Let $f : \mathbb{C} \to \mathbb{C}$ be the complex-inversion map, ie. $f(z) = \frac{1}{z}$.

(a) Suppose $z = x + iy$ and $f(z) = u(x, y) + v(x, y)i$ for some functions $u, v : \mathbb{R}^2 \to \mathbb{R}$. Express $u(x, y)$ and $v(x, y)$ in terms of x and y.

Solution: Suppose $z = x + iy$. If $z = r\angle \theta$, where $r = \sqrt{x^2 + y^2}$, then $x = r\cos(\theta)$ and $y = r\sin(\theta)$. Thus,

$$f(z) = \frac{1}{r} \angle (-\theta) = \frac{1}{r} \left(\cos(-\theta) + i\sin(-\theta) \right) = \frac{1}{r^2} \cdot r \left(\cos(\theta) - i\sin(\theta) \right)$$

$$= \frac{1}{r^2} (x - iy) = \left(\frac{x}{x^2 + y^2} \right) - \left(\frac{y}{x^2 + y^2} \right) i$$

Hence, $u(x, y) = \frac{x}{x^2 + y^2}$ and $v(x, y) = \frac{-y}{x^2 + y^2}$.

(b) Show that f satisfies the Cauchy-Riemann equations everywhere except at $z = 0$. Hence f is analytic everywhere except at the origin.

Solution: First observe that

$$\partial_x u(x, y) = \frac{(x^2 + y^2) - x \cdot (2x)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$$

$$\partial_y u(x, y) = \frac{-x \cdot (2y)}{(x^2 + y^2)^2} = \frac{-2xy}{(x^2 + y^2)^2}.$$

$$\partial_x v(x, y) = \frac{y \cdot (2x)}{(x^2 + y^2)^2} = \frac{2xy}{(x^2 + y^2)^2}.$$

$$\partial_y v(x, y) = \frac{-(x^2 + y^2) + y \cdot (2y)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}.$$

It follows that $\partial_x u(x, y) = \partial_y v(x, y)$ and $\partial_y u(x, y) = -\partial_x v(x, y)$, as desired.

(c) Let $z = r\angle \theta$, and let $z_1 = r_1\angle \theta$ be another nearby point with the same angle, but with $r_1 < r$.

i. Express $z - z_1$ in polar coordinates.

Then express $z_1 - z$ in polar coordinates. [Hint: Drawing a picture may help.]

Solution: $z - z_1 = (r\angle \theta) - (r_1\angle \theta) = (r - r_1)\angle \theta$. Note that $(r - r_1) > 0$ because $r_1 < r$.

Thus, $(z_1 - z) = -(z - z_1) = -1 \cdot ((r - r_1)\angle \theta) = (r - r_1)\angle (\pi \pm \theta)$.

ii. Compute $f(z)$ and $f(z_1)$.

Solution: $f(z) = \frac{1}{r} \angle (-\theta)$ and $f(z_1) = \frac{1}{r_1} \angle (-\theta)$.
iii. Express \(f(z_1) - f(z) \) in polar coordinates

Solution:
\[
f(z_1) - f(z) = \left(\frac{1}{r_1} \angle(-\theta) \right) - \left(\frac{1}{r} \angle(-\theta) \right) = \left(\frac{1}{r_1} - \frac{1}{r} \right) \angle(-\theta) = \left(\frac{r - r_1}{r_1 \cdot r} \right) \angle(-\theta) \]
(because \(r_1 < r \), so \(\frac{1}{r_1} > \frac{1}{r} \)).

iv. Compute \(\frac{f(z_1) - f(z)}{z_1 - z} \).

Solution:
\[
\frac{f(z_1) - f(z)}{z_1 - z} = \left(\frac{r - r_1}{r_1 \cdot r} \right) \angle(-\theta) \frac{(r - r_1) \angle(\theta \pm \pi)}{(r - r_1) \angle(\theta \pm \pi)} = \left(\frac{1}{r_1 \cdot r} \right) \angle(-2\theta \mp \pi).
\]

v. Take the limit as \(z_1 \to z \) (ie. as \(r_1 \to r \)) of \(\frac{f(z_1) - f(z)}{z_1 - z} \).

Solution:
\[
\lim_{z_1 \to z} \frac{f(z_1) - f(z)}{z_1 - z} = \lim_{r_1 \to r} \left(\frac{1}{r_1 \cdot r} \right) \angle(-2\theta \mp \pi) = \frac{1}{r^2} \angle(-2\theta \mp \pi) = -\frac{1}{z^2}.
\]

vi. Use the answer to question (v) to deduce the value of \(f'(z) \). Explain carefully why your reasoning is justified.

Solution: In (a) we showed that \(f \) is analytic at \(z \). Thus, \(f'(z) \) exists, and will be equal to \(\lim_{z_1 \to z} \frac{f(z_1) - f(z)}{z_1 - z} \) if \(z_1 \) approaches \(z \) from any direction. Hence, \(f'(z) = \frac{1}{z^2} \).

(d) Recall that \(f' = \partial_z u + i\partial_z v \); use this to compute \(f'(z) \), thereby confirming your answer to question (c)vi.

Solution:
\[
f'(z) = \partial_z u + i\partial_z v = \left(\frac{y^2 - x^2}{(x^2 + y^2)^2} \right) + i \cdot \left(\frac{2xy}{(x^2 + y^2)^2} \right) = \frac{y^2 - x^2 + 2ixy}{(x^2 + y^2)^2} = \frac{- \left(x - iy \right)^2}{(x^2 + y^2)^2} = - \left(\frac{x - iy}{x^2 + y^2} \right)^2 = - \left(\frac{1}{z} \right)^2 = -\frac{1}{z^2}.
\]

2. Let \(f, g : \mathbb{C} \to \mathbb{C} \) be analytic functions. Let \(U \subset \mathbb{C} \) be an open subset, bounded by a simple closed curve \(\Gamma \subset \mathbb{C} \). Suppose \(f(z) = g(z) \) for all \(z \in \Gamma \). Use the Maximum Modulus Principle to prove that \(f(u) = g(u) \) for all \(u \in U \).

Solution: Let \(h(z) = f(z) - g(z) \). Then \(h \) is an analytic function, so the Maximum Modulus Principle says that \(|h(u)| \) takes its maximal value in \(U \) on the boundary curve \(\Gamma \).

However, for all \(z \in \Gamma \), we have \(f(z) = g(z) \); hence \(h(z) = f(z) - g(z) = 0 \). Hence \(|h(z)| = 0 \) for all \(z \in \Gamma \); since this is the maximum value of \(|h(z)| \) in \(U \), we conclude that \(|h(u)| = 0 \) for all \(u \in U \). This means that \(f(u) = g(u) \) for all \(u \in U \).
3. Suppose that \(p(z) \) and \(q(z) \) are polynomials, and that \(q \) has a simple root at \(c \in \mathbb{C} \) (ie. \(q(c) = 0 \), but \(q'(c) \neq 0 \)).

Thus, if \(f(z) = \frac{p(z)}{q(z)} \), then \(f(z) \) has a simple pole at \(c \). Show that

\[
\text{Residue}(f; c) = \frac{p(c)}{q'(c)}
\]

Solution: Let \(g(z) = f(z) \cdot (z - c) \). Then \(g \) is analytic near \(c \), and the residue of \(f(z) \) at \(c \) is just the value of \(g(c) \). But

\[
g(c) = \lim_{z \to c} g(z) = \lim_{z \to c} (z - c) \cdot \frac{p(z)}{q(z)} = \lim_{z \to c} \frac{p(z)}{\left(\frac{q(z)}{z - c}\right)}
\]

\[
= \frac{\lim_{z \to c} p(z)}{\lim_{z \to c} \left(\frac{q(z)}{z - c}\right)} = \frac{p(c)}{q'(c)}.
\]

4. Let \(f(z) = \frac{1}{z} \). Let \(\square \subset \mathbb{C} \) be the square loop around zero with vertices at \((1 + i), \ (1 - i), \ (-1 + i), \) and \((-1 - i) \), as shown in Figure 1(A).

(a) Does \(f \) have any poles inside the loop \(\square \)? If so, find the residue(s) of \(f \) at this/these pole(s).

Solution: Yes. \(f \) has a pole at zero.

Write \(f(z) = \frac{1}{q(z)} \), where \(q(z) = z \). Then Question 3 says that

\[
\text{Residue}(f; 0) = \frac{1}{q'(0)} = \frac{1}{1} = 1.
\]
(b) Use Cauchy’s Residue Formula to compute \(\oint_C f(z) \, dz \)

Solution: Cauchy’s Residue Formula says that
\[
\oint_C f(z) \, dz = 2\pi i \cdot \text{Residue}(f; 0) = 2\pi i.
\]

(c) Let \(\Box = \Box \cup \mathbf{I}, \) where \(\mathbf{I} \) is the right side of the box (ie. the line from \(-1 - i\) to \(1 + i\)) and “\(\Box \)” is the other three sides of the box. [Figure 1(B)].

Use parametric integration to evaluate the path integral \(\int_{\mathbf{I}} f(z) \, dz \).

Solution: Parametrize \(\mathbf{I} \) by \(\gamma: [-1, 1] \rightarrow \mathbb{C} \) defined \(\gamma(t) = 1 + it \). Then
\[
\int_{\mathbf{I}} f(z) \, dz = \int_{-1}^{1} f(\gamma(t)) \gamma'(t) \, dt = \int_{-1}^{1} \frac{i}{1 + it} \, dt = i \cdot \int_{-1}^{1} \frac{1 - it}{1 + t^2} \, dt
\]
\[
= i \cdot \int_{-1}^{1} \frac{1 - it}{1 + t^2} \, dt + \frac{1}{2} \log(1 + t^2)_{-1}^{1} = i \cdot \left(\frac{n}{4} - \frac{-n}{4} \right) + \frac{1}{2} \left(\log(2) - \log(2) \right) = \frac{\pi i}{2}.
\]

(d) Assume the path integral \(\int_{\Box} f(z) \, dz \) on each of the other three sides of \(\Box \) is equal to \(\int_{\mathbf{I}} f(z) \, dz \). Use this to compute the value of \(\oint_{\Box} f(z) \, dz \).

Solution:
\[
\oint_{\Box} f(z) \, dz = 4 \times \int_{\mathbf{I}} f(z) \, dz = 4 \times \frac{\pi i}{2} = 2\pi i.
\]

5. Let \(n \) be an even number. Let \(F_n(z) = \frac{1}{1 + z^n} \).

(a) Let \(\omega \) be any \(n \)th root of \((-1)\). Show that the poles of \(F_n \) are the elements of the set
\[
\mathcal{P} = \left\{ 1 \angle \left(\frac{k\pi}{n} \right) ; \ k \text{ any odd number} \right\}.
\]

Solution: Let \(z = r \angle \theta \). Then
\[
\begin{aligned}
\text{(z is a pole of } F_n) & \iff (1 + z^n = 0) \iff (z^n = -1) \iff (r^n \angle (n\theta) = 1\angle \pi) \\
& \iff (r = 1 \text{ and } n\theta = k\pi \text{ for some odd } k) \\
& \iff (r = 1 \text{ and } \theta = k\pi/n \text{ for some odd } k).
\end{aligned}
\]
(b) Let \(\zeta = e^{\pi i/n} \) [ie. \(\zeta = 1 \angle (\pi/n) \)]. Let \(Q \) be the set of all poles of \(F_n \) in the upper half plane. Show that

\[
Q = \left\{ \zeta^{2j+1} ; 0 \leq j \leq \frac{n}{2} - 1 \right\}.
\]

Solution: First note that \(P = \left\{ 1 \angle \left(\frac{k\pi}{n} \right) ; k \text{ odd} \right\} = \left\{ 1 \angle \left(\frac{(2j+1)\pi}{n} \right) ; j \in \mathbb{N} \right\} \).

Now let \(p \in P \), and suppose \(p = 1 \angle \left(\frac{(2j+1)\pi}{n} \right) \). Then

\[
(p \text{ is in the upper half plane } \iff \left(\frac{(2j+1)\pi}{n} < \pi \right) \iff \left(2j + 1 < n \right) \iff \left(j < \frac{n-1}{2} \right) \iff \left(j \leq \frac{n-2}{2} = \frac{n}{2} - 1 \right).
\]

(c) If \(p \in P \), show that \(\text{Residue} \left(F_n; p \right) = \frac{-p}{n} \) [Hint: Use question #3]

Solution: Write \(F_n(z) = \frac{1}{q(z)} \), where \(q(z) = 1 + z^n \). Then \(q'(z) = n \cdot z^{n-1} \), and question #3 says that

\[
\text{Residue} \left(F_n; p \right) = \frac{1}{q'(p)} = \frac{1}{n \cdot p^{n-1}}
\]

By hypothesis, \(p^n = (-1) \). Thus, \(p^{n-1} = -\frac{1}{p} \). Thus, \(\frac{1}{n \cdot p^{n-1}} = \frac{-p}{n} \).

(d) Show that \(\sum_{q \in Q} \text{Residue} \left(F_n; q \right) = \sum_{j=0}^{\frac{n}{2}-1} \frac{-\zeta^{2j+1}}{n} \)

Solution: \(\sum_{q \in Q} \text{Residue} \left(F_n; q \right) \stackrel{(5c)}{=} \sum_{q \in Q} \frac{-q}{n} \stackrel{(5b)}{=} \sum_{j=0}^{\frac{n}{2}-1} \frac{-\zeta^{2j+1}}{n} \)

Here, (5b) is by 5b, (5c) is by 5c.

(e) It can be shown that \(\sum_{q \in Q} \text{Residue} \left(F_n; q \right) = \frac{1}{in \sin(\frac{\pi}{n})} \). Let \(K_r = L_r + J_r \) be the curve in Figure 1(C) (assume \(r > 1 \)). Compute the path integral

\[
\oint_{K_r} F_n(z) \, dz.
\]

Solution: \(\oint_{K_r} F_n(z) \stackrel{(5d)}{=} 2\pi i \cdot \sum_{q \in Q} \text{Residue} \left(F_n; q \right) \stackrel{(5a)}{=} 2\pi i \cdot \left(\frac{1}{in \sin(\frac{\pi}{n})} \right) \)

Here \((*)\) is by Cauchy’s Residue Theorem, and (5d) is by by part 5d.
(f) Prove that \(\left| \int_{J_r} F_n(z) \right| < \frac{\pi r}{r^n - 1} \).

Solution: \[
\left| \int_{J_r} F_n(z) \right| \leq \text{length } [J_r] \cdot \max_{z \in J_r} |F_n(z)| = (\pi \cdot r) \cdot \max_{z \in J_r} \left| \frac{1}{1 + z^n} \right|.
\]

Here, \(\triangle \) is the Triangle Inequality.

(g) Now let \(r \to \infty \), and compute \(\int_{-\infty}^{\infty} \frac{1}{1 + x^n} \, dx \).

Solution: First note that part 5f implies that
\[
\lim_{r \to \infty} \left| \int_{J_r} F_n(z) \, dz \right| \leq \lim_{r \to \infty} \frac{\pi r}{r^n - 1} = 0. \tag{1}
\]

Also,
\[
- \frac{2\pi}{n \sin \left(\frac{\pi}{n} \right)} \overset{(\Diamond)}{=} \lim_{r \to \infty} \int_{K_r} F_n(z) \, dz = \lim_{r \to \infty} \int_{J_r} F_n(z) \, dz + \lim_{r \to \infty} \int_{L_r} F_n(z) \, dz
\]
\[
= \lim_{r \to \infty} \int_{J_r} F_n(z) \, dz + \lim_{r \to \infty} \int_{-r}^{r} \frac{1}{1 + x^n} \, dx.
\]
\[
\overset{(*)}{=} \lim_{r \to \infty} \int_{-r}^{r} \frac{1}{1 + x^n} \, dx = \int_{-\infty}^{\infty} \frac{1}{1 + x^n} \, dx.
\]

Here, \((\Diamond) \) is by 5e, and \((*) \) is by eqn.(1).

We conclude that \(\int_{-\infty}^{\infty} \frac{1}{1 + x^n} \, dx = \left\lfloor \frac{2\pi}{n \sin \left(\frac{\pi}{n} \right)} \right\rfloor \).

6. Figure 2 shows a ‘cross section’ of the complex plane \(\mathbb{C} \) and the Riemann sphere \(\hat{\mathbb{C}} \).

In this picture, \(z \) is a point in \(\mathbb{C} \), and \(L \) is a straight line connecting \(z \) to the north pole \(N \) of the sphere \(\hat{\mathbb{C}} \). The line \(L \) intersects the sphere \(\hat{\mathbb{C}} \) at the point \(\zeta \). If you drop a vertical line \(V \) straight down from \(\zeta \), then \(V \) intersects \(\hat{\mathbb{C}} \) again at \(\Omega \). If you draw a line from \(\hat{w} \) to \(N \), then this line intersects \(\mathbb{C} \) at \(w \).

(a) You may assume that \(\alpha \) is a right angle ie. \(\alpha = \frac{\pi}{2} \). Show that \(\gamma = \beta \).

Solution: Observe that the three angles of \(\triangle N0z \) are \(\pi/2 \), \(\theta \), and \(\beta \). Thus, \(\beta = \pi/2 - \theta \).

Observe that the three angles of \(\triangle NS\zeta \) are \(\alpha = \pi/2 \), \(\theta \), and \(\gamma \). Thus, \(\gamma = \pi/2 - \theta \).

Thus, \(\gamma = \beta \).

(b) Now show that \(\delta = \gamma \).

Solution: \(\triangle N0w \) is just the reflection of \(\triangle S0w \) across the horizontal line. Angle \(\delta \) is the image of \(\gamma \) under this reflection. Hence \(\delta = \gamma \).
(c) Conclude that the triangle \(\triangle N0w \) is similar to the triangle \(\triangle z0N \).

Solution: The two of the three angles of \(\triangle z0N \) are \(\pi/2 \) and \(\beta \). Thus, \(\theta = \frac{\pi}{2} - \beta \).

The two of the three angles of \(\triangle N0w \) are \(\frac{\pi}{2} \) and \(\delta = \gamma \). The third must therefore equal \(\frac{\pi}{2} - \beta = \theta \).

Thus, \(\triangle z0N \) and \(\triangle N0w \) have the same angles, so they must be similar triangles.

(d) Conclude that \(|w| = \frac{1}{|z|}|\).

Solution: Because \(\triangle N0w \) is similar to \(\triangle z0N \), we have

\[
\frac{|0w|}{|N0|} = \frac{|N0|}{|0z|}
\]

But \(|w| = |0w|\) and \(|z| = |0z|\), while \(|N0| = 1\) (because \(\hat{C} \) is a sphere of radius 1). Thus, we can rewrite this equation as: \(|w| = \frac{1}{|z|}\).

(e) Define \(f: \mathbb{C} \rightarrow \mathbb{C} \) by \(f(z) = 1/z \). Let \(\hat{f}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \) be the map which 'reflects' the Riemann sphere across the complex plane (eg. Figure 2, \(\hat{f}(\zeta) = \Omega \)).

For any \(z \in \mathbb{C} \), let \(\hat{z} \in \hat{\mathbb{C}} \) be its image under the stereographic projection (eg. in Figure 2, \(\hat{z} = ?? \) and \(\hat{w} = ?? \)).

Prove that \(\hat{f}(\hat{z}) = \hat{f}(\hat{w}) \).

Solution: In the picture, \(\zeta = \hat{z} \) and \(\Omega = \hat{w} \). In part 6d we established that \(|w| = \frac{1}{|z|}|\). Since \(\arg(w) = \arg(z) \) (they are both on the same line through the origin), it follows that \(w = 1/\bar{z} = f(z) \). Hence, we have: \(\hat{f}(\hat{z}) = \hat{w} = \Omega = \hat{f}(\zeta) = \hat{f}(\hat{z}) \).