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Abstract

When the vertices and edges are colored with k colors, an edge is called
monochromatic if the edge and the two vertices incident with it all have the
same color. The adapted chromatic number of a graph G, χa (G) , is the
least integer k such that for each k-edge coloring of G the vertices of G can
be colored with the same set of colors without creating any monochromatic
edges. It is easy to see that χa (G) ≤ χ (G). While this bound is tight, all
the known graphs attainding this bound are not color critical. It is known
that if G is a critical graph, then χa (G) ≤ χ (G) − 1. In this article we
construct a family of k-critical graphs whose adapted chromatic number is
exactly one less than their chromatic number. This answers a question in
[Molloy, M., & Thron, G. (2012). An asymptotically tight bound on the
adaptable chromatic number. Journal of Graph Theory, 71(3), 331—351.
doi:10.1002/jgt.20649]. We also study the properties of graphs that are
critical with respect to adaptable chromatic number.

1 Introduction

For notation and graph theory terminology, we in general follow [14]. Specif-
ically, let G = (V,E) be a graph with vertex set V and edge set E. A
graph H = (W,F ) is a subgraph of G if W ⊆ V and F ⊆ E. If F =
{xy ∈ E : x ∈W, y ∈W}, then H is a subgraph of G induced by W, and we
write H = G [W ] . Similarly, if W = {x : xy ∈ F for some vertex y.} , then H is
a subgraph induced by F and we writeH = G [F ] . Let x ∈ V (G) and e ∈ E (G).
We also write G [V (G) \x] as G− x and G [E (G) \e] as G− e.

When the vertices and edges of G are colored with colors from a set S, an
edge is called monochromatic if the edge and the two vertices incident with it all
have the same color. A vertex coloring C is called adapted to an edge coloring
C ′ if C and C ′ together do not produce any monochromatic edge. A graph
G is adaptably k-colorable if when |S| = k, for every edge coloring C ′ using
colors in S, there is a vertex coloring C using colors in S that is adapted to C ′.
The adaptable chromatic number of G, denoted χa (G) , is the least k such that
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G is adaptably k-colorable. In the literature, the largest k such that G is not
adaptably k-colorable is called the chromatic capacity of G, denoted χCAP (G) .
Thus

χCAP (G) = χa (G)− 1.
The term color capacity was first used by Archer in [1]. Independently, Hell and
Zhu defined the adaptable chromatic number in [8]. Many results have been
proved independently by different authors using either term (see e.g. [4], [5],
[7], [9], [10], [11], [12], [13], [15], [16]).
To understand the adaptable chromatic number of a graph, we find it more

intuitive to consider a coloring game played on a graph G. Player E (the edge
colorer) will color the edges of G first using colors in S. After all the edges are
colored, player V (the vertex colorer) will color the vertices with the same set of
colors. If player V can color all the vertices without creating any monochromatic
edges, he wins the game; otherwise player E wins. The largest number of colors
such that player E has a winning strategy is the chromatic capacity of G, and
the least number of colors such that player V always has a winning strategy
(that strategy may depend on the edge coloring of player E’s) is the adaptable
chromatic number of G.
Recall that the adaptable chromatic number is the least number of colors

one needs to color the vertices while not creating any monochromatic edges after
the edges are coloured. It is obvious that we have

χa (G) ≤ χ (G) (1)

since a proper vertex coloring will not create any monochromatic edges regard-
less how the edges are colored. For graphs in general, this upper bound for
χa (G) is sharp. There are a number of ways to construct graphs with their
adapted chromatic number the same as their chromatic number ([5] and [8]).
However, as noted in [13], for a color critical graph G, that is, a graph G such
that χ (G− e) < χ (G) for every edge e in G, we have χa (G) ≤ χ (G)− 1. The
authors asked whether this bound is sharp: Are there any color critical graph G
such that χa (G) ≤ χ (G)− 1? In Section 2, we describe a method to construct
such critical graphs. In Section 3 we define adaptably critical graphs and discuss
the properties of these graphs. In Section 4, we pose some problems involving
adaptable chromatic number and critical graphs.

2 k-critical graph G with χa (G) = χ (G)− 1
A graph G is color critical if χ (H) < χ (G) whenever H is a proper subgraph
of G. Equivalently, G is color critical (or critical) if χ (G− e) = χ (G) − 1 for
every edge e in G. It is proved in [8] that χa (G) ≤ χ (G− E′) if E′ is a set of
edges in G and χ (G− E′) > |E′|. When we choose E′ = {e} in a critical graph
G, this implies χa (G) ≤ χ (G) − 1. Molloy and Thron asked ([13], Question 4
and 5) whether there are critical graphs that attain this bound. We will give a
positive answer to their questions and show this bound is sharp by presenting
a construction for critical graphs G such that χa (G) = χ (G)− 1.
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The method we use to construct k-critical graphs with high adaptable chro-
matic number will use the join operation of two graphs and the Hajós’ con-
struction. The join of two graphs G1 and G2, denoted by G1 ∨ G2, is defined
by

V (G1 ∨G2) = V (G1) ∪ V (G2) ,
E (G1 ∨G2) = E (G1) ∪ E (G2) ∪ {xy : x ∈ V (G1) , y ∈ V (G2)} .

In other words, we construct G1∨G2 by taking a copy of each of G1 and G2 and
joining every vertex in G1 with every vertex in G2. For example, let G1 = K1

and G2 = C5 the G1 ∨ G2 = W5. (See Figure 1.) If G2 is a single vertex x,
we also write G1 ∨ G2 as G1 ∨ x. The Hajós’construction [6] for two disjoint
graphs G1, G2 and edges x1y1 ∈ E (G1), x2y2 ∈ E (G2) is obtained by removing
x1y1 and x2y2, identifying x1 and x2, and joining y1 and y2 by a new edge. For
example, for the graphs G1 and G2 in figures 1 and 2, the result when Hajós’
construction is applied to them is the graph is Figure 3.

Figure 1: G1

Figure 2: G2

Figure 3: Hajós’construction applied to G1 and G2.

The following results are well known: If G1 is a k1-critical graph and G2 a k2-
critical graph, then the join G1∨G2 is a (k1 + k2)-critical graph. If both G1 and
G2 are k-critical graphs, then the graph obtained by applying the construction
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of Hajós is also k-critical. We will construct a k-color critical graph Gk for
every integer k ≥ 3 that contains a subgraph Hk such that χa (Hk) ≥ k − 1.
This implies χa (Gk) = k − 1.

Theorem 1 For every integer k such that k ≥ 3, there is a k-critical graph Gk
such that it contains a subgraph Hk, χa (Hk) ≥ k − 1, and V (Hk) is a proper
subset of V (Gk).

Proof. We can choose any 3-critical graph, an odd cycle, as G3 and H3 is K2.
We construct Gk recursively for k ≥ 4.

Construction 1 Let u be a vertex in V (Gk−1) \V (Hk−1) . Since Gk−1 is
(k − 1)-critical and k ≥ 4, deg (u) ≥ k − 2 ≥ 2. Let x and y be two neigh-
bors of u. Notice that neither (u, x) or (u, y) is an edge in Hk−1. We take
2 (k − 2) − 1 copies of Gk−1 and label the special vertices u(i), x(i), and y(i),
i = 1, 2, ..., 2 (k − 2)−1.We identify the vertices u(1), u(2), ..., u(k−2), remove the
edges

(
u(i), x(i)

)
for i = 2, ..., k − 2 and

(
u(j), y(j)

)
for j = 1, 2, ..., 2 (k − 2)− 2,

and add the edges
(
y(i), x(i+1)

)
for i = 1, 2, ..., 2 (k − 2)− 2. We denote the re-

sulted graph Fk. Fk contains k − 2 disjoint copies of Hk−1. Finally, we add a
new vertex w and let Gk = Fk ∨ w.

Fk can be viewed as the result of a sequence of Hajós operations applied to
(k − 1)-critical graphs isomorphic to Gk−1. Therefore, Fk is (k − 1)-critical and
Gk = K1 ∨ Fk is k-critical.

Let Hk be the subgraph of Gk that is the join of w with the k − 2 disjoint
copies of Hk−1. Since V (Hk−1) is a proper subset of V (Gk−1) , V (Hk) is a
proper subset of V (Hk). We will show that χa (Hk) ≥ k− 1 by showing Player
E has a winning strategy if k − 2 colors are used.

Let the color set be {1, 2, ..., k − 2} . Since χa (Hk−1) ≥ k−2, Player E has a
winning strategy on Hk−1 when k−3 colors are used. Player E colors the edges
between w and the vertices of the ith disjoint copy of Hk−1 with color i and the
edges in the ith copy of Hk−1 according to the winning strategy using colors
{1, ..., k − 2} \ {i}. We claim this is a winning strategy for Player E. Suppose
that Player V colors the vertices of Hk with colors {1, 2, ..., k − 2} and w is
assigned color j. Since all the edges between w and the jth copy of Hk are
colored with color j, no vertex in that copy of Hk can be colored with color j.
Player V has to color that copy of Hk with colors {1, 2, ..., k − 2} \ {j}. Since
Player E has colored the edges using a winning strategy for these colors, there
will be a monochromatic edge.

Figure 4: F5

For example, if we use C3 as G3, then F4 = C5 and G4 = W5, the wheel
with five vertices in the rim. The graphs F5 and G5 are in figures 4 and 5. A
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Figure 5: G5

winning strategy for player E using three colors (red, blue and brown, the black
edges can be colored arbitrarily) is also given in Figure 5.

3 Adaptably critical graphs

The graphs constructed in the proof of Theorem 1 contains a proper subgraph
that has the same adaptable chromatic number as the whole graph. These
graphs are not critical with respect to adaptable coloring. In this section, we
investigate the graphs that are critical with respect to adaptable coloring.

Definition 2 A graph G is adaptably critical if for every proper subgraph H of
G, χa (H) < χa (G) .

Equivalently, G is adaptably critical if for every edge e in G, χa (G− e) <
χa (G). If χa (G) = k and G is adaptably critical, we say G is k-adaptably
critical. It is obvious that K2 is the only 2-adaptably critical graph. The graphs
that are adaptably 2-colorable were characterized in [8]. An odd edge-bicycle
is the union of two edge-disjoint odd cycles and a path (also edge-disjoint from
the cycles but may have length zero) joining the two cycles. An odd edge-K4 is
a graph obtained by subdividing the edges of a K4 such that the length of each
of the four cycles is odd.

Theorem 3 χα (G) ≤ 2 if and only if G does not have an odd edge-bicycle or
an odd edge-K4.

Using this result, we can characterize the 3-adaptably critical graphs.

Corollary 4 A graph G is 3-adaptably critical if and only if G is either an odd
edge-bicycle or an odd edge-K4.

As a consequence of Corollary 4, K4 is the only 3-adaptably critical graph
that is also color critical. It would be interesting to know if there are any other
graphs that are both critical and adaptably critical.
In the early stages of the studies of color critical graphs, Dirac ([2], [3])

proved that for every k-critical graph G, δ (G) ≥ k− 1 and this bound is sharp.
This inequality also holds for adaptably critical graphs.
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Theorem 5 If G is adaptably critical, then

δ (G) ≥ χa (G)− 1. (2)

Proof. Suppose that G is a counter-example with χa (G) = k and δ (G) ≤ k−2.
We derive a contradiction by showing that G is adaptably (k − 1)-colorable. Let
u be a vertex such that deg (u) = δ (G) . Since G is adaptably critical, G− u is
adaptably (k − 1)-colorable. A winning strategy of player V on the graph G−u
with k − 1 colors can be extended to the graph G by assigning a color that has
not been used on any neighbors of u to u.
To see that the inequality (2) is also sharp, we will construct adaptably

critical graphs G with δ (G) ≥ χa (G)− 1. Unlike in the case of critical graphs,
when the join operations or the Hajós constructions are applied to adaptably
critical graphs, the result is not adaptably critical. However, the following
construction used in [5] and [8] showing that there are arbitrarily large graphs
G such that χα (G) = χ (G) will produce adaptably critical graphs when smaller
adaptably critical graphs are used in the construction.
Construction 2 For k ≥ 2, let G be a graph such that χα (G) = k − 1. Let
Gi (i = 1, 2, ..., k − 1) be k − 1 disjoint copies of G. Let x be a new vertex.
H = {x} ∨

(
∪k−1i=1Gi

)
.

Theorem 6 The result of Construction 2 is a k-adaptably critical graph H if
the graph G is (k − 1)-adaptably critical.

Proof. It is known that χα (H) = k ([5], [8]). We will show that χα (H − e) =
k−1 for every edge e ∈ E (H) . Suppose that the color set is S = {1, 2, ..., k − 1}
and player E has colored the edges of H using colors in S.
First we observe that player V has a winning strategy (even without the

removal of e) if there is a color j∗ such that for all i ∈ {1, 2, ..., k − 1} there is an
edge between x and Gi that is not colored by color j∗. Suppose such j∗ exists
and xv1, xv2, ..., xvk−1 (vi ∈ Gi) are edges that are colored with colors other
than j∗. Player V will color the vertices x and vi (i = 1, 2, ..., k − 1) with color
j∗ and color Gi − vi using a winning strategy with color set S\ {j∗} . Since Gi
is (k − 1)-critical, such a strategy exists and there is no monochromatic edge in
Gi−vi. Since vi is the only vertex in Gi with color j∗, there is no monochromatic
edge in Gi. The only vertices with the same color, j∗, as x are v1, v2, ..., vk−1
and the edge between x and any one of them is not colored with j∗. Therefore
there is no monochromatic edge in this coloring of H.
We may assume then for each color j ∈ S there is a Gj′ such that all the

edges between x and Gj′ are colored with color j. Without loss of generality,
we assume that all the edges between x and Gi are colored with color i (i =
1, 2, ..., k − 1). By symmetry, we only need to consider two special cases:
Case 1: e = xv1 where v1 ∈ G1. Player V will color x and v1 with color 1, color
the vertices in G1 − v1 according to the winning strategy with color set S\ {1}
and color the vertices in Gi (i ≥ 2) according to the winning strategy with color
set S. Since Gi is (k − 1)-critical for each i, these strategies exist and there will
be no monochromatic edge.
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Case 2: e = u1v1 where u1, v1 ∈ G1. Player V will color x with color 1, color the
vertices in G1 − e according to the winning strategy with color set S\ {1} and
color the vertices in Gi (i ≥ 2) according to the winning strategy with color set
S. Since Gi is (k − 1)-critical for each i, these strategies exist and there will be
no monochromatic edge.

If we let H2 be K2 and Hk be the result when Construction 2 is applied
using Hk−1, then χa (Hk) = k. Hk is adaptably critical and δ (Hk) = k − 1.
Therefore the bound in (2) is sharp.

4 Concluding remarks

There are many questions about adaptable chromatic number which remain
unanswered. The most interesting problem involving adaptable chromatic num-
ber is its relation to the chromatic number. The adaptable chromatic number of
graph G is bounded above by the chromatic number of G according to (1) and
this bound is sharp. In [7] it is shown that there are graphs G with arbitrarily
large girth such that χa (G) = χ (G) . A method to construct such graphs is
given in [15]. On the other hand, it is proved in [16] that there is a positive
constant K such that for every graph G,

χa (G) ≥ K log log (χ (G)) . (3)

For all known examples, the adaptable chromatic number of a graph G, χa (G) ,
is at least the order of

√
χ (G). The following question is asked in [13].

Problem 7 Are there any graphs G such that χa (G) is less than the order of√
χ (G)?

Also we would like to ask

Problem 8 Can the lower bound of χa (G) in (3) be improved?

The graphs we constructed in the proof of Theorem 1 are not adaptably
critical. A natural question is whether there are graphs that are critical with
respect to both adaptable coloring and ordinary coloring.

Problem 9 Are there any critical graphs except K4 that are adaptably critical?

The graphs we constructed in the proof of Theorem 1 also have large clique
numbers. There are triangle-free k-critical graphs with adaptable chromatic
number k − 1. The Grötzsch graph is such an example. It is well-known that
the Grötzsch graph is 4-critical. It is also easy to verify that Grötzsch graph
has adaptable chromatic number three.

Problem 10 For every positive integer k ≥ 5, does there exist a triangle-free
k-critical graph G such that χa (G) = k − 1?
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