Math 1100B — Calculus, Final Exam — 2009-04-06

1. Let f(z) = sin[In(x)] for all z € [1, €*"], and let F'(z) be an antiderivative of f(x). Without
computing F', answer the following questions:

(29 (a) Find the intervals in [1,e?"] where F is increasing or decreasing.
Solution: For all z € [1,62“],

(F is increasing at iL‘) = (F’(x) > O) = (f(x) > 0) = (sin[ln(x)] > 0)

= (0<1n(:z:)<7r> = (1<33<67T>7

Likewise,

(F is decreasing at x) = (sin[ln(x)] < O) = <7T <In(z) < 27r) = (e7r <z< 62“) .

a
(s35) (b) Find the local maxima and local minima of F'.

Solution: F'isincreasingon (1, e™) and decreasing on (e“, 62”). Thus, ’ x = €™ is a local maximum. ‘

The endpoints of the domain are also extremal points. F' is increasing on (1,¢e™); thus,

’:c =1 is a local minimum ‘ Likewise, F'is decreasing on (e”,e%), so’x = e2™ is a local minimum.‘
O

-
o

(29) (c¢) Find the intervals where F' is concave-up or concave-down.
Solution: The Chain Rule says

Fa) = f) = si@)] W) = cosn() s = @)

x

Thus, for any = € [1, 62”],

(F is concave-up at x) = <F”(x) > O) = <cos(1xn(a:)) > 0) = <cos(ln(:c)) > 0)

= 0 <In(z) < g or 3777 <lIn(z) < 27r>

z 3 27
— l<xr<ezore2 <x<e .

Likewise,

(F is concave-down at a:) = (cos(ln(x)) < O) = (eg <z< e%) .




(s55) (d) Find the inflection points of F'.
Solution: The inflection points are places where the concavity changes from up to down. These

™ 3m
areat|z =e2 |and |z = €2 .

2. Compute the following limits:

(&) 1 (1+ 2%)(1 — cos(z)?)
10 im )
(z00) R 22 + x4
Solution: Recall that cos(x)? + sin(z)? = 1. Thus, 1 — cos(z)? = sin(z)?. Thus,

d

(1+2?)(1—cos(z)?) (14 2?)-sin(z)? sin(x)? _ <sin(x))2

z2 4zt N z2(1 4 22) - z? x
Thus,
y (1+ $2)(1 — cos(x)z) T sin(x) 2 I sin(z) 2 12
im = lim = im = = .
z—0 2 —+ 4 z—0 €T z—0 X ()

. . sin(z . . .
Here, (%) is because hr%ﬁ = 1 (a Lemma we proved in class, which we used to obtain
T— T

the derivatives of trigonometric functions). Alternately, this fact can be easily verified through
L'Hospital's rule.

(35) (b) lim z'/*.

T—00

d

=1
s

Solution: This limit has indeterminate form oc”. The first step is to take the logarithm. We have
1 1
In(z/*) = = In(z) = n(:c) Thus,
x x

. . In(z) . 1/x o1
Vey = —
N

where (H) is L'Hospital’s Rule. Thus,

lim 2/* = lim exp[ln(z!/®)] = exp|lim ln(xl/x)} = exp[0] =
g
3. Compute the derivatives of the following functions
(#) (a) f(x) = In(cos(x)).
) 1 , — sin(x)
1 2 fl(x) =1 .cos'(z) = (= = N | 1o
Solution: f'(z) = In'(cos(z)) - cos'(x) cos () (—sin(x)) cos() tan(z)
61/9U
(2% (b) flz) = —5
. g2 elr (2L —el/r .2 —el/T — 2xel/® —(1 4 2z)el/®
Solution: f'(z) = (22)? = o =l | O




4. Compute the following integrals.

) (a) /sin(ln(x)) i

X

(*)
Here, (s) is the substitution u := In(z), so that du = 2 da. Equality () is because cos'(z) =

Solution: /Sln(l:rn(:c)) dr = /Sin(u) du = —cos(u) +C = ’ —cos(In(z)) + C ‘

—sin(x). O
(25) (b) /x sin(z) du.
Solution: /:1:2 sin(x) dx = - x% cos(z) + /23: cos(z) dz 5 - x% cos(z) + 2z sin(z) —
/25111 z) dr = | —z%cos(z) + 2z sin(z) + 2 cos(z) + C.

Here, (p) is integration by parts with u = 22 and dv = sin(z), so that du = 2z and v =

—cos(x). Next, () is integration by parts with u = 2x and dv = cos(z), so that du = 2 and

v = sin(x). O
(43) (c) /sin(x)3 cos(z)” dx.

Solution:

/sin(m)?’ cos(z)® dx

/- . z
= /sm( )3 ( — sin( )2) cos(x) dr = /u3 (1—u2)2 du
/

u3(1—2u —|—u / —2u® + 4" du

1 1 1
= Zu4—§u6+§u +C
1 1 1
5 |2 sin(z)? — 3 sin(x)® 4 3 sin(z)® 4 C.

Here, (%) is because cos(x)? = 1 — sin(z)? because sin(x)? + cos(x)? = 1. Meanwhile, (s) is
the substitution u = sin(x) so that du = cos(x) dz.
Alternately, we could write:

/sin(m)?’ cos(z)® de = /sin(a:)2 sin(z) cos(z)® dx = /(1 — cos(x)?) sin(z) cos(z)® dx

8 6
5 /—(1—u2)-u5du = uw —u® du = %—%—FC’
cos(x)®  cos(r)"
= - C.
*) 8 6 *

Here, (%) is because cos(x)? = 1 — sin(z)? because sin(x)? + cos(x)? = 1. Meanwhile, (s) is
the substitution u = cos(z) so that du = —sin(x) dx. O

3



1

Solution: Let x = 4sin(#); then dz = 4 cos(#) df, and

V16— 2?2 = /16 —16sin(f)? = 4./1—sin(f)2 = 44/cos(6)?

= 4fcos(d)] = 4cos(0),

where (x) assumes that § € [—3,%]. Thus,

/\/161_71;203% = /W = /d9 = 60 = arcsin(z/4).

(]
5. Fix a constant b > 0. The polar curve defined by the function r(f) = €% is called a
logarithmic spiral. Logarithmic spirals appear frequently as the trajectories of ordinary
differential equations, and in the study of the complex exponential map. They also often
appear in biology; for example, the shape of a nautilus shell is a logarithmic spiral.

(s55) (a) Multiple choice. Which of the following three pictures (A,B, or C) do you think
best describes the shape of the logarithmic spiral? (Do not use a graphing device.
Instead, sketch the curve y = e® in Cartesian coordinates, and then mentally ‘translate’
your picture into polar coordinates).
(A) (B) (C)
(b) For simplicity, let b = 1, to get the logarithmic spiral 7(6) = €. Let x(f) and
(s55) y(0) be the Cartesian coordinates of the point with polar coordinates (6,¢?). Find
expressions for x(6) and y(0).
Solution: z(0) = r(0) - cos(d) = | e’ cos(d),| and y(8) = r(6) - sin(h) =| e’ sin(6). 0
(40 (c) Compute the slope of this logarithmic spiral at the point (6, €?).
Solution: We have
'(0) = ecos(d) —esin(9) = ¢ (cos(@) - Sin(G)) ,



and 3/(0) = e’sin(d) +ecos(d) = ¢ (sin(@) + cos(&)) :

s soelt) = G = G ) = | )
O
(22 (d) Compute the arc length of this logarithmic spiral from 6 = 0 to 6 = 1.
Solution: We have
2'(0)2 = ¥ ( cos(h) — sin( 9))2 = ¢* (cos(#)? — 2cos(0) sin(f) + sin(0)?)
= 2"(1—2008( ) sin(9))
and /(0 = ¢ (cos(0) +sin(0)) = & (cos(6)” + 2cos(d) sin(6) + sin(0)?)
= 2 (1+2cos(0)sin(0)).
Thus, /2 (0)2 + y/(8)? = \/629 (1— 2cos(8) sin(6)) + €2 (1 + 2 cos(6) sin(8))
= e%\/1—2cos(f)sin(6) + 1 + 2 cos(f) sin(h)
- 66\/§ = \/569.
Thus, arclength(0,1) = /0 1 V' (02 +y(0)2do = /0 1 V2el do
— Va2 ‘:: = [V2(e-1).
O

6. For each of the following series, determine: is the series convergent? Is it absolutely

convergent?
oo
arctan(n)
(o) (@) 2 —
n
n=1
Solution: For all n € N, we have 0 < arctan(n) < 7. Thus,
arctan(n) | arctan(n)| 1
O < \—w | = —w = =
n n n
1
Now, the series 2—3 is convergent (it is a p-series with p = 3 > 1). Thus, the Com-
n
"~ . | arctan(n) > arctan(n)
parison Test says that the series Z — 3 converges. Thus, series ZT
n=1 n=1

‘converges absolutely. ‘ a

= 1
Jo b ———. (Hint. Use the Integral Test).
(2% (b) ann(n) ( g )



o
Solution: Let f(x) = ﬁ(x) Then the series has the form Zf(n) so it converges if and only

n=1
(0.9]
if the improper integral / f(x) dz converges. But
1
o0 T el
1 d
/ f(z)dx = lim dr = lim U du
1 T—o0 Jq ZL‘ID(ZL’) ) T—oo e u
T
= lim In(x) ‘ = lim(T-1) = oo
T—oo T=e T—o0

here () is the substitution « := e, so that u = In(z); hence du = 1 dz. Thus, the integral

o (0.9]
1
/1 f(x) dzx diverges. Thus, the series ; In(n) also O

(2%) () Y (?/lﬁ)n-

=
S|

n=1
- 1
Solution: This is an alternating series of the form Z(—l)"an, where a, := — for all n € N.
n=1 \/ﬁ
1 .
We have a3 > ags > a3 > a4 > --- and lim — = 0; thus, the series converges by the

n—oo n
Alternating Series test. However, the series is not absolutely convergent, because the series

M B

diverges, because it is a p-series with p = 1/2 < 1. Thus, the series is | conditionally convergent.
O

n

—~
¥
=1
s

> .3
. . n’x
10 ) 7. Consider the power series E n
n=0

R = 4. (Hint: Use the Ratio Test.)
3:17”

. Show that the radius of convergence of this series is

) n
Solution: Let a, := T Then
‘an_H’ B (n+ 1)3‘x|n+1/4n+1 B (n + 1)3 ‘x|n+1 4n B n+1 2 m M
lan| n3|z|n /4n - nd |z 4ntl T n 4 e
Thus,
> . 3,.n
> BY converges | — <lim [@n+1] < 1> — <|x < 1> — (|x\ < 4)
= neo ] 5=
Thus, the radius of convergence is R = 4. a



