
v(zk), (68)

yv(zi) =

N∑
k=−N

hδ
(−1)
i,k

y′v(zk)

ϕ′(zk)
, (69)

and

y′′v (zi) =

N∑
k=−N

δ
(1)
i,kϕ

′(zi)
y′v(zk)

h
. (70)

Therefore, the discretized version of equations
(63) and (64) will be given by

N∑
k=−N

(
Mi,k y

′
u(zk) +N1

i,k y
′
v(zk)

)
+ Γ(zi) = F1(zi),

(71)

N∑
k=−N

(
Mi,k y

′
v(zk) +N2

i,k y
′
u(zk)

)
+ Φ(zi) = F2(zi),

(72)

where

Mi,k = a(zi)δ
(1)
k,i

ϕ′(zi)

h
+ b(zi)δ

(0)
k,i , (73)

N1
i,k = c1(zi)h

δ
(−1)
k,i

ϕ′(zk)
, (74)

N2
i,k = c2(zi)h

δ
(−1)
k,i

ϕ′(zk)
. (75)

Note that equations (71) and (72) lead to a sys-
tem of (n = 4N + 2) equations for (m = 4N + 10)
unknowns.

We define the vector of unknowns C by:

C = C1 ∪ C2,

where

C1 = [C1
−N−2, C

1
−N−1, ..., C

1
0 , ..., C

1
N+1, C

1
N+2]T

= [u(a), u′(a), y′u(x−N ), ..., y′u(xN ), u′(b), u(b)]T,

and

C2 = [C2
N−2, C

2
N−1, ..., C

2
0 , ..., C

2
N+1, C

2
N+2]T

= [v(a), v′(a), y′v(x−N ), ..., y′v(xN ), v′(b), v(b)]T.

The eight more conditions required to close the sys-
tem consist of

C1
−N−1 = 0, (76)

C1
N+2 + σC1

N+1 = 0, (77)

N∑
k=N

hδ
(−1)
−N−1,k

C1
k

φ′(zk)
= 0, (78)

N∑
k=N

hδ
(−1)
N+1,k

C1
k

φ′(zk)
= 0, (79)

C2
−N−1 = 0, (80)

C2
N+2 + σC2

N+1 = 0, (81)
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N∑
k=−N

hδ
(−1)
−N−1,k

C2
k

φ′(zk)
= 0, (82)

and
N∑
k=N

hδ
(−1)
N+1,k

C2
k

φ′(zk)
= 0. (83)

Therefore, equations (71), (72), (76)-(83) constitute
(4N + 10) equations for the (4N + 10) unknowns
and can be represented by the matrix equation

AC = F, (84)

in which F is a (4N + 10)× 1 vector given by

F = F1 ∪ F2,

where

F1 = [0, 0, F1(z−N ), ..., F1(z0), ..., F1(zN ), 0, 0]T,

F2 = [0, 0, F2(z−N ), ..., F2(z0), ..., F2(zN ), 0, 0]T,

and A is a (4N + 10)× (4N + 10) matrix given by

A =

 A1

∣∣∣∣ A2

A3

∣∣∣∣ A4

 ,
where

A1 =


B1

B2

B
B3

B4

 (85)

where B1, B2, B3 and B4 are 1× (2N +5) matrices
given by

B1 = [0, σ, 0, ..., 0],

B2 = [0, 0, ..., σ, 0],

B3 = [0, 0,
hδ

(−1)
−N−1,−N

φ′(zk)
, ...,

hδ
(−1)
−N−1,N

φ′(zk)
, 0, 0],

B4 = [0, 0,
hδ

(−1)
N+1,−N

φ′(zk)
, ...,

hδ
(−1)
N+1,N

φ′(zk)
, 0, 0],

and B is a (2N + 1)× (2N + 5) matrix given by

B = [ΓT2 ,Γ
T
1 ,M,ΓT4 ,Γ

T
3 ],

where M is a (2N+1)×(2N+1) matrix represented
by equation (73) and

Γi = [γi(x−N ), ..., γi(x0), ..., γi(xN )].

Similarly, the matrix A2 is a (2N + 5) × (2N + 5)
matrix given by

A2 =


0
0

B*
0
0

 , (86)

where
B* = [ΦT2 ,Φ

T
1 ,N

1,ΦT4 ,Φ
T
3 ],

0=[0, ..., 0] is a (1)×(2N+5) vector of zeros, N1 is a
(2N+1)×(2N+1) matrix represented by equation
(75) and

Φi = [ζi(x−N ), ..., ζi(x0), ..., ζi(xN )].

Note that matrix A4 is equal to matrix A1 and ma-
trix A3 is equal to matrix −A2.

Once equation (84) is solved, the coefficients are
used to determine the unknown functions yu(z)
using equations (66) and (69). The original un-
knowns, u(z) and v(z) are then determined from
the equations given in (61) and (62). To calculate
U(z) and V (z) we need to apply equations given in
(31).

5. Numerical Illustrations

5.1. Constant Eddy Viscosity

In this section, we examine the accuracy of the
Sinc-Collocation method in the complex velocity
system while the eddy viscosity is constant. To
make reliable comparisons, all the examples, pa-
rameters and variables are same as those carried
out in [19, 36].

Since the governing equations and variables were
nondimensionalized, the only operative constants in

(45)-(47), are κ = D0

DE
= 5, σ = A∗v(D0)

(kfD0)
= 0.1, and

χ = 45◦ [36]. As well, the nominal values: f =
0.0001 s−1, sea water density ρ = 1 × 103 kgm−3,
and air density ρair = 1.25 kgm−3 are adopted. The
surface wind stress given by τw = CDρairWw

2, is
set at 0.1414 in all model problems. The linear slip
bottom stress coefficient, kf is set at 0.002 ms−1.
A∗v(0) in units of m2s−1 is given by

A∗v(0) ≈ 0.304× 10−4Ww
3 (87)

together with the parameters and relationships
above, the constant eddy viscosity is chosen to be

A∗v(z
∗) ≡ 0.02m2s−1. (88)
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In the case of constant eddy viscosity, the ex-
act solution is available and given by W ∗(z∗) =
U0[U(z) + iV (z)] where U(z) and V (z) are respec-
tively represented by

U(z) = R(Wc(z)) cos(χ)− I(Wc(z)) sin(χ), (89)

and

V (z) = R(Wc(z)) sin(χ) + I(Wc(z)) cos(χ). (90)

R(Wc(z)) and I(Wc(z)), refer to the real and imag-
inary parts of Wc(z) respectively. Wc(z) is given by

Wc(z) =
ϑσ cosh(Θ) + sinh(Θ)

(1− i)[cosh(ϑ) + ϑσ sinh(ϑ)]
, (91)

where Θ = κ(1− i)(1− z) and ϑ = κ(1− i).
The results of the Sinc-Collocation approach

shown by Uc(zj) and Vc(zj) were compared with
the exact solutions, U(zj) and V (zj), at the sinc
grid points S with the mesh size of

h =
log(πdγN/β)

γN

where d, γ, and β are equal to π
4 , 2, and π

2 respec-
tively. In order to provide dimensional representa-
tion of the velocities we need to multiply the results
by the natural velocity scale U0.

To demonstrate the accuracy of the method, the
maximum absolute errors are defined by

‖EU‖ = max
−N−2≤j≤N+2

{U0|Uc(zj)− U(zj)|},

‖EV ‖ = max
−N−2≤j≤N+2

{U0|Vc(zj)− V (zj)|},

and
‖EW ‖ = max{‖EU‖, ‖EV ‖}, (92)

where the units are ms−1.

Example 1.a.(seabed linear stress condition in the
complex velocity system)
For the purpose of keeping the parameters and vari-
ables identical to references [36] and [18], we choose
χ = 45◦ and the linear stress condition at the

seabed, σ = A∗v(D0)
(kfD0)

= 0.1. In this example we

solve a discrete system of size (2N + 5)× (2N + 5)
given by (59). To demonstrate the numerical con-
vergence of the method we consider N = 4, 8, 16,
32, and 64. The errors are listed in Table 1 demon-
strating a very high degree of accuracy.

In Figure 2 we depict the exponential conver-
gence of the solutions by the horizontal projection

Figure 2: The Sinc-Collocation Ekman Spiral projection of
Example 1.a for different values of N against the exact solu-
tion while σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

Table 1: Errors of Example 1.a (constant eddy viscosity in
the complex system) with σ = 0.1, χ = 45◦, κ = 5, D0 =
100 m and DE = 20 m.

N h CPU (s) ‖EU‖ ‖EV ‖ ‖EW ‖
4 0.3163 0.015 2.9852× 10−3 3.4708× 10−3 3.4708× 10−3

8 0.2015 0.016 1.2634× 10−4 8.4080× 10−5 1.2634× 10−4

16 0.1224 0.016 2.4903× 10−6 1.2267× 10−6 2.4903× 10−6

32 0.0720 0.125 2.9558× 10−8 1.4260× 10−8 2.9558× 10−8

64 0.0414 0.156 1.2276× 10−10 1.817× 10−10 1.817× 10−10

of the Ekman spiral. Obviously, it is hard to distin-
guish between the exact solution and the approxi-
mate solution while N=64.

Table 2, provides a comparison between the
errors of the Sinc-Collocation method and those in
[36] and [18] which are based on the Sinc-Galerkin
scheme. EW , E2 and E3 convey the maximum
errors of our method, and those in [36] and [18]
respectively.

Example 1.b. (seabed linear stress condition in the
coupled system)
We repeat the ideas behind the Example 1.a in the
coupled system to check if it is giving us better
approximations. In this example we solve a dis-
crete system of size (4N + 10) × (4N + 10) given
by (84). Table 3 exhibits the errors of the Sinc-
Collocation approach applied to the coupled sys-
tem. In addition, a comparison between the er-
rors of our method and those in [19] is provided in

Table 2: A comparison between the errors in Example 1.a
(in the complex system) and those in papers [18, 36], with
σ = 0.1, χ = 45◦, κ = 5, D0 = 100 m and DE = 20 m.

N h CPU (s) ‖EW ‖ CPU (s) ‖E2‖ ‖E3‖
4 0.3163 0.015 3.4708× 10−3 0.01 1.10× 10−3 5.377× 10−2

8 0.2015 0.016 1.2634× 10−4 0.01 2.50× 10−4 4.571× 10−2

16 0.1224 0.016 2.4903× 10−6 0.03 2.76× 10−5 1.861× 10−2

32 0.0720 0.125 2.9558× 10−8 0.15 8.99× 10−7 8.189× 10−3

64 0.0414 0.156 1.817× 10−10 1.01 5.78× 10−9 7.13× 10−4
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Table 3: Errors of Example 1.b (constant eddy viscosity in
the coupled system) with σ = 0.1, χ = 45◦, κ = 5, D0 =
100 m and DE = 20 m.

N h CPU (s) ‖EU‖ ‖EV ‖ ‖EW ‖
4 0.3163 0.015 2.9852× 10−3 3.4708× 10−3 3.4708× 10−3

8 0.2015 0.016 1.2634× 10−4 8.4080× 10−5 1.2634× 10−4

16 0.1224 0.016 2.4903× 10−6 1.2268× 10−6 2.4903× 10−6

32 0.0720 0.078 2.9558× 10−8 1.4260× 10−8 2.9558× 10−8

64 0.0414 0.109 7.2213× 10−11 4.8278× 10−11 7.2213× 10−11

Table 4: A comparison between the errors in Example 1.b
(in the coupled system) and those in paper [19], with σ =
0.1, χ = 45◦, κ = 5, D0 = 100 m and DE = 20 m. Here
m = 2N+5 represents the number of unknowns of the linear
system.

N m h ‖EW ‖ ‖E3‖
4 13 0.3163 3.4708× 10−3 5.377× 10−2

8 21 0.2015 1.2634× 10−4 4.571× 10−2

16 37 0.1224 2.4903× 10−6 1.861× 10−2

32 69 0.0720 2.9558× 10−8 8.189× 10−3

64 133 0.0414 7.2213× 10−11 7.13× 10−4

Table 4. The corresponding Ekman spiral to Ex-
ample 1.b is depicted in Figure 3. Comparing the
errors in Tables 1 and 3, shows that the only dif-
ference between errors of the complex system and
the coupled system happens at N = 64. At N =
64, the Sinc-Collocation approach in the coupled
system provides more accurate approximation than
that in the complex system.
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Figure 3: The Sinc-Collocation Ekman Spiral projection of
Example 1.b for different values of N against the exact solu-
tion while σ = 0.1, χ = 45, κ = 5, D0 = 100 m,DE = 20 m.

Example 2.a.(No-slip condition at the seabed in
the complex velocity system)
In this example we set σ = 0. All other parameters
are similar to references [36] and [18] and those
carried out in Example 1.a. Here, we solve the
discrete system given by (59) for approximate
solutions Us(z) and Vs(z). The errors for different

Table 5: Errors of Example 2.a (constant eddy viscosity in
the complex system) with σ = 0, χ = 45◦, κ = 5, D0 =
100 m and DE = 20 m.

N h CPU (s) ‖EU‖ ‖EV ‖ ‖EW ‖
4 0.3163 0.015 3.0613× 10−3 3.3831× 10−3 3.3831× 10−3

8 0.2015 0.016 1.25× 10−4 8.4230× 10−5 1.25× 10−4

16 0.1224 0.016 2.4824× 10−6 1.2312× 10−6 2.4824× 10−6

32 0.0720 0.125 2.9460× 10−8 1.4316× 10−8 2.9460× 10−8

64 0.0414 0.156 8.2568× 10−11 8.3657× 10−11 8.3657× 10−11

Table 6: A comparison between the errors in Example 2.a (in
the complex system) and those in [18, 36], with σ = 0, χ =
45◦, κ = 5, D0 = 100 m and DE = 20 m.

N h CPU (s) ‖EW ‖ CPU (s) ‖E2‖ ‖E3‖
4 0.3163 0.015 3.3831× 10−3 0.01 1.10× 10−3 5.3322× 10−2

8 0.2015 0.016 1.25× 10−4 0.01 2.48× 10−4 4.5478× 10−2

16 0.1224 0.016 2.4824× 10−6 0.03 2.75× 10−5 1.8543× 10−2

32 0.0720 0.125 2.9460× 10−8 0.16 8.96× 10−7 8.1680× 10−3

64 0.0414 0.156 8.3657× 10−11 1.07 5.76× 10−9 7.1× 10−4

values of N (N=4, 8,..., 64) are listed in Table 5 and
a very close similarity to those in Example 1.a is
explored. The horizontal projection of the Ekman
spiral for different values of N against the exact
solution are portrayed in Figure 4. Likewise, Table
6 provides the maximum errors of our method, and
those in [36] and [18] respectively.

Figure 4: The Sinc-Collocation Ekman Spiral projection of
Example 2.a (in the complex system) for different values of N
against the exact solution while σ = 0, χ = 45, κ = 5, D0 =
100 m,DE = 20 m.

Example 2.b.(No-slip condition at the seabed in
the coupled system)
Here we repeat the ideas behind Example 2.a in the
coupled system to check if there are any differences
between the results. Therefore, we solve the sys-
tem given by (84). Table 7 exhibits the errors of
the Sinc-Collocation approach applied to the cou-
pled system. In addition, a comparison between the
errors of our method and those in [19] is provided
in Table 8. The corresponding Ekman spiral to Ex-
ample 2.b is depicted in Figure 5. Comparing the
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Table 7: Errors of Example 2.b (constant eddy viscosity in
the coupled system) with σ = 0, χ = 45◦, κ = 5, D0 = 100 m
and DE = 20 m.

N h CPU (s) ‖EU‖ ‖EV ‖ ‖EW ‖
4 0.3163 0.015 3.0613× 10−3 3.3831× 10−3 3.3831× 10−3

8 0.2015 0.016 1.25× 10−4 8.4230× 10−5 1.25× 10−4

16 0.1224 0.016 2.4825× 10−6 1.2312× 10−6 2.4825× 10−6

32 0.0720 0.078 2.9460× 10−8 1.4316× 10−8 2.9460× 10−8

64 0.0414 0.109 9.1851× 10−11 4.4308× 10−11 9.1851× 10−11

Table 8: A comparison between the errors in Example 2.b
(in the coupled system) and those in [19], while σ = 0, χ =
45◦, κ = 5, D0 = 100 m and DE = 20 m.

N m h ‖EW ‖ ‖E3‖
4 13 0.3163 3.3831× 10−3 5.3322× 10−2

8 21 0.2015 1.25× 10−4 4.5478× 10−2

16 37 0.1224 2.4824× 10−6 1.8543× 10−2

32 69 0.0720 2.9460× 10−8 8.1680× 10−3

64 133 0.0414 9.1851× 10−11 7.1× 10−4

errors in Tables 5 and 7, shows that the only dif-
ference between errors of the complex system and
the coupled system happens at N = 64. At N =
64, the Sinc-Collocation approach in the coupled
system provides more accurate approximation than
that in the complex system.
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Figure 5: The Sinc-Collocation Ekman Spiral projection of
Example 2.b (in the coupled system) for different values of N
against the exact solution while σ = 0, χ = 45, κ = 5, D0 =
100 m,DE = 20 m.

5.2. Variable Eddy Viscosity

In the real world the eddy viscosity is a depth-
and time-dependent variable. In this paper, we
specifically study the depth-dependent eddy vis-
cosity. Likewise, we study a specific case of time-
dependent eddy viscosity in which when t→∞, it
can be considered as a constant.

In seas of shallow to intermediate depth, the eddy
viscosity has the maximum values of A∗v(z

∗) at the
intermediate depths and the minimum values near

the surface and seabed. But in deeper seas, it is ex-
pected that A∗v(z

∗) has the maximum values near
the surface and its value decreases going towards
the seabed. The latter case is illustrated by

A∗v(z
∗) = 0.02[1− 0.0075z∗]2, 0 < z∗ < D0 (93)

which decreases quadratically from the value of
0.02 m2 s−1 to the minimum value of 0.00125 m2

s−1. The eddy viscosity in the first case, follows a
quadratic model given by

A∗v(z
∗) = 0.02[1+0.12z∗(1−0.01z∗)], 0 < z∗ < D0.

(94)
increasing from the initial value of 0.02 m2s−1 to
the peak value of 0.08 and then dereasing to 0.02
m2 s−1.

Example 3.a.(The decreasing eddy viscosity in the
complex velocity system)
In this example we find the approximate solutions
Us(z) and Vs(z) via the complex velocity discrete
system (59), while the variable eddy viscosity is
given by (93). The parameters are chosen identical
to those in references [36] and [18]. Hence D0 = 100
m, σ = 0.1, χ = 45◦, and κ = 5.

Since there is no closed form solution to the cur-
rent case, we present the Ekman spiral projection
of decreasing eddy viscosity in the complex velocity
system against that of constant eddy viscosity for
different values of N, in Figure 6.

Figure 6: The Sinc-Collocation Ekman Spiral projection of
Example 3.a (in the complex system) for different values of N
against the exact solution while σ = 0.1, χ = 45, κ = 5, D0 =
100 m,DE = 20 m.

Example 3.b. (The decreasing eddy viscosity in
the coupled system)
We applied our approach to the same model prob-
lem in Example 3.a but in the coupled system.
Again since there is no closed form solution of this
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case, we present the results by the Ekman spiral
projection of the decreasing eddy viscosity in the
coupled system against that of constant eddy vis-
cosity for different values of N, in Figure 7.
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Figure 7: The Sinc-Collocation Ekman Spiral projection of
Example 3.b (in the coupled system) for different values of N
against the exact solution while σ = 0.1, χ = 45, κ = 5, D0 =
100 m,DE = 20 m.

Example 4.a. (The quadratic eddy viscosity in the
complex velocity system)
In this example, the approximate solutions Us(z)
and Vs(z) are demonstrated by the complex veloc-
ity discrete system while the eddy viscosity is given
by (94). All the parameters are identical to those
carried out in Example 1.a. The exact solution of
this model problem is not valid. Therefore to dis-
cuss the results, we portray the Ekman spiral pro-
jection of quadratic eddy viscosity in the complex
system against that of constant eddy viscosity for
different values of N by Figure 8.

Example 4.b. (The quadratic eddy viscosity in the
coupled system)

Figure 8: The Sinc-Collocation Ekman Spiral projection of
Example 4.a (in the complex system) for different values of N
against the exact solution while σ = 0.1, χ = 45, κ = 5, D0 =
100 m,DE = 20 m.

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ççç

ç
ç

ç

ç

ç

ç

ç
ç
ç
ç
ç
çç
çç
çççç
ççççççççççççççççç

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æææææ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ
æ
æ
æ
æ
ææ
ææ
ææ
æææ
ææææ
ææææææææææææææææææææææææææææææææææææææææ

0.00 0.02 0.04 0.06 0.08 0.10
-0.04

-0.03

-0.02

-0.01

0.00

V * Hm�sL

U
*

Hm
�sL

Figure 9: The Sinc-Collocation Ekman Spiral projection of
Example 4.b (in the coupled system) for different values of N
against the exact solution while σ = 0.1, χ = 45, κ = 5, D0 =
100 m,DE = 20 m.

The same model problem as Example 4.a is inves-
tigated in the coupled system. Figure 9 shows the
results by the help of the Ekman spiral projection
of quadratic eddy viscosity in the coupled system
against that of constant eddy viscosity for different
values of N.

Example 5. (A steady-state problem in the com-
plex system)
As discussed earlier eddy viscosity is a time- and
depth-dependent variable. Realistic oceanography
problems are those in which eddy viscosity is a func-
tion of depth and time. Field studies show that the
value of the eddy viscosity near the surface is de-
pendent on the wind stress which relies on time.
Therefore, in shallow seas (D0 < 100 m), the eddy
viscosity is assumed dependent of time but inde-
pendent of depth. There is an interesting example
of this case in [18] studied in below.

Assume the nondimensional time-dependent
eddy viscosity

Av(t) = 4− 3e−t.

At the steady-state condition (t→∞), it will be
equivalent to A∞ ≡ 4. Then consider the steady-
state boundary value problem

A∞
d2w(z)

dz2
+ 2κ2iw(z) = −2κ3i

(
1− z
A∞

)
eiχ (95)

with time-independent boundary conditions

dw(0)

dz
= 0, (96)

w(1) = 0. (97)

and the no-slip boundary condition σ = 0.
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Table 9: Errors of Example 5 (the steady-state problem in
the complex system) with σ = 0, χ = 45◦, κ = 3.14, D0 =
60 m and DE = 19 m.

N h CPU (s) ‖EU‖ ‖EV ‖ ‖EW ‖
4 0.3163 0.015 9.6571× 10−6 3.4867× 10−6 9.6571× 10−6

8 0.2015 0.015 4.5835× 10−8 9.9910× 10−8 9.9910× 10−8

16 0.1224 0.016 5.833× 10−9 2.1325× 10−9 5.833× 10−9

32 0.0720 0.093 6.9410× 10−11 2.5413× 10−11 6.9410× 10−11

64 0.0414 0.141 2.4219× 10−13 3.0335× 10−13 3.0335× 10−13
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Figure 10: The Sinc-Collocation Ekman Spiral projection of
Example 5 for different values of N against the exact solution
while σ = 0, χ = 45, κ = 3.14, D0 = 60 m,DE = 19 m.

The exact solution of this problem is W (z) =
U0(U(z) + iV (z)), where U(z) and V(z) are given
by

U(z) = R(Wc(z)) cos(χ)− I(Wc(z)) sin(χ),

V (z) = R(Wc(z)) sin(χ)− I(Wc(z)) cos(χ),

and

Wc(z) =

(
1 + i

2

) sinh
(

(1− i)κ(1− z)
√

1
A∞

)
√
A∞ cosh

(
(1− i)κ

√
1
A∞

)
.

(98)
This example is similar to Example 2.a. So we

solved the problem by the complex discrete system
in (59). The results comparing to the exact solution
are depicted in Table 9. Figure 10, displays the Ek-
man spiral projection of the steady-state problem
for N = 4, 8,..., 64 against the exact solution. In
Table 10, we compare our results with those in [18].

The logarithmic plots of the maximum errors of
example 1.a, 2.a and 5 are given by Figures 11,
12 and 13 respectively. These plots show that the
errors of our approach decay exponentially.

6. Conclusions

In this paper, a Sinc-Collocation technique
based on first derivative interpolation has been

Table 10: A comparison between the errors in Example 5
(in the complex system) and those in [18], while σ = 0, χ =
45◦, κ = 3.14, D0 = 60 m and DE = 19 m.

N m h ‖EW ‖ ‖E3‖
4 13 0.3163 9.6571× 10−6 2.1261× 10−1

8 21 0.2015 9.9910× 10−8 2.7372× 10−1

16 37 0.1224 5.833× 10−9 8.6065× 10−2

32 69 0.0720 6.9410× 10−11 2.2573× 10−2

Figure 11: The base-10 logarithm of errors observed in ex-
ample 1.a versus

√
N for N=4, 8, 16, 32, and 64.

Figure 12: The base-10 logarithm of errors observed in ex-
ample 2.a versus

√
N for N=4, 8, 16, 32, and 64.

Figure 13: The base-10 logarithm of errors observed in ex-
ample 5 versus

√
N for N=4, 8, 16, and 32.
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used to numerically approximate the solution of
a hydrodynamic model observed in [36]. The
validity of the proposed approach is demonstrated
by solving illustrative examples found in [36] and
[19] and comparing the results with the exact
solutions and with those in prior studies. The
results show that the proposed Sinc-Collocation
approach is a computationally efficient and a highly
accurate method. In particular, it is shown that
the proposed method performs better than the
Sinc-Galerkin approach previously used to solve
these problems. Therefore, the proposed approach
maybe used in numerical oceanography to solve
other hydrodynamic problems. Although the focus
of this paper is one dimensional oceanography
problems, the method utilized in this paper can
be extended to solve boundary value problems
involving higher dimensions. The extension to
higher dimension would follow the approach used
in [21].
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 This study uses Sinc-Collocation method based on first derivative interpolation.  

 It solves a wind-driven hydrodynamic model with depth-dependent eddy viscosity. 

 The scheme is shown to be highly accurate and computationally efficient. 

 The validity of the scheme is tested with several model problems. 

 The proposed scheme outperforms other schemes based on Sinc approximations. 

*Highlights (for review)



Responses to the Reviewers Reports on Manuscript JOCS-D-14-00157  
 
Title: “The Application of the Sinc-Collocation Approach Based on Derivative Interpolation in Numerical 
Oceanography"  
By Yasaman Mohseniahouei, Kenzu Abdella and Marco Pollanen  
 
We want to thank the reviewers for the thorough and constructive review of the paper. We have 
considered all the comments they raised and made the appropriate changes. The following is a point by 
point response to the comments made by each referee. 
  

Reviewer #1: 
The current article investigates on a practical problem and finds the approximate solution of the 
corresponding differential equation via a numerical technique. The technique is based on Sinc-collocation 
approach. Several test problems are given and the numerical simulations are reported to observe the 
efficiency and applicability of the method. The paper is well-written and the results are useful for the 
interested reader of this computational journal. Thus I recommend its publication, however the following 
corrections improve the current version.  

 
Response:  
We want to thank this reviewer for the positive comments on the manuscript and for recommending it 
for publication. 
  

1- Can the accuracy of the result be improved via employing Pade approximation or using any other 
technique?  

 
Response:  

To the best of our knowledge no work has been done in terms of the use of Pade approximation to 
improve the Sinc numerical method. As noted in the current manuscript, there have been a number of 
improvements made to the standard Sinc method including the use of Double Exponential 
transformation functions as proposed by Masaaki and Sugihara. Other improvements include the works 
of Jian Wang (doi:10.1016/j.amc.2007.09.044) and Saadatmandi et al. (Commun Nonlinear Sci Numer 
Simulat 17 (2012) 4125–4136) who used Legendre polynomials to improve the Sinc-Collocation 
approach. However, consideration of such improvement in the context of our manuscript is beyond the 
scope of this paper and would require a separate investigation. We want to thank the reviewer for 
suggesting this investigation as we plan to include it in our future work

2- Authors have employed the technique for a one-dimensional model (I mean one-dimension on                           
the space). Discussion on the possibility of developing the idea for higher-dimensional models 
helps the reader, as it is not easy to apply the classic Sinc method for solving higher-dimensional 
problems, always. 

Response:  
This is also a very important comment made by this reviewer. As the reviewer pointed out, the focus of 
the current manuscript is on one dimension. However, we are already working on extension of the 
approach to higher dimensional problems. We have added a description of this in the conclusion and 
added a new reference (Reference [16]) to a paper that has used a similar approach in two dimensions.  
 

*Detailed Response to Reviewers



3- In page 9, a brief discussion on the condition number of the linear systems arising from the 
discretization is helpful? Are the corresponding systems well-posed? 

 
Response:  
We have added a short description at the end of section 4.1 regarding the linear system arising from the 
method. By construction, the Sinc method is meant to handle BVPs involving singularities which result in 
well posed linear systems. We noted that for the numerical problems considered in the paper, there 
were no numerical difficulties associated with the linear system. 
  

4-  Considering the subject of the paper and its discussion, the introduction and literature review of 
the paper be up-dated by referring to the following research works on the application of Sinc-
Collocation:  
 

Response:  
We thank the reviewer for pointing out these seven up-dated references. We have now included them 
into the revised version.  
 

Reviewer #3: 
In the present paper, a Sinc-Collocation approach based on first derivative interpolation is presented to 
analyze a hydrodynamic model. Several examples demonstrate the accuracy and stability of the method. 
Overall the paper can be accepted if some minor changes are made.  
 
Response:  
We want to thank this reviewer for the positive comments on the manuscript and for recommending it 
for publication. 
  

1-  In the introduction, the authors miss some recent related references and need to present the 
readers big pictures on numerical methods for boundary value problems. Regarding this 
aspect, I suggest that the revised paper should cite the following papers: (a) Chen, Wen; Fu, 
Zhuo-Jia; Chen, Ching-Shyang: Recent Advances in Radial Basis Function Collocation 
Methods, SpringerVerlag, 2013. The above book introduces Radial Basis Function Collocation 
Methods to the solution of boundary value problems. (b) Chen, W., Fu, Z.J., Qin Q.H.: 
Boundary particle method with high-order Trefftz functions. CMC: Computers, Materials, & 
Continua, 13(3), 201-218 (2009). The above paper introduces Trefftz collocation method for 
solving boundary value problems.                                                                                                                                                                                       

 
Response:  
We thank the reviewer for pointing out these two relevant references. We have now included them into 
the revised version.  
 

2- It would be better to delete the conclusion of the present method in the introduction, namely, 
deleting the following sentence "The results presented in this paper demonstrate that the 
proposed approach is more accurate and computationally less expensive than those obtained by 
the Sinc-Galerkin approach reported in the previous studies."                                                                                                                                   

 
Response:  
Done. 



3-  There are some typos in this paper and the authors should correct all of them.  
 
Response:  
We went through the manuscript thoroughly and made a total of 11 typos correction  

 
4-  In page 6, there is an unnecessary number "27" in the first formula.  

 
Response: 
This is now fixed.  
 

5-  It would be useful to explain the meaning of m in Table 4. Is it the number of unknowns?  
 
Response: 
Yes m represents the number of unknowns and is given by 2N+5. This is now explained in the caption of 
Table 4.  

 
Reviewer #4: 
This research presents a new approach in applying the Sinc-Collocation method. Rather than applying 
the usual Sinc method whereby the unknown function is interpolated, the authors propose to apply the 
Sinc-Collocation technique to the first derivative and then use Sinc-based integration to obtain the 
unknown function. The technique is illustrated through a series of oceanographic examples involving 
wind-driven currents and depth-dependent vertical eddy viscosity. The examples are chosen to be 
identical to those of previous research for comparison purposes. The results demonstrate that the 
proposed technique is more accurate and also more computationally efficient than the Sinc-Galerkin 
method used in previous studies. The Journal of Computational Science is an appropriate journal for this 
research. My feeling is that this study makes an important and significant contribution to the field, and 
hence, is worthy of publication provided the following comments are addressed:                                  
 
Response:  
We want to thank this reviewer for the positive comments on the manuscript and for recommending it 
for publication.  
 

1- The authors state in the abstract," ... the first derivative interpolation approach ... has 
advantages over the customary Sinc method ... since integration has the effect of damping out 
numerical errors ...". If this is true, then applying the Sinc-Collocation technique to the second 
derivative should be even more advantageous. Have the authors considered this? Is there a 
physical explanation if this is not the case? What is the accuracy associated with this approach 
(for example, is it better than the Sinc-Galerkin method)?  

 
Response: 
The paragraph just before equation (6) is now modified and addresses this issue. Our method is more 
accurate than the Sinc-Galerkin method as shown in the tabulated results which compare the absolute 
error associated with the current method and that of [14] who used Sink-Galerkin as mentioned in the 
first paragraph of the Introduction section.  
 
 



2-  In my opinion the paper can be shortened and still make the same impact. For example, in 
Section 4 equations (47)-(50) are identical to equations (44)-(46) and likewise equations (64)-69) 
are identical to equations (38)-(43). Why repeat the equations? Also, there are too many 
examples given in Section 5. The important examples are those that make direct comparisons 
with previous studies; examples 3b and 4b, for example, offer very little information and can 
probably be removed.  

 
Response: 
We agree with the reviewer. We have now removed the duplicate equations which were included with 
the aim of each section self-contained. However, we retained examples 3b and 4b which demonstrate 
the equivalence of solutions obtained from the coupled and the complex form of the problems.  

 
3-  Lastly, the following typos were spotted: Page 1, line 53: "Legender" should be "Legendre" Page 

3, equation 5: should it be a <= x <= b instead of a <= x < b Page 6, the un-numbered equation 
above (44) has the number 27 appearing in the middle of the equation. 

 
Response:  
Done. 
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