
Math 322 (Number Theory). Final Exam, April 17, 2006.

1. Let a0, a1, a2, . . . ∈ N, and let α := [a0; a1, a2, . . .] := a0 +
1

a1 + 1

a2 +
1

. . . +

For any n ∈ N, we define the nth convergent and nth remainder:

pn
qn

:= [a0; a1, a2, . . . , an] and rn := [an; an+1, an+2, . . .]

(Thus p0 = a0 and q0 = 1, while p1 = a0a1 +1 and q1 = a1.) Recall the recursion formulae:

∀ k ≥ 2, pk = akpk−1 + pk−2, (1)

and qk = akqk−1 + qk−2. (2)

(a) Verify case k = 2 of equations (1) and (2) by direct computation.
(

3
100

)

Solution: Note that

p2

q2
:= a0 +

1
a1 + 1

a2

= a0 +
1

a1a2+1
a2

= a0 +
a2

a1a2 + 1
=

a0(a1a2 + 1) + a2

a1a2 + 1
.

Thus,

p2 = a0(a1a2+1) + a2 = a0a1a2+a2+a0 = a2(a0a1+1)+a0 = a2p1+p0,

while q2 = a2a1 + 1 = a2q1 + q0, as desired. 2

(b) Observe that q1p0−p1q0 = −1. Prove that, for all k ≥ 2, qkpk−1−pkqk−1 = (−1)k.
(

5
100

)

Solution: (by induction) The base case k = 1 is just the above observation. Assume the theorem
is true for k − 1. Then

qkpk−1 − pkqk−1 (∗)
pk−1(akqk−1 + qk−2)− qk−1(akpk−1 + pk−2)

= akpk−1qk−1 + pk−1qk−2 − akpk−1qk−1 − qk−1pk−2

= pk−1qk−2 − qk−1pk−2 = (−1)(qk−1pk−2 − pk−1qk−2)

(†)
(−1)(−1)k−1 = (−1)k.

Here (∗) is by substituting equations (1) and (2), and (†) is by induction hypothesis. 2

(c) Prove that, all k ≥ 2,
pk−1

qk−1

− pk
qk

=
(−1)k

qkqk−1

.
(

2
100

)

Solution: Divide both sides of the equation in part (b) by qkqk−1. 2

(d) Prove that, for any k ≥ 3,

∣

∣

∣

∣

α− pk
qk

∣

∣

∣

∣

+

∣

∣

∣

∣

α− pk−1

qk−1

∣

∣

∣

∣

<
1

2q2
k

+
1

2q2
k−1

(

5
100

)

(Hint: You may assume that either
pk
qk

< α <
pk−1

qk−1
or

pk−1

qk−1
< α <

pk
qk

.

You may also use the arithmetic/geometric mean inequality:
√
ab ≤ a+b

2 .)



Solution:
∣

∣

∣

∣

α− pk
qk

∣

∣

∣

∣

+
∣

∣

∣

∣

α− pk−1

qk−1

∣

∣

∣

∣ (∗)

∣

∣

∣

∣

pk
qk
− α+ α− pk−1

qk−1

∣

∣

∣

∣

=
∣

∣

∣

∣

pk
qk
− pk−1

qk−1

∣

∣

∣

∣

(†)

∣

∣

∣

∣

(−1)k

qkqk−1

∣

∣

∣

∣

=
1

qkqk−1
=

√

1
q2
kq

2
k−1

≤
(‡)

1
q2
k

+
1

q2
k−1

.

Here (∗) is because α is between
pk
qk

and
pk−1

qk−1
.

(†) is by part (c), and (‡) is the arithmetic/geometric mean inequality. 2

(e) Conclude, for any k ≥ 3, at least one of the following two inequalities is true:
(

5
100

)

either

∣

∣

∣

∣

α− pk
qk

∣

∣

∣

∣

<
1

2q2
k

, or

∣

∣

∣

∣

α− pk−1

qk−1

∣

∣

∣

∣

<
1

2q2
k−1

.

Solution: (by contradiction) Suppose neither was true. then

∣

∣

∣

∣

α− pk
qk

∣

∣

∣

∣

≥ 1
2q2
k

and

∣

∣

∣

∣

α− pk−1

qk−1

∣

∣

∣

∣

≥

1
2q2
k−1

. But then

∣

∣

∣

∣

α− pk
qk

∣

∣

∣

∣

+
∣

∣

∣

∣

α− pk−1

qk−1

∣

∣

∣

∣

≥ 1
2q2
k

+
1

2q2
k−1

, contradicting part (d). 2

2. For any n ∈ N, let Un is multiplicative group of units mod n, and let Qn ⊂ Un be
the subgroup of quadratic residues, mod n. Recall the Multiplicative Chinese Remainder
Theorem:

If n and m are relatively prime, then there is a group isomorphism Ψ : Unm−→Un ×Um.

(a) Show that Ψ(Qnm) = Qn ×Qm.
(

6
100

)

Solution: Let u ∈ Unm. If Ψ(u) = (u1, u2) ∈ Un × Um, then Ψ(u2) = (u2
1, u

2
2). Let v ∈ Unm,

and let Ψ(v) = (v1, v2) ∈ Un × Um. Thus,

(

u2 = v
)

⇐
(∗)
⇒
(

Ψ(u2) = Ψ(v)
)

⇐⇒
(

(u2
1, u

2
2) = (v1, v2)

)

⇐⇒
(

v1 = u2
1 and v2 = u2

2

)

.

Here (∗) is because Ψ is injective. Thus,

(

v ∈ Qnm
)

⇐⇒
(

∃u ∈ Unm with u2 = v
)

⇐⇒
(

∃u1 ∈ Un and u2 ∈ Um with u2
1 = v1 and u2

2 = v2

)

⇐⇒
(

v1 ∈ Qn and v2 ∈ Qm
)

⇐⇒
(

Ψ(v) ∈ Qn ×Qm
)

.

2

(b) Define ω : N−→N by ω(n) = #Qn. Show that ω is a multiplicative function.
(

4
100

)

Solution: If n,m ∈ N are relatively prime, then

ω(nm) = #Qnm (∗)
#Qn ×#Qm = ω(n)ω(m),

where (∗) is by part (a). 2



3. Suppose p and q are prime. Let λ := lcm(p− 1, q − 1).

(a) Show that, for any u ∈ Upq, uλ
pq

1.
(

6
100

)

Solution: λ is a multiple of both p− 1 and q− 1. So, let λ = n(p− 1) and λ = m(q− 1). Then
for any u ∈ Up, uλ = un(p−1) = (up−1)n

p
1n = 1. Here, “

p
” is by Fermat’s Little

Theorem. Likewise, for any v ∈ Uq, vλ = vm(q−1) = (vq−1)m
q

1m = 1.

Let Ψ : Upq−→Up × Uq be the isomorphism provided by the Chinese Remainder Theorem. If
w ∈ Upq, and Ψ(w) = (u, v) ∈ Up×Uq, then Ψ(wλ) = Ψ(w)λ = (uλ, vλ) = (1, 1) = Ψ(1).

Thus, wλ
pq

1 (because Ψ is bijective). 2

(b) Let d, e ∈ Uλ be such that de
λ

1. Define the ‘modified’ RSA encryption function
(

4
100

)

ε : Upq−→Upq and decryption function δ : Upq−→Upq by

δ(u) := ud and ε(u) := ue, for all u ∈ Upq.

Show that δ ◦ ε(u)
pq

u for all u ∈ Upq. (i.e. δ is a decryption function for ε)

Solution: If de
λ

1, then de = mλ+ 1 for some m ∈ Z. Thus, δ ◦ ε(u) = δ(ue) = ued =
umλ+1 = (uλ)m · u

(@)
1 · u = u, where (@) is by part (a). 2

(c) Explain briefly why generating public/private key pairs (d, e) in this cryptosystem
(

5
100

)

is generally more computationally efficient than it would be in than the ‘standard’
RSA cryptosystem. (Hint: What is the complexity of computing an inverse, mod ϕ or mod
λ?)

Solution: In the RSA cryptosystem, the decryption exponent d is the inverse of the encryption
exponent e in the group Uϕ, where ϕ = φ(pq) = (p− 1)(q− 1). In the above cryptosystem, d
is the inverse e in the group Uλ, where λ = lcm(p− 1, q− 1). The size of ϕ and λ determines
the computational complexity of computing these inverses. To be precise, we compute inverses
(mod ϕ) by applying the Extended Euclidean Algorithm, which has complexity of order log(ϕ).
Likewise, computing inverses (mod λ) has complexity log(λ).

However, λ ≤ ϕ, because ϕ = (p−1)(q−1) is a common multiple of (p−1) and (q−1), where

λ is their least common multiple. Indeed, λ = (p−1)(q−1)
gcd(p−1,q−1) , so log(λ) = log(ϕ) − log(g),

where g = gcd(p−1, q−1). Thus, it is generally easier (and possibly much easier, if g is large)

to compute inverses mod λ than mod ϕ. 2

4. Let n = pq where p and q are two large primes. The number n is public knowledge, but
p and q are secret. The Rabin cryptosystem is based on the difficulty of computing square
roots, mod n (and the relative ease of computing them, mod p and mod q. If a ∈ Un
be the ‘plaintext’, then b := a2 is the cyphertext. To decrypt the cyphertext, we must
compute a, given b.

(a) Suppose you know p and q and suppose you can compute a1 ∈ Up and a2 ∈ Uq such
(

5
100

)

that a2
1 p

b and a2
2 q

b. Explain how this information determines a.

Solution: The Chinese Remainder Theorem says there exists a unique a ∈ Un such that a
p
a1

and a
q
a2. Then a2

p
a2

1 p
b and a2

q
a2

2 q
b. But The Chinese Remainder Theorem says

there exists a unique x ∈ Un such that x
p
b and x

q
b —namely x = b. Thus, a2

n
b, as

desired. 2



(b) Suppose you don’t know p and q, but you have a magic decryption machine such
that, given any b ∈ Un, the machine produces a number a ∈ Un such that a2

n
b.

We can use this machine to factor n into pq as follows:
(

5
100

)

• Pick a random integer a. Let b := a2.
• Use the machine to obtain c such that c2

n
b. (Thus, c2

p
b and c2

q
b.) There

are four possibilities (each with probability 1
4):

(i) c
p

a and c
q

a. (ii) c
p
−a and c

q
a.

(iii) c
p

a and c
q
−a. (iv) c

p
−a and c

q
−a.

• Let g := gcd(a+ c, n).

Show that g = p with probability 1
4
, and that g = q with probability 1

4
.

Solution: In case (ii), a+ c
p
a− a = 0, whereas a+ c

q
a+ a = 2a 6= 0. Thus, p

∣

∣

∣ (a+ c) but

q 6
∣

∣

∣ (a+ c); hence gcd(a+ c, n) = gcd(a+ c, pq) = p.

In case (iii), a + c
q
a − a = 0, whereas a + c

p
a + a = 2a 6= 0. Thus, q

∣

∣

∣ (a + c) but

p 6
∣

∣

∣ (a+ c); hence gcd(a+ c, pq) = q.

(In case (i) gcd(a+ c, n) = 1, and in case (iv) gcd(a+ c, n) = n, which tells us nothing). 2

(c) Describe how the result in part (b) yields a ‘Monte Carlo factoring algorithm’ which
(

5
100

)

has a very high probability of very rapidly factoring n. Explain why we interpret
this result to mean that it is probably ‘hard’ to break the Rabin cryptosystem.

Solution: If we iterate the algorithm in part (b) k times, with k independent random choices of
b, then the probability is 1− 1

2k
≈ 1 that we will ‘get lucky’ at least once, and obtain either p

or q.

Thus, a machine which breaks the Rabin cryptosystem is equivalent to a machine which can

rapidly factor n into pq —in other words, it is a highly efficient, probabilistic factoring algorithm.

It is believed that the Prime Factorisation problem is ‘hard’ (NP-hard, to be precise), so this

means that breaking Rabin is also hard. 2

5. Let p ∈ P be an odd prime. Recall that Fermat’s Last Theorem Case I states:

There do not exist any coprime a, b, c ∈ Z such that ap + bp + cp = 0 and
yet a, b, c are all coprime to p.

We will prove Germain’s Theorem, which states: Let p and q be odd primes. Suppose that

(i) For any x, y, z ∈ Z, if xp + yp + zp
q

0 then xyz
q

0.

(ii) There exists no r ∈ Z such that rp
q
p.

Then Fermat’s Last Theorem Case I holds for p.

Suppose (by contradiction) that ap + bp + cp = 0 and yet abc 6
p

0. Observe that

−ap = bp + cp = (b+ c)(bp−1 − bp−2c+ bp−3c2 − · · ·+ cp−1) (3)



(a) Show that (b+ c) is coprime to bp−1 − bp−2c+ bp−3c2 − · · ·+ cp−1.
(

5
100

)

Solution: (By contradiction) Let m ∈ P and suppose m divides (b + c) and (bp−1 − bp−2c +
bp−3c2 − · · ·+ cp−1). Then b

m
− c, so that

bp−1 − bp−2c+ bp−3c2 − · · ·+ cp−1
m

bp−1 + bp−1 + · · ·+ bp−1+ = pbp−1.

Thus, m
∣

∣

∣ pbp−1, which means either m
∣

∣

∣ p or m
∣

∣

∣ bp−1 (By Lemma 2.1, because m is prime).

If m
∣

∣

∣ p then m = p because both are prime. But then

p = m
∣

∣

∣ (b+ c)(bp−1 − bp−2c+ bp−3c2 − · · ·+ cp−1) = bp + cp = −ap.

Thus, p
∣

∣

∣ ap, which means p
∣

∣

∣ a, contradicting our assumption that a, b, c are coprime to p.

Thus, m
∣

∣

∣ bp−1. But then m
∣

∣

∣ b (because m is prime). Then m divides c = (b + c) − b. But

then m also divides ap, because equation (3) becomes

−ap = bp + cp
m

0 + 0 = 0.

Thus, m divides a. At this point, gcd(a, b, c) ≥ m, contradicting the assumption that they are

coprime. 2

(b) Show that there exist r, s ∈ Z such that the following equations hold:
(

5
100

)

(1) (2) (3)
(a) b+ c = rp and bp−1 − bp−2c+ bp−3c2 − · · ·+ cp−1 = up, so a = −ru.

Solution: Equation (3) implies that (b+ c)(bp−1− bp−2c+ bp−3c2− · · ·+ cp−1) = −ap is a

perfect pth power. But these two factors are coprime by part (a). Thus, Lemma 2.4 says that

(b + c) and (bp−1 − bp−2c + bp−3c2 − · · · + cp−1) must each be perfect pth powers. That is,

there exist r and u in Z making equations (a1) and (a2) true. Then equation (a3) then follows

from equation (3). 2

(Remark: Notice that the roles of a, b, and c in this argument are completely symmetric. By applying
the permutation a→b→c→a, we deduce that there also exist t, u, v, w ∈ Z such that:

(1) (2) (3)
(b) c+ a = sp and cp−1 − cp−2a+ cp−3a2 − · · ·+ ap−1 = vp, so b = −sv.
(c) a+ b = tp and ap−1 − ap−2b+ ap−3b2 − · · ·+ bp−1 = wp, so c = −tw.

If ap + bp + cp = 0, then ap + bp + cp
q

0. Thus, hypothesis (i) of Germain’s theorem implies that one of

a, b or c must be congruent to zero, mod q. We assume WOLOG that c
q

0. Thus,

up
(a2)

bp−1 − bp−2c+ bp−3c2 − · · ·+ cp−1
q

bp−1. (4)

Thus, u ∈ Uq because u ⊥ q because up = bp−1 ⊥ q because b ⊥ q. )

(c) Deduce that one of r, s or t must be congruent to zero, mod q.
(

5
100

)

Solution: rp+sp+(−t)p = rp+sp− tp
(1)

(b+ c)+(c+a)− (a+ b) = 2c
q

0.

here (1) is by column (1) in part (b). Thus, hypothesis (i) of Germain’s theorem implies that

one one of r, s or t must be congruent to zero, mod q. 2

(Remark: Through a simple argument we can show that r 6
q

0 and s 6
q

0. Thus, (c) implies that t
q

0.)



(d) Deduce that wp
q
pbp−1.

(

5
100

)

Solution: If t
q

0, then a+ b
(c1)

t
q

0, so that a
q
− b. Thus,

w3
(c2)

ap−1−ap−2b+ap−3b2−· · ·+bp−1
q

bp−1−bp−1+bp−1−· · ·+bp−1 = pbp−1

2

(e) Construct r ∈ Uq such that rp
p

p, contradicting hypothesis (ii) of Germain’s

Theorem. (Remark: It follows that a, b, c cannot exist; this proves Germain’s theorem.)
(

5
100

)

Solution: Let i be the multiplicative inverse of u in Uq [which exists because u ∈ Uq]. Let
r := wi. Then

rp = wpip
(∗)
q

pbp−1ip
(†)
q

pupip = p(ui)p
(‡)
q

p1p = p.

Here, (∗) is by part (d), (†) is by equation (4), and (‡) is because iu
q

1 by definition of i.

2

6. Let S1 ⊂ N be the set of squarefree numbers. (Recall: n is square-free if n is not divisible by any

perfect square.) Let n be a ‘random’ integer. We will show that Prob [n ∈ S1] =
1

ζ(2)
≈

0.607927101...., where ζ is the Riemann zeta function.

For any m ∈ N, let Sm := {n ∈ N ; the largest square factor of n is m2}.
(Thus, S1 is the set of squarefree numbers)

(a) Show that Sm ⊆ m2 · S1.
(

5
100

)

Solution: Let n ∈ Sm. Then m2
∣

∣

∣ n. Let k := n/m2.

I claim k ∈ S1. To see this, suppose `2
∣

∣

∣ k; then `2m2
∣

∣

∣ m2k = n; hence ` = 1 because m2 is

the largest square dividing n.

Thus, n = m2k ∈ m2S1. This holds for all n ∈ Sm,so Sm ⊆ m2 · S1. 2

(b) Show that Sm ⊇ m2 · S1.
(

5
100

)

Solution: Let k ∈ S1, and let n := m2k. Then clearly m2
∣

∣

∣ n. I claim n ∈ Sm. To see this,

suppose n ∈ S` for some ` ≥ m. Then `2
∣

∣

∣ n.

Claim 1: m
∣

∣

∣ `.

Proof: Let c := lcm(m, `). Then c2 = lcm(m2, `2), and c2 divides n, because n is a common
multiple of m2 and `2. But this contradicts the maximality of `, unless c = `, in which case

m
∣

∣

∣ `. 3 Claim 1

Let q = `/m. Then q2 = `2/m2, and `2
∣

∣

∣ n, so q2
∣

∣

∣ (n/m2) = k. Thus, q = 1 because k ∈ S1.

Thus, ` = m.

Thus, n = m2k ∈ Sm. This holds for all k ∈ S1,so Sm ⊇ m2 · S1. 2



(c) For any subset A ⊂ N, let δ(A) be the probability1 that a ‘random’ integer is in A.
(

5
100

)

It follows from (a) and (b) that Sm = m2S1, and thus, δ(Sm) = 1
m2 δ(S1).

Conclude that
1

δ(S1)
=

∞
∑

m=1

1

m2
, and thus, δ(S1) =

1

ζ(2)
.

Solution: Clearly, N =
∞
⊔

m=1

Sm. Thus,

1 = δ(N) = δ

( ∞
⊔

m=1

Sm

)

=
∞
∑

m=1

δ(Sm) =
∞
∑

m=1

δ(S1)
m2

= δ(S1)
∞
∑

m=1

1
m2

Thus,
1

δ(S1)
=

∞
∑

m=1

1
m2

=: ζ(2). Thus, δ(S1) =
1
ζ(2)

, as desired. 2

1Technically, δ(A) := lim
N→∞

#(A ∩ [1...N ])
N

is the Cesàro density of A.


