Math 322 (Number Theory). Final Exam, April 17, 2006.

1. Let $a_0, a_1, a_2, \ldots \in \mathbb{N}$, and let $\alpha := [a_0; a_1, a_2, \ldots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 +$

For any $n \in \mathbb{N}$, we define the *n*th *convergent* and *n*th *remainder*.

$$\frac{p_n}{q_n}$$
 := $[a_0; a_1, a_2, \dots, a_n]$ and r_n := $[a_n; a_{n+1}, a_{n+2}, \dots]$

(Thus $p_0 = a_0$ and $q_0 = 1$, while $p_1 = a_0a_1 + 1$ and $q_1 = a_1$.) Recall the recursion formulae:

$$\forall k \ge 2, \qquad p_k = a_k p_{k-1} + p_{k-2}, \tag{1}$$

and
$$q_k = a_k q_{k-1} + q_{k-2}.$$
 (2)

(a) Verify case k = 2 of equations (1) and (2) by direct computation. Solution: Note that

$$\frac{p_2}{q_2} := a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = a_0 + \frac{1}{\frac{a_1 a_2 + 1}{a_2}} = a_0 + \frac{a_2}{a_1 a_2 + 1} = \frac{a_0(a_1 a_2 + 1) + a_2}{a_1 a_2 + 1}$$

Thus,

 $\left(\frac{3}{100}\right)$

 $\left(\frac{5}{100}\right)$

$$p_2 = a_0(a_1a_2+1) + a_2 = a_0a_1a_2 + a_2 + a_0 = a_2(a_0a_1+1) + a_0 = a_2p_1 + p_0a_1a_2 + a_1a_2 + a_2a_2 + a_1a_2 + a_1a_2 + a_2a_2 + a_1a_2 + a_1a_$$

while $q_2 = a_2 a_1 + 1 = a_2 q_1 + q_0$, as desired.

(b) Observe that $q_1p_0 - p_1q_0 = -1$. Prove that, for all $k \ge 2$, $q_kp_{k-1} - p_kq_{k-1} = (-1)^k$.

Solution: (by induction) The base case k = 1 is just the above observation. Assume the theorem is true for k - 1. Then

$$\begin{array}{rcl} q_k p_{k-1} - p_k q_{k-1} & \overline{\underline{m}} & p_{k-1}(a_k q_{k-1} + q_{k-2}) - q_{k-1}(a_k p_{k-1} + p_{k-2}) \\ & = & a_k p_{k-1} q_{k-1} + p_{k-1} q_{k-2} - a_k p_{k-1} q_{k-1} - q_{k-1} p_{k-2} \\ & = & p_{k-1} q_{k-2} - q_{k-1} p_{k-2} & = & (-1)(q_{k-1} p_{k-2} - p_{k-1} q_{k-2}) \\ & \overline{\underline{m}} & (-1)(-1)^{k-1} & = & (-1)^k. \end{array}$$

Here (*) is by substituting equations (1) and (2), and (†) is by induction hypothesis.

$$\begin{array}{ll} \left(\frac{2}{100}\right) & \text{(c) Prove that, all } k \geq 2, \quad \frac{p_{k-1}}{q_{k-1}} - \frac{p_k}{q_k} = \frac{(-1)^k}{q_k q_{k-1}}.\\ & \text{Solution: Divide both sides of the equation in part (b) by } q_k q_{k-1}. \\ & \left(\frac{5}{100}\right) & \text{(d) Prove that, for any } k \geq 3, \quad \left|\alpha - \frac{p_k}{q_k}\right| + \left|\alpha - \frac{p_{k-1}}{q_{k-1}}\right| \ < \ \frac{1}{2q_k^2} + \frac{1}{2q_{k-1}^2} \end{array}$$

(d) Prove that, for any
$$n = 0$$
, $|\alpha = q_k| + |\alpha = q_{k-1}| + 2q_k^2 + 2q_k^2$
(Hint: You may assume that either $\frac{p_k}{q_k} < \alpha < \frac{p_{k-1}}{q_{k-1}}$ or $\frac{p_{k-1}}{q_{k-1}} < \alpha < \frac{p_k}{q_k}$.
You may also use the arithmetic/geometric mean inequality: $\sqrt{ab} \le \frac{a+b}{2}$.)

Solution:

$$\begin{vmatrix} \alpha - \frac{p_k}{q_k} \end{vmatrix} + \begin{vmatrix} \alpha - \frac{p_{k-1}}{q_{k-1}} \end{vmatrix} \quad \overline{\underset{(\bar{\tau})}{=}} \quad \left| \frac{p_k}{q_k} - \alpha + \alpha - \frac{p_{k-1}}{q_{k-1}} \right| = \begin{vmatrix} \frac{p_k}{q_k} - \frac{p_{k-1}}{q_{k-1}} \end{vmatrix}$$

$$\overline{\underset{(\bar{\tau})}{=}} \quad \left| \frac{(-1)^k}{q_k q_{k-1}} \right| = \frac{1}{q_k q_{k-1}} = \sqrt{\frac{1}{q_k^2 q_{k-1}^2}} \quad \leq \quad \frac{1}{q_k^2} + \frac{1}{q_{k-1}^2}$$

Here (*) is because α is between $\frac{p_k}{q_k}$ and $\frac{p_{k-1}}{q_{k-1}}$.

- (†) is by part (c), and (‡) is the arithmetic/geometric mean inequality. $\hfill\square$
- (e) Conclude, for any $k \ge 3$, at least one of the following two inequalities is true:

either
$$\left|\alpha - \frac{p_k}{q_k}\right| < \frac{1}{2q_k^2}$$
, or $\left|\alpha - \frac{p_{k-1}}{q_{k-1}}\right| < \frac{1}{2q_{k-1}^2}$.

Solution: (by contradiction) Suppose neither was true. then $\left| \alpha - \frac{p_k}{q_k} \right| \ge \frac{1}{2q_k^2}$ and $\left| \alpha - \frac{p_{k-1}}{q_{k-1}} \right| \ge \frac{1}{2q_{k-1}^2}$. But then $\left| \alpha - \frac{p_k}{q_k} \right| + \left| \alpha - \frac{p_{k-1}}{q_{k-1}} \right| \ge \frac{1}{2q_k^2} + \frac{1}{2q_{k-1}^2}$, contradicting part (d).

2. For any $n \in \mathbb{N}$, let \mathbb{U}_n is multiplicative group of units mod n, and let $\mathcal{Q}_n \subset \mathbb{U}_n$ be the subgroup of quadratic residues, mod n. Recall the Multiplicative Chinese Remainder Theorem:

If n and m are relatively prime, then there is a group isomorphism $\Psi : \mathbb{U}_{nm} \longrightarrow \mathbb{U}_n \times \mathbb{U}_m$.

 $\left(\frac{6}{100}\right)$

 $\left(\frac{5}{100}\right)$

(a) Show that $\Psi(\mathcal{Q}_{nm}) = \mathcal{Q}_n \times \mathcal{Q}_m$.

Solution: Let $u \in \mathbb{U}_{nm}$. If $\Psi(u) = (u_1, u_2) \in \mathbb{U}_n \times \mathbb{U}_m$, then $\Psi(u^2) = (u_1^2, u_2^2)$. Let $v \in \mathbb{U}_{nm}$, and let $\Psi(v) = (v_1, v_2) \in \mathbb{U}_n \times \mathbb{U}_m$. Thus,

$$\left(u^2 = v\right) \iff \left(\Psi(u^2) = \Psi(v)\right) \iff \left((u_1^2, u_2^2) = (v_1, v_2)\right) \iff \left(v_1 = u_1^2 \text{ and } v_2 = u_2^2\right).$$

Here (*) is because Ψ is injective. Thus,

$$\begin{pmatrix} v \in \mathcal{Q}_{nm} \end{pmatrix} \iff \left(\exists u \in \mathbb{U}_{nm} \text{ with } u^2 = v \right) \\ \iff \left(\exists u_1 \in \mathbb{U}_n \text{ and } u_2 \in \mathbb{U}_m \text{ with } u_1^2 = v_1 \text{ and } u_2^2 = v_2 \right) \\ \iff \left(v_1 \in \mathcal{Q}_n \text{ and } v_2 \in \mathcal{Q}_m \right) \iff \left(\Psi(v) \in \mathcal{Q}_n \times \mathcal{Q}_m \right).$$

 $\left(\frac{4}{100}\right)$

(b) Define $\omega : \mathbb{N} \longrightarrow \mathbb{N}$ by $\omega(n) = \# \mathcal{Q}_n$. Show that ω is a multiplicative function. Solution: If $n, m \in \mathbb{N}$ are relatively prime, then

$$\omega(nm) = \#\mathcal{Q}_{nm} = \#\mathcal{Q}_n \times \#\mathcal{Q}_m = \omega(n)\omega(m)$$

where (*) is by part (a).

3. Suppose p and q are prime. Let $\lambda := \operatorname{lcm}(p-1, q-1)$.

$\left(\frac{6}{100}\right)$

 $\left(\frac{4}{100}\right)$

(a) Show that, for any u ∈ U_{pq}, u^λ ≡ 1.
Solution: λ is a multiple of both p − 1 and q − 1. So, let λ = n(p − 1) and λ = m(q − 1). Then for any u ∈ U_p, u^λ = u^{n(p−1)} = (u^{p−1})ⁿ ≡ 1ⁿ = 1. Here, "≡" is by Fermat's Little Theorem. Likewise, for any v ∈ U_q, v^λ = v^{m(q−1)} = (v^{q−1})^m ≡ 1^m = 1. Let Ψ : U_{pq} → U_p × U_q be the isomorphism provided by the Chinese Remainder Theorem. If w ∈ U_{pq}, and Ψ(w) = (u, v) ∈ U_p×U_q, then Ψ(w^λ) = Ψ(w)^λ = (u^λ, v^λ) = (1, 1) = Ψ(1). Thus, w^λ ≡ 1 (because Ψ is bijective). □

(b) Let $d, e \in \mathbb{U}_{\lambda}$ be such that $de \equiv 1$. Define the 'modified' RSA encryption function $\epsilon : \mathbb{U}_{pq} \longrightarrow \mathbb{U}_{pq}$ and decryption function $\delta : \mathbb{U}_{pq} \longrightarrow \mathbb{U}_{pq}$ by

$$\delta(u) := u^d$$
 and $\epsilon(u) := u^e$, for all $u \in \mathbb{U}_{pq}$.

Show that $\delta \circ \epsilon(u) \equiv u$ for all $u \in \mathbb{U}_{pq}$. (i.e. δ is a decryption function for ϵ)

Solution: If $de \equiv 1$, then $de = m\lambda + 1$ for some $m \in \mathbb{Z}$. Thus, $\delta \circ \epsilon(u) = \delta(u^e) = u^{ed} = u^{m\lambda+1} = (u^{\hat{\lambda}})^m \cdot u \equiv u$, where (@) is by part (a).

- (c) Explain briefly why generating public/private key pairs (d, e) in this cryptosystem is generally more computationally efficient than it would be in than the 'standard' RSA cryptosystem. (Hint: What is the complexity of computing an inverse, mod φ or mod λ?)
- **Solution:** In the RSA cryptosystem, the decryption exponent d is the inverse of the encryption exponent e in the group \mathbb{U}_{φ} , where $\varphi = \phi(pq) = (p-1)(q-1)$. In the above cryptosystem, d is the inverse e in the group \mathbb{U}_{λ} , where $\lambda = \text{lcm}(p-1,q-1)$. The size of φ and λ determines the computational complexity of computing these inverses. To be precise, we compute inverses (mod φ) by applying the Extended Euclidean Algorithm, which has complexity of order $\log(\varphi)$. Likewise, computing inverses (mod λ) has complexity $\log(\lambda)$.

However, $\lambda \leq \varphi$, because $\varphi = (p-1)(q-1)$ is a common multiple of (p-1) and (q-1), where λ is their *least* common multiple. Indeed, $\lambda = \frac{(p-1)(q-1)}{\gcd(p-1,q-1)}$, so $\log(\lambda) = \log(\varphi) - \log(g)$, where $g = \gcd(p-1,q-1)$. Thus, it is generally easier (and possibly much easier, if g is large) to compute inverses mod λ than mod φ .

- 4. Let n = pq where p and q are two large primes. The number n is public knowledge, but p and q are secret. The **Rabin cryptosystem** is based on the difficulty of computing square roots, mod n (and the relative ease of computing them, mod p and mod q. If $a \in \mathbb{U}_n$ be the 'plaintext', then $b := a^2$ is the cyphertext. To decrypt the cyphertext, we must compute a, given b.
 - (a) Suppose you know p and q and suppose you can compute $a_1 \in \mathbb{U}_p$ and $a_2 \in \mathbb{U}_q$ such that $a_1^2 \equiv b$ and $a_2^2 \equiv b$. Explain how this information determines a.
 - **Solution:** The Chinese Remainder Theorem says there exists a unique $a \in \mathbb{U}_n$ such that $a \equiv a_1$ and $a \equiv a_2$. Then $a^2 \equiv a_1^2 \equiv b$ and $a^2 \equiv a_2^2 \equiv b$. But The Chinese Remainder Theorem says there exists a unique $x \in \mathbb{U}_n$ such that $x \equiv b$ and $x \equiv b$ —namely x = b. Thus, $a^2 \equiv b$, as desired.

 $\left(\frac{5}{100}\right)$

- (b) Suppose you *don't* know p and q, but you have a magic decryption machine such that, given any $b \in \mathbb{U}_n$, the machine produces a number $a \in \mathbb{U}_n$ such that $a^2 \equiv b$. We can use this machine to factor n into pq as follows:
 - Pick a random integer a. Let $b := a^2$.
 - Use the machine to obtain c such that $c^2 \equiv b$. (Thus, $c^2 \equiv b$ and $c^2 \equiv b$.) There are four possibilities (each with probability $\frac{1}{4}$):
 - Let $g := \gcd(a + c, n)$.

Show that g = p with probability $\frac{1}{4}$, and that g = q with probability $\frac{1}{4}$.

Solution: In case (ii), $a + c \equiv a - a = 0$, whereas $a + c \equiv a + a = 2a \neq 0$. Thus, $p \mid (a + c)$ but $q \nmid (a + c)$; hence gcd(a + c, n) = gcd(a + c, pq) = p.

In case (iii), $a + c \equiv a - a = 0$, whereas $a + c \equiv a + a = 2a \neq 0$. Thus, $q \mid (a + c)$ but $p \nmid (a + c)$; hence gcd(a + c, pq) = q.

- (In case (i) gcd(a+c,n) = 1, and in case (iv) gcd(a+c,n) = n, which tells us nothing). \Box
- (c) Describe how the result in part (b) yields a 'Monte Carlo factoring algorithm' which has a very high probability of very rapidly factoring n. Explain why we interpret this result to mean that it is probably 'hard' to break the Rabin cryptosystem.
- **Solution:** If we iterate the algorithm in part (b) k times, with k independent random choices of b, then the probability is $1 \frac{1}{2^k} \approx 1$ that we will 'get lucky' at least once, and obtain either p or q.

Thus, a machine which breaks the Rabin cryptosystem is equivalent to a machine which can rapidly factor n into pq—in other words, it is a highly efficient, probabilistic factoring algorithm. It is believed that the Prime Factorisation problem is 'hard' (NP-hard, to be precise), so this means that breaking Rabin is also hard.

5. Let $p \in \mathbb{P}$ be an odd prime. Recall that Fermat's Last Theorem Case I states:

There do not exist any coprime $a, b, c \in \mathbb{Z}$ such that $a^p + b^p + c^p = 0$ and yet a, b, c are all coprime to p.

We will prove Germain's Theorem, which states: Let p and q be odd primes. Suppose that

- (i) For any $x, y, z \in \mathbb{Z}$, if $x^p + y^p + z^p \equiv 0$ then $xyz \equiv 0$.
- (ii) There exists no $r \in \mathbb{Z}$ such that $r^p \equiv p$.

Then Fermat's Last Theorem Case I holds for p.

Suppose (by contradiction) that $a^p + b^p + c^p = 0$ and yet $abc \notin 0$. Observe that

$$-a^{p} = b^{p} + c^{p} = (b+c)(b^{p-1} - b^{p-2}c + b^{p-3}c^{2} - \dots + c^{p-1})$$
(3)

 $\left(\frac{5}{100}\right)$

(a) Show that (b+c) is coprime to $b^{p-1} - b^{p-2}c + b^{p-3}c^2 - \dots + c^{p-1}$.

Solution: (By contradiction) Let $m \in \mathbb{P}$ and suppose m divides (b+c) and $(b^{p-1} - b^{p-2}c + b^{p-3}c^2 - \cdots + c^{p-1})$. Then $b \equiv -c$, so that

$$b^{p-1} - b^{p-2}c + b^{p-3}c^2 - \dots + c^{p-1} \equiv b^{p-1} + b^{p-1} + \dots + b^{p-1} + \dots = pb^{p-1}.$$

Thus, $m \mid pb^{p-1}$, which means either $m \mid p$ or $m \mid b^{p-1}$ (By Lemma 2.1, because m is prime). If $m \mid p$ then m = p because both are prime. But then

$$p = m \qquad (b+c)(b^{p-1}-b^{p-2}c+b^{p-3}c^2-\dots+c^{p-1}) = b^p+c^p = -a^p.$$

Thus, $p \mid a^p$, which means $p \mid a$, contradicting our assumption that a, b, c are coprime to p. Thus, $m \mid b^{p-1}$. But then $m \mid b$ (because m is prime). Then m divides c = (b + c) - b. But then m also divides a^p , because equation (3) becomes

$$-a^p = b^p + c^p \equiv 0 + 0 = 0.$$

Thus, m divides a. At this point, $gcd(a, b, c) \ge m$, contradicting the assumption that they are coprime. \Box

(b) Show that there exist $r, s \in \mathbb{Z}$ such that the following equations hold:

(1) (2) (3)
(a)
$$b+c = r^p$$
 and $b^{p-1} - b^{p-2}c + b^{p-3}c^2 - \dots + c^{p-1} = u^p$, so $a = -ru$

Solution: Equation (3) implies that $(b+c)(b^{p-1}-b^{p-2}c+b^{p-3}c^2-\cdots+c^{p-1}) = -a^p$ is a perfect *p*th power. But these two factors are coprime by part (a). Thus, Lemma 2.4 says that (b+c) and $(b^{p-1}-b^{p-2}c+b^{p-3}c^2-\cdots+c^{p-1})$ must each be perfect *p*th powers. That is, there exist *r* and *u* in \mathbb{Z} making equations (a1) and (a2) true. Then equation (a3) then follows from equation (3).

(Remark: Notice that the roles of a, b, and c in this argument are completely symmetric. By applying the permutation $a \rightarrow b \rightarrow c \rightarrow a$, we deduce that there also exist $t, u, v, w \in \mathbb{Z}$ such that:

(1)
(b)
$$c+a = s^{p}$$
 and $c^{p-1} - c^{p-2}a + c^{p-3}a^{2} - \dots + a^{p-1} = v^{p}$, so $b = -sv$.
(c) $a+b = t^{p}$ and $a^{p-1} - a^{p-2}b + a^{p-3}b^{2} - \dots + b^{p-1} = w^{p}$, so $c = -tw$.

If $a^p + b^p + c^p = 0$, then $a^p + b^p + c^p \equiv 0$. Thus, hypothesis (i) of Germain's theorem implies that one of a, b or c must be congruent to zero, mod q. We assume WOLOG that $c \equiv 0$. Thus,

$$u^{p} \quad \overline{_{(a2)}} \quad b^{p-1} - b^{p-2}c + b^{p-3}c^{2} - \dots + c^{p-1} \quad \equiv \quad b^{p-1}.$$
(4)

Thus, $u \in \mathbb{U}_q$ because $u \perp q$ because $u^p = b^{p-1} \perp q$ because $b \perp q$.

(c) Deduce that one of r, s or t must be congruent to zero, mod q.

Solution: $r^p + s^p + (-t)^p = r^p + s^p - t^p = (b+c) + (c+a) - (a+b) = 2c \equiv 0.$ here (1) is by column (1) in part (b). Thus, hypothesis (i) of Germain's theorem implies that one one of r, s or t must be congruent to zero, mod q.

(Remark: Through a simple argument we can show that $r \neq 0$ and $s \neq 0$. Thus, (c) implies that $t \equiv 0$.)

 $\left(\frac{5}{100}\right)$

 $\left(\frac{5}{100}\right)$

 $\left(\frac{5}{100}\right)$

(d) Deduce that $w^p \equiv pb^{p-1}$. Solution: If $t \equiv 0$, then $a + b = \frac{1}{(c1)} t \equiv 0$, so that $a \equiv -b$. Thus,

$$w^{3} \quad \overline{\underline{(c2)}} \quad a^{p-1} - a^{p-2}b + a^{p-3}b^{2} - \dots + b^{p-1} \quad \equiv \quad b^{p-1} - b^{p-1} + b^{p-1} - \dots + b^{p-1} \quad = \quad pb^{p-1} - b^{p-1} - \dots + b^{p-1} \quad = \quad pb^{p-1} - b^{p-1} - \dots + b^{p-1} = pb^{p-1} - \dots + b^{p-1} - \dots + b^{p-1} = pb^{p-1} - \dots + b^{p-1} - \dots + b^{p-1} = pb^{p-1} - \dots + b^{p$$

(e) Construct $r \in \mathbb{U}_q$ such that $r^p \equiv p$, contradicting hypothesis (ii) of Germain's Theorem. (Remark: It follows that a, b, c cannot exist; this proves Germain's theorem.)

Solution: Let i be the multiplicative inverse of u in \mathbb{U}_q [which exists because $u \in \mathbb{U}_q$]. Let r := wi. Then

$$r^{p} = w^{p}i^{p} \quad \stackrel{(*)}{\equiv} \quad pb^{p-1}i^{p} \quad \stackrel{(\dagger)}{\equiv} \quad pu^{p}i^{p} = p(ui)^{p} \quad \stackrel{(\dagger)}{\equiv} \quad p1^{p} = p$$

Here, (*) is by part (d), (†) is by equation (4), and (‡) is because $iu \equiv 1$ by definition of i.

6. Let $\mathbb{S}_1 \subset \mathbb{N}$ be the set of squarefree numbers. (Recall: *n* is square-free if *n* is not divisible by any perfect square.) Let *n* be a 'random' integer. We will show that $\operatorname{Prob}[n \in \mathbb{S}_1] = \frac{1}{\zeta(2)} \approx$ 0.607927101...., where ζ is the Riemann zeta function. For any $m \in \mathbb{N}$, let $\mathbb{S}_m := \{n \in \mathbb{N} ; \text{ the largest square factor of } n \text{ is } m^2 \}$. (Thus, \mathbb{S}_1 is the set of squarefree numbers)

(a) Show that $\mathbb{S}_m \subseteq m^2 \cdot \mathbb{S}_1$. Solution: Let $n \in \mathbb{S}_m$. Then $m^2 \mid n$. Let $k := n/m^2$.

I claim $k \in S_1$. To see this, suppose $\ell^2 \mid k$; then $\ell^2 m^2 \mid m^2 k = n$; hence $\ell = 1$ because m^2 is the largest square dividing n.

Thus, $n = m^2 k \in m^2 \mathbb{S}_1$. This holds for all $n \in \mathbb{S}_m$, so $\mathbb{S}_m \subseteq m^2 \cdot \mathbb{S}_1$. \Box

(b) Show that
$$\mathbb{S}_m \supseteq m^2 \cdot \mathbb{S}_1$$
.

Solution: Let $k \in S_1$, and let $n := m^2 k$. Then clearly $m^2 \mid n$. I claim $n \in S_m$. To see this, suppose $n \in S_\ell$ for some $\ell \ge m$. Then $\ell^2 \mid n$.

Claim 1: $m \mid \ell$.

Proof: Let $c := \operatorname{lcm}(m, \ell)$. Then $c^2 = \operatorname{lcm}(m^2, \ell^2)$, and c^2 divides n, because n is a common multiple of m^2 and ℓ^2 . But this contradicts the maximality of ℓ , unless $c = \ell$, in which case $m \mid \ell$.

Let $q = \ell/m$. Then $q^2 = \ell^2/m^2$, and $\ell^2 \mid n$, so $q^2 \mid (n/m^2) = k$. Thus, q = 1 because $k \in \mathbb{S}_1$. Thus, $\ell = m$.

Thus,
$$n = m^2 k \in \mathbb{S}_m$$
. This holds for all $k \in \mathbb{S}_1$, so $\mathbb{S}_m \supseteq m^2 \cdot \mathbb{S}_1$.

 $\left(\frac{5}{100}\right)$

 $\left(\frac{5}{100}\right)$

(c) For any subset $\mathbb{A} \subset \mathbb{N}$, let $\delta(\mathbb{A})$ be the probability¹ that a 'random' integer is in \mathbb{A} . It follows from (a) and (b) that $\mathbb{S}_m = m^2 \mathbb{S}_1$, and thus, $\delta(\mathbb{S}_m) = \frac{1}{m^2} \delta(\mathbb{S}_1)$. Conclude that $\frac{1}{\delta(\mathbb{S}_1)} = \sum_{m=1}^{\infty} \frac{1}{m^2}$, and thus, $\delta(\mathbb{S}_1) = \frac{1}{\zeta(2)}$. Solution: Clearly, $\mathbb{N} = \bigsqcup_{m=1}^{\infty} \mathbb{S}_m$. Thus, $1 = \delta(\mathbb{N}) = \delta\left(\bigsqcup_{m=1}^{\infty} \mathbb{S}_m\right) = \sum_{m=1}^{\infty} \delta(\mathbb{S}_m) = \sum_{m=1}^{\infty} \frac{\delta(\mathbb{S}_1)}{m^2} = \delta(\mathbb{S}_1) \sum_{m=1}^{\infty} \frac{1}{m^2}$

Thus,
$$\frac{1}{\delta(\mathbb{S}_1)} = \sum_{m=1}^{\infty} \frac{1}{m^2} =: \zeta(2)$$
. Thus, $\delta(\mathbb{S}_1) = \frac{1}{\zeta(2)}$, as desired.

¹Technically, $\delta(\mathbb{A}) := \lim_{N \to \infty} \frac{\#(\mathbb{A} \cap [1...N])}{N}$ is the *Cesàro density* of \mathbb{A} .