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Abstract. Effective communication and collaboration of symbolic and
quantitative knowledge requires the digitization of mathematical ex-
pressions. The multi-dimensionality of mathematical notation creates
a challenge for mathematical software editors. There are two different
approaches for handling the multi-dimensionality of mathematical nota-
tion: either using a two-dimensional writing environment in which sym-
bols can be placed freely (unit-based) or using an environment in which
single-dimensional structural elements can be nested (structure-based).
The structure-based approach constrains how users write expressions.
These constraints may conflict with how mathematics is normally writ-
ten. A study is reported that examines how users write mathematical
expressions using two graphic based editors: one that is structure-based
and one that allows the free-form manipulation of selected symbols in a
diagrammatic fashion (unit-based). The results are contrasted with how
users handwrite mathematics in a physical medium and implications are
drawn for future software design.

1 Introduction

Mathematical expressions are a fundamental tool for representing knowledge.
The successful communication of mathematical expressions is heavily depen-
dent on the use of visual representations. Indeed, even verbal communication of
mathematics relies heavily on intermediary interfaces such as pen-and-paper or
chalk-and-chalkboard. In order to facilitate knowledge transfer and the real-time
communication and sharing of mathematical expressions, it is therefore critical
that people be able to write mathematical expressions fluently and easily. The
widespread use of digital communication technologies for knowledge dissemina-
tion, discussion and collaboration, suggests that achieving efficient communica-
tion of mathematics requires that mathematical expressions be easily digitized.
The purpose of the present paper is to examine how people normally handwrite
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mathematical expressions and examine how the characteristics of the writing
environments affect how people write.

The digitization of mathematics is usually achieved using personal computers
and relies on software programs to overcome limitations in the hardware inter-
face. There are two major challenges for mathematics; (1) a large symbol set
(the symbol problem) and (2) mathematical notation has a two-dimensional lay-
out (the layout problem). Broadly speaking there are three different approaches
to writing digital expressions; (1) use a text-based description, (2) use a digital
pen, or (3) use a palette-based graphic editor. Next we briefly discuss how each
of these approaches has solved the symbol problem and the layout problem.

The Symbol Problem

One solution to the symbol problem is to use a keyboard to write text-based syn-
onyms of the graphic symbols. For example, {\cal F} \cap \Upsilon, is the
TEX [5] representation for F ∩ Υ . The keyboard interface is quick and efficient
for this form of writing. However, the mapping between the text-based and the
conventional graphic-based representation is not always transparent. Therefore,
efficient use of this approach to writing mathematical expressions requires learn-
ing a potentially large lexicon of terms (e.g., MathML [1], provides access to over
2,000 symbols). Another solution is to use a keyboard and mouse in combination
to select symbols from graphical palettes. This method allows for a transparent
mapping between the visual representation of symbols written on paper and the
ones written in the digital environment. One obstacle for this type of interface
is that graphical symbols compete for a limited amount of space on the display,
consequently (1) only a subset of mathematical symbols may be visible at any
one time and (2) the symbols may be organized in a manner that is not imme-
diately intuitive. Consequently, it can take a long time to enter even a simple
expression if the appropriate symbols cannot be located right away. A third so-
lution to the symbol problem is to use a digital pen so that the user can enter
the symbols directly into the digital writing environment. This avoids many of
the problems associated with the other two interfaces because the symbols are
both transparent and are not hidden from the user. At present, these interfaces
are still being refined so that they can correctly recognize the full range of user-
drawn symbols (e.g., ·, •, O, o, 0, ◦, ◦,�,⊗,⊕,�, ∅, φ,	, θ, Θ, · · · , ), which is a
formidable task in computing.

The Layout Problem

Text-only programs tend to use a writing environment that requires that ex-
pressions have a one-dimensional layout (i.e., a single string of characters). Con-
sequently, they use nested grouping symbols (e.g., brackets & parentheses) to
create sub-expressions so that a formula typically written with a two-dimensional
layout can be written in a single dimension. For example,

\frac{\frac{a}{b}}{\frac{c}{d}+\frac{e}{f}}
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is a TEX representation for
a
b

c
d + e

f
. The mapping between this one-dimensional

and its traditional two-dimensional layout is not transparent. Thus, users are
required to develop a certain level of expertise with the syntax of the language
before being able to use the technology properly. In addition, given that the
two-dimensional layout often conveys metaphorical properties of an expression,
many of these will be lost in a one-dimensional representation [6].

A second solution to the layout problem is provided by digital pen-based
technologies for writing mathematical expressions, such as FFES [17], which
allow users to draw symbols anywhere on a virtual page. These interfaces have
the promise of writing as easily as pen-and-paper with the additional benefit
of having the software identify the expression. Great strides have been made
in developing this interface, however, the potential for a robust interface for
handwritten mathematics has yet to be achieved.

Two solutions to the layout problem have been developed for palette-based ed-
itors. The visual display of an expression in these editors has a two-dimensional
layout. However, for the majority of palette-based editors the writing environ-
ment for the expression consists of nested one-dimensional structures (e.g., Mi-
crosoft Equation Editor and BrEdiMa [9]). For example, a fraction is typically
created by selecting a fraction structure from the palette. The fraction structure
usually inserts a fraction bar into the expression that is bound to empty one-
dimensional writing slots above and below it (see [11]). Each slot may then be
populated with their own nested sub-expressions. These slots are sub-divisions
of the main writing space and are often indicated with outline boxes or back-
ground shading. While the graphical presentation of the expression may be
two-dimensional for the reader, for the writer this approach can be thought
of as a simple extension of the text-only method (i.e., indirect access to the
two-dimensional layout) with grouping symbols replaced by slots. This type of
writing environment affords a structure-based writing style because it constrains
the order in which symbols are added to an expression by giving precedence to
symbols that affect the expression’s layout. Creating a correct visual represen-
tation of an expression, therefore, often requires understanding the deep layout
structure of the expression and which symbols parse the physical layout of the
expression, before writing.

A second solution that exists in palette-based editors is to allow users to
“draw” their expressions by placing symbols on a virtual canvas with direct
access to a two-dimensional space (i.e., Xpress [12]). Once the expression is
drawn a spatial analysis algorithm, similar to those from pen-based systems,
is applied to identify the expression. As the symbols are chosen from palettes
and “placed” by the user on a virtual canvas, there is little doubt about the
identity of the symbols and their intended locations. This greatly reduces the
complexity of expression identification as compared to handwritten mathematics.
It also reduces the complexity of editing expressions in that in a two-dimensional
space, items are directly accessible and users are not required to first choose
among spatial units and then particular items. The two-dimensional writing
environment allows users to select symbols from palettes in any order and place
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them anywhere they wish. This type of writing environment affords a unit-based
writing style because it does not place any constraints on the order in which
symbols are written.

In summary, at least three writing environments have been developed as solu-
tions to the layout problem (1) a one-dimensional layout with multiple embedded
substructures, (2) a two-dimensional layout, and (3) a two-dimensional layout
constructed from nesting one-dimensional structures.

The Present Study

Although many studies have examined different solutions to writing digital ex-
pressions, it has not been possible to disentangle how writing is uniquely affected
by solutions to the symbol and the layout problems. The recent development of
Xpress, a palette-based editor with a two-dimensional writing environment,
provides a unique opportunity to examine how different solutions to the layout
problem affect writing behaviour. The purpose of the present study, therefore,
is to examine how the characteristics of a writing environment affect how people
write mathematical expressions. Here we focus on two different writing environ-
ments that are palette-based.

Although writing environments have their own set of rules governing the types
of actions that are permitted and how space is allocated, it is unclear whether
this will result in actual behavioural differences in how mathematical expres-
sions are written. Here we follow the suggestion that user behaviour can only
be understood when (1) the types of behaviours permitted (i.e., affordance),
actual use (i.e., effectivity), and goals, motives and perceptions (i.e., intentional-
ity) are considered simultaneously [3,4]. To understand how the characteristics
of a writing environment affect how people write expressions, people were ob-
served as they wrote mathematical expressions by hand and using two different
graphics based software environments. A handwriting condition was included to
assess how people would write the expressions under natural conditions. The
two software environments ( BrEdiMa and Xpress) were selected because they
use similar interface technologies (i.e., keyboard and mouse) and representations
(graphic symbols) to enter mathematical expressions, and therefore only the
rules governing how symbols are arranged in the environments are qualitatively
different. Novice users were examined to control for expertise. If the editors re-
quire that users change their writing style, then the use of novices will allow us
to document some of the challenges that they encounter.

2 Method

2.1 Subjects

Seven members of the Cognitive Ethology Lab at Trent University participated
in the present study, four of which were undergraduate students, two were grad-
uate students, and one was a faculty member. One subject was left-handed.
The subjects were all familiar with simple mathematical and logical notation,
although none had previous experience using either of the software editors.
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2.2 Stimuli

Eight different mathematical expressions were used (see Table 1). The stimuli
were split into two sets, each set was typeset and printed a separate sheet of
paper. The first set (Expressions 1–4) had fewer symbols (mean=7.5) than the
second set (Expressions 5–8; mean=25.5).

Table 1. The two expression sets used in the study. Expression number is indicated
in parenthesis.

Expression Set 1 Expression Set 2

(1) A ∧ B ∨ C (5) x =
−b ±√

b2 − 4ac

2a

(2) A ∧ B ∨ C (6) rxy =

∑
(xi − x̄)(yi − ȳ)

(n − 1)sxsy

(3)
3
√

x2 + 1

2x
(7) rxy =

n
∑

xiyi − ∑
xi

∑
yi

√
n

∑
x2

i − (
∑

xi)
2
√

n
∑

y2
i − (

∑
yi)

2

(4)
100∑

i=1

i2 (8) lim
h→0

f(x + h) − f(x)

h

2.3 Apparatus

In the handwriting sessions, mathematical expressions were written using dry-
erase markers on a 36” x 48” whiteboard affixed to the wall of a small conference
room. Although the whiteboard environment is different than paper in a number
of aspects (e.g., orientation of the writing surface, thickness of the writing instru-
ment, and physical size of the written expression), the principles of the writing
environments are assumed to be the same for the whiteboard and paper. The
writing sessions were video recorded using a Canon HG10 video camera. The
camera was operated by the experimenter and hand-held to allow for adequate
observation of hand movements and written symbols.

In the software writing sessions, mathematical expressions were written in
a small office using BrEdiMa and Xpress. Comparing BrEdiMa and Xpress
allowed us to control many input and representation features and to isolate
the difference between one- and two-dimensional writing environments. Both
are standalone browser-based editors, and both have an AJAX-based front-end
that allows users to create their expression and then submit their expression to
a server which returns a LATEX preview. None of the subjects had used either
interface before. Although the palettes in Xpress contain more symbols than
those in BrEdiMa (138 to 50), both are minimal editors relative to commercial
alternatives.
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Data was collected using an Acer personal computer with a core-2-quad pro-
cessor, a 19” LG Flatron LCD screen and running Windows XP operating
system. The editors were run inside the Mozilla Firefox Web browser (version
2.0.0.16). The writing sessions were recorded using in video format using SnagIt
9.0 by TechSmith (http://www.techsmith.com), which recorded all occurrences
on the computer screen during a writing trial.

2.4 Procedure

Data collection was spread over six separate sessions (2 expression sets × 3
writing environments) that lasted approximately 20 minutes each. Thus each
mathematical expression was written three times (once for each interface) and
each interface was used on two separate occasions (once for each expression set).
The conditions were always completed in the same order. The short expression
set was used in sessions 1–3 and the long-expression set was used in sessions 4–6.
Furthermore, the order of the writing environment was the same for each set,
first with the whiteboard, then BrEdiMa, and finally Xpress. On average, there
was a 24-hour interval between each session, for each subject. The order of the
sessions was chosen to control transfer between writing platforms. For instance,
having the subjects use BrEdiMa before Xpress enabled us to observe the way
subjects prefer to write in the latter environment after being exposed to both
writing methods.

At the beginning of each session, subjects were given a sheet containing the
expressions to be written. Subjects were able to refer to the expressions before
and during the writing process. Subjects were instructed to write the expressions
one at a time and in the order on the sheet. They were encouraged to go quickly,
but not to sacrifice accuracy for speed.

In the handwriting condition, subjects were instructed to signal the exper-
imenter when they were starting an expression and when they were finished
writing an expression. The whiteboard was erased between expressions, so that
only one expression appeared on the whiteboard at any one time.

In the software editor conditions, the editors were loaded via the Internet
before subjects arrived in the lab. Subjects were not given any instruction con-
cerning how to use the interfaces, nor regarding the specific use of keyboard
or mouse. However, they were asked to re-load the software using the browsers
refresh button, after completing each expression, so that only one expression
appears on the screen at any time.

3 Results

Data analysis began by coding over 4,800 discrete behavioural events in the
video recordings. An event was defined as any action that had a direct effect on
the mathematical symbols represented in the writing environment (e.g., adding a
symbol). The timing of an event was linked to when changes occurred in the writ-
ing environment. An event did not need to be a correct step towards a successful
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Table 2. Overall writing time (in seconds), number of events and time per event for
each writing platform and as a function of each type of action event

Whiteboard BrEdiMa Xpress

Overall
Total Time 168.9 1007.1 951.6
Number of Events 138.4 218.3 197.1
Time per event 1.2 4.5 4.8

Adding Units
Total Time 164.9 852.3 684.0
Number of Events 135.9 196.0 152.3
Time per event 1.2 4.3 4.5

Deleting Units
Total Time 1.4 154.9 37.4
Number of Events 0.7 22.3 10.7
Time per event 2.0 6.9 3.5

Modifiying Units
Total Time 2.6 NA 230.1
Number of Events 1.9 NA 34.1
Time per event 1.4 NA 6.7

completion of a desired formula. Three broad classes of events were identified;
Addition events consisted of all events directly required to add elements to the
display; Deletion events included any action that was directly implicated in the
removal of a unit; and Modification events included any action that directly
changed either the spatial location or physical appearance of an element in the
display. The data were analyzed using a repeated measures ANOVA with writing
platform (Whiteboard, BrEdiMa, and Xpress) as the repeated factor. Unless
otherwise specified the degrees of freedom for all tests are 2 (treatment) and 12
(error) and significant findings are reliable at the .05 level.

As can be seen in Table 2, the writing environments differed dramatically in
how long it took users, on average, to write the expressions (F= 36.4,
MSE = 42285). Mathematical expressions were written fastest in the handwriting
condition, followed by BrEdiMa and Xpress, which were not reliably different
(t(6) < 1). To better understand why users took longer to write the expressions
using BrEdiMa and Xpress we further examined the number of events that
occurred during the writing process and how long users spent per event.

We assumed that changes in the number of events made while writing would
indicate a change in the writing process. Consequently, we hypothesized that
if the number of events changed across writing environments, then this would
indicate that the properties of the different writing environments affected how
people write the expressions. Consistent with users changing how they write
expressions when using the software interfaces, they required substantially more
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events compared to the handwriting condition, F = 21.4, MSE = 560. Although
BrEdiMa had 21 more events on average per subject than did Xpress, the
difference was not reliable (t(6) = 1.5, p > .10).

We also hypothesized that the average time per event would provide insight
into how easily users were able to interact with the environment. Unsurprisingly,
the average duration of an event was also substantially longer for the software
editors compared to the handwriting condition, F = 64.2, MSE = .429. Given
that BrEdiMa and Xpress are both palette-based editors we anticipated that
they would not differ on this dimension. Consistent with the difficulty of navigat-
ing the palettes being similar, the software editors did not differ in the average
duration of an event, (t(6) = 1.1, p > .10).

Types of Events

In order to better understand how users were writing the expressions we exam-
ined performance as a function of the types of events that people engaged in.
Three types of events were examined Additions, Deletions and Modifications.

Addition and Deletion Events

As can be seen in Table 2, users spent substantially more time adding and
deleting symbols when using the software editors than they did when using the
whiteboard (F= 28.7, MSE = 31333 and F=14.0, MSE = 3223, respectively).
More time was spent adding and deleting symbols with the software editors
because (1) the users made more addition and deletion events with the software
editors, (F = 12.4, MSE = 545 and F = 25.5, MSE = 31.9, respectively), and (2)
it took users more time to execute addition and deletion events with the software
editors (F = 50.0, MSE = .467, and F = 4.9, MSE = 22.6, respectively).

In order to examine how the characteristics of the writing environments af-
fected performance independent of interface type (pen vs. palette), we compared
performance for BrEdiMa and Xpress. We expected that Xpress would require
fewer addition events because the one-dimensional canvas used in BrEdiMa of-
ten requires the user to add new spatial locations for those elements that do
not belong to the same structural domain (e.g., a suprascript location). Consis-
tent with this hypothesis, 44 more addition events per subject were made with
BrEdiMa than Xpress (t(6) = 2.8, p < .05).

Furthermore, there were 12 more deletion events per subject when using
BrEdiMa compared to Xpress, consistent with giving precedence to structure
symbols (for creating new one-dimensional writing canvases) increasing the dif-
ficulty of writing expressions (t(6) = 3.3, p < .05). Interestingly, despite taking
twice as long to make a deletion event in BrEdiMa compared to Xpress, the
difference was not reliable (t < 1). The reason was a large amount of variabil-
ity in duration of the deletion events in BrEdiMa. As it turns out, deleting or
changing parts of an expression in a structure-based environment requires se-
lecting the appropriate space. This can cause confusion since being in one space
makes other spaces inaccessible for editing. In response to this inaccessibility,
users tended to clear the writing environment (by refreshing the browser) and
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start over instead of removing an unwanted part of an expression. There were 23
re-starting events in BrEdiMa (more than 3 per subject), by comparison there
were none in either Xpress or handwriting conditions.

Writing Order

The nature of the writing environment can also affect a users writing style.
As noted above, a two-dimensional writing space affords a unit-based writing
style because symbols can be written in any order and placed at any loca-
tion. In contrast, constructing a two-dimensional spatial layout using nested
one-dimensional canvases affords a structure-based writing style because prece-
dence must be given to symbols that affect the spatial layout of the expression.
These predictions were assessed by examining how much variability in the order
that symbols were added to the expression (writing order) was explained by the
unit- and structure- based writing styles. The initial writing order was used as
a measure of how people attempted to write the expression. The final writing
order was used as a measure of how people ended up writing the expression. The
variance explained by each writing style was calculated independently for each
subject and each formula.

Our implementation of the unit-based writing style presumed writing order
would be left-to-right and top-to-bottom (as opposed to random). Our rationale
was that (1) equations are typically read left-to-right, top-to-bottom irrespec-
tive of the direction of a cultures text-based writing (e.g., Persian), and (2) this
structure is argued to be linked to peoples understanding of the mathemati-
cal relationships (see [6]). Similarly, our implementation of the structure-based
writing style presumed that precedence would be given to only those symbols
that were required to add new one-dimensional writing slots (thus single line
operators such as ∗, +, or ÷ were not seen as having special priority). It was as-
sumed that within the one-dimensional structures, a unit-based approach would
be employed.

Handwriting. As can be seen in Table 3, the unit-based writing style best cap-
tured overall writing order, F(1, 6) = 26.1, MSE = .211. Indeed, only one person,
a computer science major, wrote using the structure-based style. Given that the
whiteboard interface very closely approximates writing with a pen and paper we
expected that people would not change their writing style while writing an ex-
pression. Consistent with this prediction, the unit-based writing style captured
both peoples initial- and final- attempts to write an expression equally well
(F(1, 6) = 3.7, p > .10, MSE = .004). In order to assess whether people ad-
justed their writing style, but did so only once while writing the first expression,
we examined performance for Expressions 1 and 2 more closely. The unit-based
method accounted for 86% of the variability in Expression 1 and 87% in Expres-
sion 2, whereas the structure-based method explained only 16% of the variability
in Expression 1 and 8% of the variability in Expression 2. Furthermore, there was
difference between initial and final writing order (F<1), consistent with people
not needing to adjust their writing style with this writing environment because
it is similar to paper.
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Table 3. Amount of variability (R2) in initial- and final- symbol placement order as a
function of writing style (unit-based vs. structure-based) and writing environment

Interface Attempt Unit-based Structure-based

Whiteboard Initial .84 .53
Final .83 .51

BrEdiMa Initial .55 .78
Final .41 .92

Xpress Initial .78 .57
Final .77 .52

An informal analysis of peoples writing behaviour revealed that deviations
from the writing order predicted by the unit-based style primarily arose from
violations of our left-to-right and top-to-bottom assumption. For instance, in
Expression 3 people would often write the index of the radical after writing the
radicand. Another violation is captured with Expression 4 (which was unique
in that it was the only expression for which the unit and structure-based styles
predicted the same writing order). Despite both writing styles making the same
predictions, they only explained 74% of the variability in writing order. The
reason: people added the “

∑
” first and then were essentially random as to

whether they would add the initial condition or the upper bound portions of the
expression next.

BrEdiMa. As expected, writing order was best captured by the structure-based
writing style, F(1, 6) = 683.4, MSE = .011. Unlike the handwriting condition,
writing style tended to change as people wrote each expression. The unit-based
writing style best captured peoples initial attempt to write an expression, whereas
the final attempt was best captured by the structure-based style, F(1, 6) = 66.3,
MSE = .016. This is consistent with people changing their writing style to give
precedence to structure symbols that create the two-dimensional layout.

In order to better examine how people adjusted their writing style, we exam-
ined performance for Expressions 1 and 2 more closely. The unit-based writing
style best captured the initial attempt at writing Expression 1, explaining 84% of
the variability compared to 18% for the structure-based style. The final attempt
at writing the expression was best explained by the structure-based writing style
(100%) compared to the unit-based style (2%). This suggests that people quickly
and efficiently adjusted to the demands of writing a two-dimensional expression
using nested one-dimensional slots. This change in writing style persisted when
users wrote Expression 2, which is of the same general form as Expression 1.
This time, the unit-based style explained less than 1% of the variance in per-
formance whereas the structure-based account explained 99% and the structure
based account captured both the initial- and final- attempts. For each of the
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remaining expressions, however, (except for Expression 4, see below) there was
a change between the initial and final writing order. In each case there was a
reduction in the explanatory power of the unit-based writing style over time,
with the structure-based method increasing in explanatory power. This suggests
that subjects initial approach is to employ a unit-based writing style and adapt
their approach as the situation warrants.

Deviations from the writing order predicted by the structure-based writing
style primarily arose from two sources (1) when individual symbols need to
be corrected (see below) and (2) when a symbol added more than one writing
dimension and placed the cursor at an unpredicted location. One example of this
is captured with Expression 3 in which the cursor was placed inside the radicand
instead of at the index location.

XPRESS. Similar to the handwriting condition, writing order was best cap-
tured by the unit-based writing style, F(1, 6) = 8.7, MSE = .297. It is impor-
tant to highlight that this was true despite carry over effects from having used
the structure-based editor in the previous session. The amount of variability ex-
plained by both writing styles decreased from the initial attempt to the final
attempt at writing an expression, F(1, 6) = 17.4, MSE = .024. This reduction
in the explanatory power of both approaches was related to people modifying
the appearance of symbols (see below).

Once again we examined performance for Expressions 1 and 2 separately. The
initial writing order for Expression 1 was best explained by the unit-based writing
style (70%) compared to the structure-based style (30%). The unit-based writing
style captured even more variance in the final writing order (82%) compared to
a decrease in the structure-based style (22%) suggesting that users were once
again changing their writing style. This is consistent with some carry over from
writing with a structure-based in BrEdiMa, but that people ultimately preferred
the unit-based writing style. This change appears to have stabilized as early as
Expression 2, were the unit-based writing style accounted for 82% of the variance
in symbol placement order compared to 12% for the structure-based style. There
was no difference between the initial and final writing order.

Deviations from the unit- and structure- based writing styles predominantly
arose from violations of our assumption that people would write left-to-right and
top-to-bottom and were very similar to the violations that occurred in the hand-
writing condition. Another source of error, above and beyond those observed with
in the handwriting condition, concerned the modification of symbols. Sometimes
people would replace a symbol if it was not an appropriate size.

Modification Events

Modifications accounted for approximately 1% of all events in the handwriting
condition and 17% of all events for Xpress. Modifications were not observed for
BrEdiMa because the overall structure and the spatial relations among symbols
are determined automatically by the structure-units that specify the spatial lay-
out. Compared to the handwriting condition, substantially more time was spent
modifying symbols in Xpress, (F(1, 6) = 41.9, MSE = .362). This increase
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in time was a consequence both of more modification events, (F(1, 6) = 77.7,
MSE = .004), and more time being spent per modification event, (F(1, 6) =
63.6, MSE = 1.17). Modification events within the handwriting condition typ-
ically consisted of extending the length of horizontal lines. In contrast, almost
all types of symbols were resized in Xpress. In Xpress it was possible for users
to change the structural position of a symbol by dragging it to a new location.
Such changes in spatial location would require a deletion and an addition event
when using either the whiteboard or BrEdiMa. If the majority of modification
events were of this type, then this could have important implications for how
we understand the consequences of having to change writing styles. The data
were therefore reanalyzed to examine how many events involved changes in lay-
out that were structural in nature and that could be conceptualized as a simple
deletion-addition event when using the whiteboard, BrEdiMa and Xpress (due
a movement in the structural position of a symbol as opposed to subtle changes
in relative spacing). This analysis revealed that no such events occurred with
the whiteboard, 1.7 events with BrEdiMa and 2 events with Xpress. Together,
these data suggest that no change is required in how the addition, deletion, and
modification data are understood.

4 General Discussion

The purpose of the present study was to examine how differences in the charac-
teristics of writing environments affect how people write mathematical expres-
sions. Handwriting and writing with the two-dimensional software environment
were largely characterized by a unit-based writing style in which individual sym-
bols were added in a left-to-right, top-to-bottom fashion. In contrast, writing
with the one-dimensional software platform was characterized by a structure-
based writing style in which precedence was given to symbols that created
additional one-dimensional writing spaces. Thus, the indirect access to the two-
dimensional writing space led users to change how they write. Although users
were able to adjust to the demands of the structure-based writing style, there
is evidence that it was less than intuitive. First, users seemed to adjust their
writing style on an as-needed basis, after encountering problems. This suggests
that they are able to remember specific instances were they have had to adjust,
but have difficulty generalizing this knowledge to new contexts. Second, users
found the environment difficult to navigate; this was most evident in the number
of times symbols were deleted and the number of times users elected to rewrite
an expression from scratch rather than fix an error. One concern is that the in-
creased cognitive load that arises from having to operate in an unfamiliar writing
environment may result in more dramatic performance deficits in time-pressured
situations [16]. For instance it is well known that reading performance is dra-
matically impaired when having to perform a second task, even if it requires
independent sensory and effector systems (e.g., [10,13]).

Although the two-dimensional software environment was more intuitive than
the one-dimensional editor, users spent approximately the same amount of time
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using both editors. Users of the two-dimensional writing system spent a substan-
tial amount of time modifying the display. The fact that 17% of the time using
Xpress was spent adjusting the cosmetic features of the users input, despite the
software correctly recognizing the correct equations and reformatting the final
output through LATEX, suggests that sizing is an important issue that needs to be
addressed in two-dimensional environments. The sizing issue is largely avoided
when users handwrite an expression because they tend to draw symbols at an
appropriate size. The size of a symbol is typically not an issue for most structure-
based editors because sizing is accomplished automatically through the nested
structure of the environment. One solution, therefore, to this problem in two-
dimensional software environments might be to analyze structure on-the-fly to
provide automated assistance with symbol sizing and association.

At present it is unclear how and whether using a pen-based digital interface
will result in modification events. Given that handwriting seldom results in mod-
ifications (we did not observe any here), we anticipate that modifications would
have to arise as a consequence of the handwriting recognition process. Failures
recognizing written symbols will require users to clean-up or resize what they
have written. Similarly, an error in layout analysis might require a user to man-
ually resize, delete, and/or move a symbol in a written expression.

Although we discussed two violations of the left-to-right, top-to- bottom writ-
ing order, more occurred. Documenting violations of the “normal” reading and
writing order may help develop a more intuitive structural interface and provide
insight into the cognitive factors that influence mathematical writing. In some
instances, violations occurred because the standard form of the expression vio-
lated the standard writing order (yet some people still apply the left-to-right and
top-to-bottom order), as was true of the summation operator. In other instances,
it is less clear why violations occurred. For instance, users may have waited to
write the index in the third-root component of Expression 4 because (1) users
understanding of the expression is incomplete, (2) there is forward momentum in
the writing process, (3) users conceptualize the index as analogous to an accent,
or (4) users are most familiar with writing the square root, which does not re-
quire an index. Presently there is insufficient evidence to discriminate among the
many alternatives. One important objective for future research, therefore, is to
more thoroughly document when violations of the left-to-right, top-to- bottom
assumption occur.

Two additional lines of inquiry that are relevant for software development
concern (1) writing expressions from memory and (2) how writing environments
affect learning. For instance, in the handwriting condition people wrote brackets
in the order they appeared. However, people may wait until all of the necessary
symbols are written before using brackets to nest the symbols when writing from
memory. With respect to learning, one-dimensional editors may improve fluency
in mathematics because they require users to understand the deep structure
of an expression. Consistent with this possibility, the nature of a writing tech-
nology has been shown to affect how people think about the material they are
writing [2]. Interestingly, it may be possible to improve a user’s understanding
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by implementing visual coding of structure given that the abstract meaning of
an expression is cognitively related to the details of its actual representation
[7,8]. Given that the size of symbols and their relative spacing are often used in
mathematics to perceptually organize an expression it may be possible to exam-
ine the relative importance of these visual cues by examining how users make
cosmetic changes to their written expressions using Xpress (e.g., 4+ 4 × 2 +2
vs. 4 + 4 × 2 + 2).

In the present study we examined how the writing environment affects writing
behavior, and did not focus on the usability of particular interfaces. However,
for future work, this does raise the issue that there are no standard methodolo-
gies and benchmarks for the scientific comparison of mathematical input inter-
faces. In comparison, the usability of text-input interfaces has been well studied.
For example, there are widely used methodologies like the Roberts and Moran
Methodology [14] that examine the usability of text editors in terms of time,
error and learning. Our study does raise the issue about whether a methodology
for comparing mathematical input interfaces should also consider if a mathemat-
ical interface forces changes in a users writing behavior, potentially increasing
their cognitive load, irrespective of differences in performance measures such as
time and accuracy.

5 Conclusions

Traditionally interfaces for mathematical expression entry were found mainly
in document creation environments and computer algebra systems. The explo-
sion of Web-based technologies has created a demand for new applications, such
as online collaboration and assessment tools, many of which can be considered
real-time applications. At the same time there have been several recent attempts
(e.g., Xpress, pen-computing) to develop two-dimensional mathematical writing
environments. In this paper we have shown that two-dimensional environments
allow users to write mathematical expressions in a more intuitive way than one-
dimensional environments. Therefore, continued research into two-dimensional
interfaces may have important implications for the development of future math-
ematical interfaces, especially real-time ones, where the main goal is to commu-
nicate quickly and effectively.
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