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a b s t r a c t

When the vertices and edges are coloured with k colours, an edge is called monochro-
matic if the edge and the two vertices incident with it all have the same colour. The chro-
matic capacity of a graph G, χCAP (G), is the largest integer k such that the edges of G
can be coloured with k colours in such a way that when the vertices of G are coloured
with the same set of colours, there is always a monochromatic edge. It is easy to see that
χCAP (G) ≤ χ (G) − 1. Greene has conjectured that there is an unbounded function f such
that χCAP (G) ≥ f (χ (G)). In this article we prove Greene’s conjecture.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider a 2-player game played on a graph G with k colours. Player A colours the edges of G with these k colours.
When A finishes, player B uses the same set of colours to colour the vertices of G. An edge e is monochromatic if e and both
vertices incident with e are all the same colour. B wins the game if he can colour the vertices of G without creating any
monochromatic edges; otherwise Awins. The largest number of colours for which the player A has a winning strategy is the
chromatic capacity of G, denoted by χCAP (G). Therefore, if χCAP (G) = k, the edges of G can be coloured with k colours such
that for every colouring of the vertices of G using the same set of colours, there is at least one monochromatic edge; and if
k+1 colours are allowed, for each edge-colouring ofG, the vertices ofG can be coloured such that there is nomonochromatic
edges. The term colour capacity was first used by Archer in [1]. The same concept was also used in [3,4] and it was applied
mostly to complete graphs (the term used there was split colouring).

If the vertices of G can be coloured properly with k colours, then player B will win no matter how the edges of G are
coloured. Thuswe have the boundχCAP (G) ≤ χ (G)−1. There aremany examples showing that this bound is tight. Huizenga
[6] constructed graphs G with the property χCAP (G) = χ (G) − 1 and no odd cycle of length less than q for any positive in-
teger q. He also asked whether it is possible to construct a graph Gwith the property χCAP (G) = χ (G) − 1 and without any
cycle of length less than q for any given positive integer q. This problem was solved in [7] with a description of a method to
construct such graphs.

In contrast to the upper bound, the known results about the lower bound ofχCAP (G) in terms ofχ (G) are less satisfactory.
It was proved by several authors independently in [2,3] that χCAP (Kn) is in the order of

√
n. Since χ (Kn) = n, we have

χCAP (G) = Θ


χ (G)


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Fig. 1. Edge-colouring of a 6-chromatic graph G. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

if G is a complete graph. For a general graph G, Greene in [5] showed that

χCAP (G)2 lnχCAP (G) > (1 − o (1))
χ (G)2

2n
where n is the number of vertices in G. Greene conjectured:

Conjecture 1 (Greene’s Conjecture). There exists an unbounded function f : Z+
→ Z+ such that χCAP (G) > f (χ (G)) holds.

Greene’s conjecture was regarded as possibly the most important open question in the study of chromatic capacities [6].
Also in [6], Huizenga proved that Green’s conjecture is true for almost all graphs. The goal of this note is to prove Green’s
conjecture for all graphs.

2. The lower bound

Our main result is Theorem 5, in which we obtain a lower bound of χCAP (G) that depends on χ (G) only, thus settling
Green’s Conjecture in the affirmative. In [5], Greene characterised all graphs G with χCAP (G) = 1 and obtained the bound
that if χ (G) ≥ 4 then χCAP (G) ≥ 2. This method cannot be easily applied in the general case. Our approach is to show that
when χ (G) is large then A has a winning strategy with a smaller but still relatively large number of colours; thus χCAP (G) is
relatively large. To demonstrate our method, we prove a weaker result in Theorem 3 for the case χCAP (G) ≥ 2. That is, we
show that χ (G) ≥ 6 implies χCAP (G) ≥ 2. The method is then generalised to prove Theorem 5.

Lemma 2. Let G be a graph with χ (G) ≤ 6. There is an 2-edge colouring of G such that if the vertices of an induced subgraph H
of G can be 2-coloured with no monochromatic edges, then (the vertices of) H can be properly coloured with five colours.

Proof. Let the colour classes of G be V1, V2, . . . , V6 (some of themmight which could be empty). Let G1 = V1 ∪ V2 ∪ V3 and
G2 = V4 ∪ V5 ∪ V6. We colour the edges of G with colours 1 and 2 as follows: An edge xy will be coloured with colour 1 if
both x and y are in G1 or both x and y are in G2. Otherwise, it is coloured with colour 2.
The thick lines in Fig. 1 connecting Vi and Vj represent all the edges in G that have one end in Vi and another end in Vj. The
edges represented by the broken (red) lines are coloured with colour 1 and the edges represented by the solid (blue) lines
are coloured with colour 2.
Suppose that the vertices of an induced subgraph H of G are then coloured with colours 1 and 2 such that there is no
monochromatic edge. Let Wi = Vi ∩ V (H). Let Wi,1 be the set of vertices in Wi that are coloured with colour 1 and Wi,2 be
the set of vertices inWi that are coloured with colour 2, for i = 1, 2, . . . , 6. We haveWi = Wi,1 ∪Wi,2 for all i.Wi,2 ∪Wi+3,2
are independent sets for i = 1, 2, 3. This is because each Wj,2 is independent for all j, and if there is an edge xy such that
x ∈ Wi,2 and y ∈ Wi+3,2 then the edge is colouredwith colour 2 and both vertices are colouredwith colour 2, a contradiction.
Similarly, each of W1,1 ∪ W2,1 ∪ W3,1 and W4,1 ∪ W5,1 ∪ W6,1 is an independent set. These five independent sets induce a
5-colouring of H as illustrated in Fig. 2. �
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Fig. 2. A 5-colouring of H .

Theorem 3. If χ (G) = 6 then χCAP (G) ≥ 2.

Proof. By letting H be the graph G itself and applying Lemma 2, it follows that if χ (G) = 6 player A has a winning strategy
with 2 colours. Therefore χCAP (G) ≥ 2. �

The subgraph H is not necessary to prove the result of Theorem 3, but it is needed in the general case for the inductive
step.

Lemma 4. Let f : N → N be a function such that f (2) = 6 and f (k) ≥ 2 · [f (k − 1)]2 for all k ≥ 3. Suppose that G is a
graph such that χ (G) ≤ f (k) for some integer k ≥ 2. There exists a k-edge colouring of G such that if the vertices of an induced
subgraph H of G can be k-coloured with no monochromatic edges, then the vertices of H can be properly coloured with f (k) − 1
colours.

Proof. We prove the statement by induction on k. The base step k = 2 is covered in Lemma 2. For the inductive step, we
assume that k ≥ 3 and the theorem is true for k − 1. Let f (k − 1) = r, f (k) = t and

 t
r


= m. t ≥ 2r2 impliesm ≥ 2r . Let

V1, V2, . . . , Vt be the colour classes of a t-colouring of G. Let G1,G2, . . . ,Gm be the induced subgraphs of G such that

V (G1) = V1 ∪ V2 ∪ · · · ∪ Vr

V (G2) = Vr+1 ∪ Vr+2 ∪ · · · ∪ V2r

...

V (Gm) = V(m−1)r+1 ∪ V(m−1)r+2 ∪ · · · ∪ Vt .

We have χ (Gi) ≤ r for i = 1, 2, . . . ,m. The edges of G will be coloured with colour set {1, 2, . . . , k} as follows: edges
inside a subgraph Gi will be coloured using colours {1, 2, . . . , k − 1} according to the (k − 1)-edge colouring provided by
the inductive hypothesis. Edges with one end in Gi and another end in Gj for some i ≠ j will be coloured with colour k. For
this edge colouring, suppose that there is a subgraph H of G and a vertex colouring C using colours {1, 2, . . . , k} such that
there is no monochromatic edge in H . Let Hi = H ∩ Gi (i = 1, 2, . . . ,m) andWj = V (H) ∩ Vj for j = 1, 2, . . . , t. LetWi,k be
the vertices in Wi that are coloured with colour k in C. Each one of

W1,k ∪ Wr+1,k ∪ · · · ∪ W(m−1)r+1,k,

W2,k ∪ Wr+2,k ∪ · · · ∪ W(m−1)r+2,k,

...

Wr,k ∪ W2r,k ∪ · · · ∪ W⌊ t
r ⌋r,k
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is an independent set. The subgraphs H1 \

W1,k ∪ W2,k ∪ · · · ∪ Wr,k


, H2 \


Wr+1,k ∪ Wr+12,k ∪ · · · ∪ W2r,k


, . . . ,Hm \

W(m−1)r+1,k ∪ W(m−1)r+2,k ∪ · · · ∪ W⌊ t
r ⌋r,k


are coloured with colours {1, 2, . . . , k − 1} without monochromatic edges.

By the inductive hypothesis, each of them can be partitioned into r − 1 independent sets. Therefore, the vertex set of H can
be partitioned into r + m (r − 1) independent sets. Sincem ≥ 2r and t ≥ (m − 1) r + 1, we have

r + m (r − 1) = mr + r − m
≤ (m + 1) r − 2r = (m − 1) r
≤ t − 1.

So H can be coloured with f (k) − 1 colours. �

It is easy to verify that f (k) = C · 222k satisfies the condition f (k) ≥ 2 · [f (k − 1)]2 for every positive constant C . We
choose C =

3
215

so that f (2) = 6 giving us the main result.

Theorem 5. If χ (G) =
3

215
· 222k , then χCAP (G) ≥ k.

Proof. The edge colouring with colours {1, 2, . . . , k} in the proof of Lemma 4 is a winning strategy for Player A. Let f (k) =
3

215
·222k . If Player B can colour the vertices of Gwith nomonochromatic edge, then according to Lemma 4, G can be coloured

properly with 3
215

· 222k
− 1 colours, a contradiction. �

From Theorem 5, we have

Corollary 6.

χCAP (G) ≥ K log log (χ (G))

for some constant K and all graphs G. Thus a lower bound of χCAP (G) is Θ (log log (χ (G))).

As far as we know, there are no known graphs with chromatic capacity smaller than the order of
√

χ (G). The bound in
Corollary 6 is likely not the best possible. It would be interesting to know whether there are any families of graphs whose
chromatic capacities are smaller than the order of

√
χ (G), perhaps of the order of log (χ (G)).
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