Math 322 (Number Theory). Final Exam, April 17, 2006.

1
1. Let ag,aq,as,... € N, and let a := [ag;a1,a9,...] == ag+ T
a; +
ag +
-+
For any n € N, we define the nth convergent and nth remainder:

Pn
o = |ao;a1,as,...,a, and Tn = [ap;Qpet, Gpga, -

n

(Thus po = ap and go = 1, while p; = apa; +1 and ¢; = a;.) Recall the recursion formulae:

VE>2, p = apr-1+ D2, (1)
and  qr = apQr—1 + Gr—2- (2)
() (a) Verify case k = 2 of equations (1) and (2) by direct computation.
Solution: Note that
D2 1 1 a2 ao(a1a2 + 1) + a2
2= ag+ = -+ g = a0+ - .
q2 0 ap + i 0 %@H “ ajag + 1 ajaz + 1
Thus,
p2 = aplamaz+1) +ax = apaiast+ast+ay = az(apar+1)+ag = api+po,
while ¢ = asa1 +1 = a2q1 + qo, as desired. O
() (b) Observe that ¢1po—p1go = —1. Prove that, for all k > 2, qupr_1 —prqe_1 = (—1).

Solution: (by induction) The base case k = 1 is just the above observation. Assume the theorem
is true for £ — 1. Then

Pr—1(0kqr—1 + Qk—2) — qr—1(akPE—1 + Pk—2)
akPk—19k—1 + Pk—19k—2 — QkDPk—19k—1 — Qk—1Pk—2
Pk—1Qk—2 — Qh—1Pk—2 = (—1)(@r—1Pk—2 — Pr—1qK—2)

DDt = (DN
Here (x) is by substituting equations (1) and (2), and (}) is by induction hypothesis. O
Dk—1 Pk (—1)k

qkPk—1 — Pkqr—1

Izl
z
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—

2 ¢) Prove that, all £k > 2 = )
(1) () ’ TG G Qe
Solution: Divide both sides of the equation in part (b) by grqx—_1. O
_ 1 1
(5) (d) Prove that, for any £ >3, |a— Pr) ’a Do — =
gk qr—1 2qk 2qk_1
(Hint: You may assume that either Ph g < Bhl g Phot oy o P
qk k-1 Qr-1 k

. . . . e b
You may also use the arithmetic/geometric mean inequality: vab < 452.)



Solution:

N Pk Pr-1

qk qk—1 qk qk—1

(—1)F 1 1 1 1
= = ez S a2ta
qkqk—1 99,1 & 4q 49

qkqk—1
Pk—1

Here (k) is because « is between Pk and Zh=L,
dk dk—1

(t) is by part (c), and (1) is the arithmetic/geometric mean inequality. O

(%)

‘ Pk
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+ ‘a _ DPr—1
dk—1
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Z

(5) (e) Conclude, for any k > 3, at least one of the following two inequalities is true:

1
2q%’

Pk
a__

qk

either

Solution: (by contradiction) Suppose neither was true. then

1 n 1
T2 2q7,

Pk
a— =

dk

_ Pi—1
k-1

, contradicting part (d). O

. But then

+ |«
2qi_1 ‘

2. For any n € N, let U, is multiplicative group of units mod n, and let Q,, C U, be
the subgroup of quadratic residues, mod n. Recall the Multiplicative Chinese Remainder

Theorem:

If n and m are relatively prime, then there is a group isomorphism V¥ : U,,,,—U, x U,,.

(105) (a) Show that U(Q,,) = Q. X Q.

Solution: Let u € Uy, If U(u) = (u1,u2) € Uy, X Uy, then ¥(u?) = (u?,u3). Let v € Upm,

and let ¥(v) = (v1,v2) € Uy X Uy,. Thus,

(u2 = v) = (lll(u2) = \If(v)) = ((u%,u%) = (1)1,1)2)> = (Ul =u? and vy = u2) .

Here (%) is because W is injective. Thus,
(v € Qnm) <= (Elu € Uy with u? = v)
— (3 uy € Uy, and ug € Uy, with w2 = v and u3 = ’U2)

— (vl € Q, and vy € Qm) — <\Il(v) €0, x Qm) .

(155) (b) Define w : N—N by w(n) = #Q,,. Show that w is a multiplicative function.

Solution: If n,m € N are relatively prime, then

W(nm) = #Qnm = #Qn X #Qm = w(n)w(m)7

(%)

where () is by part (a).



(160

(13

3. Suppose p and ¢ are prime. Let A :=lem(p — 1,9 — 1).
1.

(a) Show that, for any u € Uy, u =
Solution: ) is a multiple of both p —1 and ¢ — 1. So, let A\=n(p—1) and A = m(¢—1). Then
for any u € U, w = ) = (up 1) = 1" = 1. Here, = " is by Fermat's Little

P
Theorem. Likewise, for any v € Uy, v* = o™= = (p=h)m = 1™ = 1.

Let ¥ : U,,—U, x U, be the isomorphism provided by the Chinese Remainder Theorem. If
w € Upg, and ¥(w) = (u,v) € UpxU,, then U(w?) = U(w) = (v}, 0}) = (1,1) = ¥(1).
Thus, w* =1 (because ¥ is bijective). O

(b) Let d,e € Uy be such that de = 1. Define the ‘modified” RSA encryption function
€ : Uy,y—U,, and decryption function & : Up,— Uy by

S(u) = ul and e(u) = uf for all u € U,,.

Show that d o €(u) = wu for all u € U,,.  (i.e. d is a decryption function for €)
rq

Solution: If de = 1, then de = m\ + 1 for some m € Z. Thus, oe(u) = §(u®) = u? =

wM = ()™ ‘u=1-u = u, where (@) is by part (a). O

(c) Explain briefly why generating public/private key pairs (d, e) in this cryptosystem
is generally more computationally efficient than it would be in than the ‘standard’
RSA cryptosystem. (Hint: What is the complexity of computing an inverse, mod ¢ or mod
A?)

Solution: In the RSA cryptosystem, the decryption exponent d is the inverse of the encryption
exponent e in the group Uy, where ¢ = ¢(pq) = (p —1)(¢ —1). In the above cryptosystem, d
is the inverse e in the group Uy, where A = lem(p — 1,¢ —1). The size of ¢ and A determines
the computational complexity of computing these inverses. To be precise, we compute inverses
(mod ) by applying the Extended Euclidean Algorithm, which has complexity of order log(y).
Likewise, computing inverses (mod A) has complexity log(\).

However, A < ¢, because ¢ = (p—1)(¢—1) is a common multiple of (p—1) and (¢—1), where

A is their least common multiple. Indeed, A = %, so log(A) = log(y) — log(g),
where g = ged(p—1,qg—1). Thus, it is generally easier (and possibly much easier, if g is large)
to compute inverses mod A than mod . O

4. Let n = pg where p and ¢ are two large primes. The number n is public knowledge, but

p and q are secret. The Rabin cryptosystem is based on the difficulty of computing square
roots, mod n (and the relative ease of computing them, mod p and mod ¢. If a € U,
be the ‘plaintext’, then b := a? is the cyphertext. To decrypt the cyphertext, we must
compute a, given b.

(a) Suppose you know p and ¢ and suppose you can compute a; € U, and ay € U, such
that a? = band a3 = = b. Explain how this information determines a.

Solution: The Chinese Remainder Theorem says there exists a unique a € U, such that a = =
and a = = a. Then a? = a? = b and a® = a2 b. But The Chinese Remainder Theorem says

there eX|sts a unique xz € U, such that T = b and x = b —namely x = b. Thus, a? = b, as
desired. O



(b) Suppose you don’t know p and ¢, but you have a magic decryption machine such
that, given any b € U, the machine produces a number a € U,, such that a? =b.
(35) We can use this machine to factor n into pq as follows:

e Pick a random integer a. Let b := a?.

e Use the machine to obtain ¢ such that ¢? = b. (Thus, c?

are four possibilities (each with probability i):

(i) ¢

(ii7) ¢

and c
and c

<[ =l
=[] =l

o Let g :=ged(a + ¢, n).
Show that g = p with probability }1, and that g = ¢ with probability }l.
Solution: In case (i), a + ¢ =a—a=0 whereasa+c=a+a=2a # 0. Thus, p‘ (a+c) but
q )( (a + ¢); hence ged(a + ¢,n) = ged(a + ¢, pq) = p.
In case (iii), atc=a—a=0, whereas atczata=2a # 0. Thus, q‘ (a + ¢) but

P /f(a + ¢); hence ged(a + ¢, pq) = q.
(In case (i) ged(a+¢,m) =1, and in case (iv) ged(a+ ¢,n) = n, which tells us nothing). O

(125) (c¢) Describe how the result in part (b) yields a ‘Monte Carlo factoring algorithm’ which
has a very high probability of very rapidly factoring n. Explain why we interpret
this result to mean that it is probably ‘hard’ to break the Rabin cryptosystem.

Solution: If we iterate the algorithm in part (b) k times, with k independent random choices of
b, then the probability is 1 — 2% ~ 1 that we will ‘get lucky' at least once, and obtain either p
or q.
Thus, a machine which breaks the Rabin cryptosystem is equivalent to a machine which can
rapidly factor n into pg —in other words, it is a highly efficient, probabilistic factoring algorithm.
It is believed that the Prime Factorisation problem is ‘hard’ (NP-hard, to be precise), so this
means that breaking Rabin is also hard. O

5. Let p € P be an odd prime. Recall that Fermat's Last Theorem Case | states:

There do not exist any coprime a,b,c € 7Z such that a? + b? + ¢ = 0 and
yvet a, b, c are all coprime to p.

We will prove Germain's Theorem, which states: Let p and q be odd primes. Suppose that
(i) For any x,y,z € Z, if 2P + y? + 2P

0 then xyz 0.

il
<l

(ii) There exists no r € Z such that r? = p.

1l

Then Fermat’s Last Theorem Case I holds for p.
Suppose (by contradiction) that a” 4+ 0P + ¢® = 0 and yet abe ;,-pé 0. Observe that

—a’ = P4+ = b+ = e+ — 4 P (3)



) (a) Show that (b+ c) is coprime to =1 — bP=2¢c + DP3¢? — - -+ + P71
Solution: (By contradiction) Let m € P and suppose m divides (b + ¢) and (bP~! — bP~2¢ +
pp—3 2—---4—(:1”_1). Then b — ¢, so that

m

PP 2e P32 — o P N

Thus, m ) pbP~1, which means either m ‘ p or m) b»~1 (By Lemma 2.1, because m is prime).

If m ‘ p then m = p because both are prime. But then
p = m ) (b+c) (Pt =P 2e 4 P32 — P = WP = P

Thus, p‘ a?, which means p‘ a, contradicting our assumption that a, b, ¢ are coprime to p.

Thus, m) b1, But then m‘ b (because m is prime). Then m divides ¢ = (b + ¢) — b. But
then m also divides a?, because equation (3) becomes

—a’ = W+ 0+0 = 0.

m

Thus, m divides a. At this point, gcd(a, b, ¢) > m, contradicting the assumption that they are

coprime. O
25) (b) Show that there exist r, s € Z such that the following equations hold:
1) , 2) 3)
(a) b+c = P and WPl 2c4bP 32— 4Pt = WP s0o a = —ru.
Solution: Equation (3) implies that (b+¢)(bP~1 —bP2c+ 0P 3c2 — ... 4+ P71) = —aPis a
perfect pth power. But these two factors are coprime by part (a). Thus, Lemma 2.4 says that
(b+c) and (BP~1 — bP~2c + bP73¢2 — . 4+ ¢P~1) must each be perfect pth powers. That is,
there exist r and u in Z making equations (al) and (a2) true. Then equation (a3) then follows
from equation (3). O

(Remark: Notice that the roles of a, b, and c in this argument are completely symmetric. By applying
the permutation a—b—c—a, we deduce that there also exist t,u,v,w € Z such that:

1) | 2) 3)
(b) c+a = s and Pl —cPZa+cPBa® - +aP! = WP, so b = —su.
() a+b = t* and a1 —aP2b+aP 3%~ + P = wP, so ¢ = —tw.

If a? + bP + ¢ = 0, then aP + bP + cP = 0. Thus, hypothesis (i) of Germain’s theorem implies that one of
a, b or ¢ must be congruent to zero, mod q. We assume WOLOG that ¢ = 0. Thus,

W= Wl P 2o 4 P — P = bt (4)
Thus, u € U, because u L q because u? = b?~1 L q because b L q. )
25) (¢) Deduce that one of r, s or t must be congruent to zero, mod g.
Solution: rP+sP+(—t)P = rP4sP—1tP = (b+c)+(c+a)—(a+b) = 2¢ = 0
here (1) is by column (1) in part (b). Thus, hypothesis (i) of Germain's theorem implies that
one one of , s or ¢ must be congruent to zero, mod gq. O

(Remark: Through a simple argument we can show that r % 0 and s % 0. Thus, (c) implies that t

Slll



(:35) (d) Deduce that w? = pbP~'.

Solution: If ¢ —b. Thus,

0,thena+b=1t 0, so that a

T o 7

<l

w? = aPt—aP2b+aP 30— P! PPt Tt = P!

2 5

|

(e) Construct r € U, such that v» = p, contradicting hypothesis (i) of Germain’s
(105) Theorem. (Remark: It follows that a,b,c cannot exist; this proves Germain’s theorem. )
Solution: Let i be the multiplicative inverse of u in U, [which exists because u € U,]. Let

r:= wi. Then

—

E)

T

*

—~

]

T

—
=
~

P = wP? pbP~ 1P puPi? = p(ui)? pl? = p.

T
Here, (x) is by part (d), (1) is by equation (4), and (f) is because iu = 1 by definition of i.

O

T

6. Let S; C N be the set of squarefree numbers. (Recall: n is square-free if n is not divisible by any
. . 1
perfect square.) Let n be a ‘random’ integer. We will show that Prob[n € S;] = —) ~

¢(2
0.607927101...., where ( is the Riemann zeta function.

For any m € N, let S,, := {n € N ; the largest square factor of n is m?*}.

(Thus, Sy is the set of squarefree numbers)

(35) (a) Show that S,, € m?-S;.
Solution: Let n € S;,,. Then m? ‘ n. Let k := n/m?

| claim k € S1. To see this, suppose 2 ) k: then ¢2m? ‘ m2k = n; hence ¢ = 1 because m? is

the largest square dividing n.
Thus, n = m2k € m2S;. This holds for all n € S;,,50 S,, € m?-S;. O
(35) (b) Show that S,, 2 m?-S;.

Solution: Let k € Sy, and let n := m2k. Then clearly m? ‘ n. | claimn € S,,. To see this,
suppose 1 € Sy for some £ > m. Then £2 | n.
Claim 1: m‘ L.

Proof: Let c := lem(m, £). Then ¢? = lem(m?,¢2), and ¢? divides n, because n is a common
multiple of m? and ¢2. But this contradicts the maximality of ¢, unless ¢ = ¢, in which case
m ‘ L. <& claim 1

Let ¢ = £/m. Then ¢? = £2/m?, and (2 ‘ n, so ¢> ‘ (n/m?) = k. Thus, ¢ = 1 because k € S.
Thus, £ =m.
Thus, n = m2k € S,,. This holds for all k € S1,50 S,,, 2 m2-S;. O



(c) For any subset A C N, let §(A) be the probability! that a ‘random’ integer is in A.
It follows from (a) and (b) that S,, = m?S;, and thus, 6(S,,) = -56(S;).

[e.9]

1 1 1
Conclude that —— = —, and thus, §(S;) = —.
TR &) =
Solution: Clearly, N = |_| Sy. Thus,
m=1
1 = §N) = 5<|_| Sm) = ) 6Sm) = > ini) = S )Y —
m=1 m=1 m=1 m=1
Thus L ii =: ((2). Thus, 6(S;) = 1 as desired O
SE) T 2 = () Thes 0B = |
!Technically, §(A) = A}im w is the Cesaro density of A.



