
Math 1100B — Calculus, Final Exam — 2009-04-06

1. Let f(x) = sin[ln(x)] for all x ∈ [1, e2π], and let F (x) be an antiderivative of f(x). Without
computing F , answer the following questions:

(a) Find the intervals in [1, e2π] where F is increasing or decreasing.( 10
200 )

Solution: For all x ∈
[

1, e2π
]

,

(

F is increasing at x
)

⇐⇒
(

F ′(x) > 0
)

⇐⇒
(

f(x) > 0
)

⇐⇒
(

sin[ln(x)] > 0
)

⇐⇒
(

0 < ln(x) < π
)

⇐⇒
(

1 < x < eπ
)

,

Likewise,

(

F is decreasing at x
)

⇐⇒
(

sin[ln(x)] < 0
)

⇐⇒
(

π < ln(x) < 2π
)

⇐⇒
(

eπ < x < e2π
)

.
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(b) Find the local maxima and local minima of F .( 5
200 )

Solution: F is increasing on (1, eπ) and decreasing on
(

eπ, e2π
)

. Thus, x = eπ is a local maximum.

The endpoints of the domain are also extremal points. F is increasing on (1, eπ); thus,

x = 1 is a local minimum . Likewise, F is decreasing on
(

eπ, e2π
)

, so x = e2π is a local minimum.
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(c) Find the intervals where F is concave-up or concave-down.( 10
200 )

Solution: The Chain Rule says

F ′′(x) = f ′(x) = sin′[ln(x)] · ln′(x) = cos[ln(x)] · 1
x

=
cos(ln(x))

x
.

Thus, for any x ∈
[

1, e2π
]

,

(

F is concave-up at x
)

⇐⇒
(

F ′′(x) > 0
)

⇐⇒
(

cos(ln(x))
x

> 0

)

⇐⇒
(

cos(ln(x)) > 0
)

⇐⇒
(

0 < ln(x) <
π

2
or

3π
2
< ln(x) < 2π

)

⇐⇒
(

1 < x < e
π
2 or e

3π
2 < x < e2π

)

.

Likewise,

(

F is concave-down at x
)

⇐⇒
(

cos(ln(x)) < 0
)

⇐⇒
(

e
π
2 < x < e

3π
2

)

.
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(d) Find the inflection points of F .( 5
200 )

Solution: The inflection points are places where the concavity changes from up to down. These

are at x = e
π
2 and x = e

3π
2 . 2

2. Compute the following limits:

(a) lim
x→0

(1 + x2)(1− cos(x)2)

x2 + x4
.( 10

200 )

Solution: Recall that cos(x)2 + sin(x)2 = 1. Thus, 1− cos(x)2 = sin(x)2. Thus,

(1 + x2)(1− cos(x)2)
x2 + x4

=
(1 + x2) · sin(x)2

x2(1 + x2)
=

sin(x)2

x2
=

(

sin(x)
x

)2

Thus,

lim
x→0

(1 + x2)(1− cos(x)2)
x2 + x4

= lim
x→0

(

sin(x)
x

)2

=
(

lim
x→0

sin(x)
x

)2

(∗)
12 = 1.

Here, (∗) is because lim
x→0

sin(x)
x

= 1 (a Lemma we proved in class, which we used to obtain

the derivatives of trigonometric functions). Alternately, this fact can be easily verified through

L’Hospital’s rule. 2

(b) lim
x→∞

x1/x.( 10
200 )

Solution: This limit has indeterminate form∞0. The first step is to take the logarithm. We have

ln(x1/x) =
1
x

ln(x) =
ln(x)
x

. Thus,

lim
x→∞

ln(x1/x) = lim
x→∞

ln(x)
x (H)

lim
x→∞

1/x
1

= lim
x→∞

1
x

= 0.

where (H) is L’Hospital’s Rule. Thus,

lim
x→∞

x1/x = lim
x→∞

exp[ln(x1/x)] = exp
[

lim
x→∞

ln(x1/x)
]

= exp[0] = 1.
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3. Compute the derivatives of the following functions

(a) f(x) = ln(cos(x)).( 10
200 )

Solution: f ′(x) = ln′(cos(x)) · cos′(x) =
1

cos(x)
· (− sin(x)) =

− sin(x)
cos(x)

= − tan(x). 2

(b) f(x) =
e1/x

x2
.( 10

200 )

Solution: f ′(x) =
x2 · e1/x · (−1

x2 )− e1/x · 2x
(x2)2

=
−e1/x − 2xe1/x

x4
=
−(1 + 2x)e1/x

x4
. 2
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4. Compute the following integrals.

(a)

∫

sin(ln(x))

x
dx.( 15

200 )

Solution:
∫

sin(ln(x))
x

dx
(s)

∫

sin(u) du
(∗)
− cos(u) + C

(s)
− cos(ln(x)) + C .

Here, (s) is the substitution u := ln(x), so that du = 1
x dx. Equality (∗) is because cos′(x) =

− sin(x). 2

(b)

∫

x2 sin(x) dx.( 15
200 )

Solution:
∫

x2 sin(x) dx
(p)
− x2 cos(x) +

∫

2x cos(x) dx
(¶)
− x2 cos(x) + 2x sin(x) −

∫

2 sin(x) dx = −x2 cos(x) + 2x sin(x) + 2 cos(x) + C.

Here, (p) is integration by parts with u = x2 and dv = sin(x), so that du = 2x and v =
− cos(x). Next, (¶) is integration by parts with u = 2x and dv = cos(x), so that du = 2 and

v = sin(x). 2

(c)

∫

sin(x)3 cos(x)5 dx.( 15
200 )

Solution:
∫

sin(x)3 cos(x)5 dx =
∫

sin(x)3 ·
(

cos(x)2
)2
· cos(x) dx

(∗)

∫

sin(x)3
(

1− sin(x)2
)2
· cos(x) dx

(s)

∫

u3
(

1− u2
)2

du

=
∫

u3
(

1− 2u2 + u4
)

du =
∫

u3 − 2u5 + u7 du

=
1
4
u4 − 1

3
u6 +

1
8
u8 + C

(s)

1
4

sin(x)4 − 1
3

sin(x)6 +
1
8

sin(x)8 + C.

Here, (∗) is because cos(x)2 = 1− sin(x)2 because sin(x)2 + cos(x)2 = 1. Meanwhile, (s) is
the substitution u = sin(x) so that du = cos(x) dx.

Alternately, we could write:
∫

sin(x)3 cos(x)5 dx =
∫

sin(x)2 sin(x) cos(x)5 dx
(∗)

∫

(1− cos(x)2) sin(x) cos(x)5 dx

(s)

∫

−(1− u2) · u5 du =
∫

u7 − u5 du =
u8

8
− u6

6
+ C

(∗)

cos(x)8

8
− cos(x)6

6
+ C.

Here, (∗) is because cos(x)2 = 1− sin(x)2 because sin(x)2 + cos(x)2 = 1. Meanwhile, (s) is

the substitution u = cos(x) so that du = − sin(x) dx. 2

3



(d)

∫

1√
16− x2

dx.( 15
200 )

Solution: Let x = 4 sin(θ); then dx = 4 cos(θ) dθ, and

√

16− x2 =
√

16− 16 sin(θ)2 = 4
√

1− sin(θ)2 = 4
√

cos(θ)2

= 4| cos(θ)|
(∗)

4 cos(θ),

where (∗) assumes that θ ∈
[

−π
2 ,

π
2

]

. Thus,

∫

1√
16− x2

dx =
∫

4 cos(θ) dθ
4 cos(θ)

=
∫

dθ = θ = arcsin(x/4).
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5. Fix a constant b > 0. The polar curve defined by the function r(θ) = ebθ is called a
logarithmic spiral. Logarithmic spirals appear frequently as the trajectories of ordinary
differential equations, and in the study of the complex exponential map. They also often
appear in biology; for example, the shape of a nautilus shell is a logarithmic spiral.

(a) Multiple choice. Which of the following three pictures (A,B, or C) do you think( 5
200 )

best describes the shape of the logarithmic spiral? (Do not use a graphing device.
Instead, sketch the curve y = ex in Cartesian coordinates, and then mentally ‘translate’
your picture into polar coordinates).
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(b) For simplicity, let b = 1, to get the logarithmic spiral r(θ) = eθ. Let x(θ) and
y(θ) be the Cartesian coordinates of the point with polar coordinates (θ, eθ). Find( 5

200 )

expressions for x(θ) and y(θ).

Solution: x(θ) = r(θ) · cos(θ) = eθ cos(θ), and y(θ) = r(θ) · sin(θ) = eθ sin(θ). 2

(c) Compute the slope of this logarithmic spiral at the point (θ, eθ).( 10
200 )

Solution: We have

x′(θ) = eθ cos(θ)− eθ sin(θ) = eθ
(

cos(θ)− sin(θ)
)

,
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and y′(θ) = eθ sin(θ) + eθ cos(θ) = eθ
(

sin(θ) + cos(θ)
)

.

Thus, slope(θ) =
y′(θ)
x′(θ)

=
eθ(sin(θ) + cos(θ))
eθ(cos(θ)− sin(θ))

=
sin(θ) + cos(θ)
cos(θ)− sin(θ)

.
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(d) Compute the arc length of this logarithmic spiral from θ = 0 to θ = 1.( 10
200 )

Solution: We have

x′(θ)2 = e2θ
(

cos(θ)− sin(θ)
)2

= e2θ
(

cos(θ)2 − 2 cos(θ) sin(θ) + sin(θ)2
)

= e2θ (1− 2 cos(θ) sin(θ))

and y′(θ)2 = e2θ
(

cos(θ) + sin(θ)
)2

= e2θ
(

cos(θ)2 + 2 cos(θ) sin(θ) + sin(θ)2
)

= e2θ (1 + 2 cos(θ) sin(θ)) .

Thus,
√

x′(θ)2 + y′(θ)2 =
√

e2θ (1− 2 cos(θ) sin(θ)) + e2θ (1 + 2 cos(θ) sin(θ))

= eθ
√

1− 2 cos(θ) sin(θ) + 1 + 2 cos(θ) sin(θ)
= eθ

√
2 =

√
2 eθ.

Thus, arclength(0, 1) =
∫ 1

0

√

x′(θ)2 + y′(θ)2 dθ =
∫ 1

0

√
2 eθ dθ

=
√

2 eθ
∣

∣

∣

θ=1

θ=0
=

√
2 (e− 1).

2

6. For each of the following series, determine: is the series convergent? Is it absolutely
convergent?

(a)
∞
∑

n=1

arctan(n)

n3
.( 10

200 )

Solution: For all n ∈ N, we have 0 < arctan(n) ≤ π
2 . Thus,

0 ≤
∣

∣

∣

∣

arctan(n)
n3

∣

∣

∣

∣

=
| arctan(n)|

n3
≤ 1

n3
.

Now, the series
∞
∑

n=1

1
n3

is convergent (it is a p-series with p = 3 > 1). Thus, the Com-

parison Test says that the series
∞
∑

n=1

∣

∣

∣

∣

arctan(n)
n3

∣

∣

∣

∣

converges. Thus, series
∞
∑

n=1

arctan(n)
n3

converges absolutely. 2

(b)
∞
∑

n=1

1

n ln(n)
. (Hint. Use the Integral Test).( 10

200 )
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Solution: Let f(x) = 1
x ln(x) . Then the series has the form

∞
∑

n=1

f(n), so it converges if and only

if the improper integral

∫ ∞

1
f(x) dx converges. But

∫ ∞

1
f(x) dx = lim

T→∞

∫ T

1

1
x ln(x)

dx
(∗)

lim
T→∞

∫ eT

e

du

u
du

= lim
T→∞

ln(x)
∣

∣

∣

eT

x=e
= lim

T→∞
(T − 1) = ∞.

here (∗) is the substitution x := eu, so that u = ln(x); hence du = 1
x dx. Thus, the integral

∫ ∞

1
f(x) dx diverges. Thus, the series

∞
∑

n=1

1
n ln(n)

also diverges. 2

(c)
∞
∑

n=1

(−1)n√
n

.( 10
200 )

Solution: This is an alternating series of the form
∞
∑

n=1

(−1)nan, where an :=
1√
n

for all n ∈ N.

We have a1 > a2 > a3 > a4 > · · · and lim
n→∞

1√
n

= 0; thus, the series converges by the

Alternating Series test. However, the series is not absolutely convergent, because the series

∞
∑

n=1

∣

∣

∣

∣

(−1)n√
n

∣

∣

∣

∣

=
∞
∑

n=1

1
n1/2

diverges, because it is a p-series with p = 1/2 ≤ 1. Thus, the series is conditionally convergent.
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7. Consider the power series
∞
∑

n=0

n3xn

4n
. Show that the radius of convergence of this series is( 10

200 )

R = 4. (Hint: Use the Ratio Test.)

Solution: Let an :=
n3xn

4n
. Then

|an+1|
|an|

=
(n+ 1)3|x|n+1/4n+1

n3|x|n/4n
=

(n+ 1)3

n3

|x|n+1

|x|n
4n

4n+1
=

(

n+ 1
n

)2 |x|
4
−−−−n→∞−→

|x|
4
.

Thus,
( ∞
∑

n=0

n3xn

4n
converges

)

=⇒
(

lim
n→∞

|an+1|
|an|

≤ 1
)

⇐⇒
(

|x|
4
≤ 1

)

⇐⇒
(

|x| ≤ 4
)

Thus, the radius of convergence is R = 4. 2

6


