Atlantic Electronic http://aejm.ca
Journal of Mathematics http://aejm.ca/rema
Volume 6, Number 1, Summer 2014 pp- 26-37

GENERATING SETS AND DECOMPOSITIONS FOR IDEMPOTENT
TREE LANGUAGES

MARK THOM AND SHELLY WISMATH

ABSTRACT. A tree language of a given type is any set of terms of that type. We
consider here a binary operation + on the set of all arity n terms of the type,
which produces a semigroup on the set. Using the characterization by Denecke,
Sarasit and Wismath of languages which are idempotent with respect to this binary
operation, we give a number of examples of idempotent languages, define generating
sets for idempotent languages, and show how any idempotent language may be
decomposed into a union of disjoint subsets. This decomposition allows us to assign
to every term in an idempotent language a natural number called its idempotency
level.
Keywords: Tree language, recognizable language, idempotent tree language, tree
language decomposition.
AMS Subject Classification: 08C99, 20M17.

Acknowledgment: Research supported by NSERC of Canada.

1. Introduction and Background. Universal or general algebra involves the study
of algebraic structures of different types. Such structures have in common a set of
objects, one or more operations on the objects, and some identities or axioms which
the objects in the set all satisfy. The type of such an algebraic structure is information
about how many operations there are on the objects and what arities those operations
have. For a finite type, this information is usually provided in a list: for example,
groups can be viewed as structures of type (2,1), meaning that they have one binary
operation and one unary operation.

Terms of a given type are formal expressions using the operation symbols of the
type and a fixed set of variable or alphabet symbols. For example, using a binary
operation f and two variables x; and xs, we can form terms such as x1, f(x2,x1),
f(xa, f(x1,21)), and so on. Terms themselves then become an object of study: the set
of all such terms (of a fixed type and variable set) forms an algebraic structure of the
same type, since we can always combine terms t; and 5 into a new compound term
f(t1,t2).

In this paper we are interested in sets of terms of a fixed type. Such sets of terms
are called term languages or also tree languages, since terms can be represented by
tree diagrams. There is a rich literature on term languages and their connection with
automata theory; see for instance [4], [5], [7] and [11]. This connection grew out of the
work of Eilenberg ([5]) in the 1970’s on languages recognizable by finite automata. The
languages in question were sets of “words”, more precisely terms of type (2) assuming
the law of associativity. The classic result here is Eilenberg’s Theorem ([4], [5]), that
certain collections of formal languages (of words) correspond in a precise way to cer-
tain collections of semigroups. The semigroup collections are pseudovarieties, which
are collections of finite algebras of a fixed type which are closed under the formation of

26

IDEMPOTENT TREE LANGUAGES 27

subalgebras, homomorphic images and finite direct products. The classes correspond-
ing to finite pseudovarieties of semigroups, under the Eilenberg correspondence, were
therefore called varieties of languages, by analogy. The languages determined by finite
deterministic automata are precisely the regular languages.

Tree languages are used to generalize this finite automata-semigroup connection to
arbitrary type: instead of words as type (2) semigroup terms, one can consider as
languages any sets of terms of any fixed type. The analogue of a finite automaton
is a tree automaton, which accepts or rejects terms and thus determines a language
of (accepted or recognized) terms. Generalizing the Eilenberg correspondence, Rutten
([8]) has shown that deterministic tree automata suffice to accept regular tree languages.

Our goal here is to study tree languages which are idempotent with respect to a
certain binary operation on sets of terms, defined using a superposition operation.
This operation makes the family of all tree languages of a fixed type into a semigroup,
and idempotent elements of a semigroup generally carry much information about the
structure of the semigroup. In this paper we characterize those languages which are
idempotent, define generating sets for such languages, and show how any such language
may be uniquely decomposed into disjoint subsets.

With this context in mind, we now introduce the formal terminology needed to
discuss sets of terms of a fixed arbitrary type. Let 7 = (n;) be any type of algebras,
with operation symbols (f;)i;er indexed by set I. For convenience we assume that no
constant (n; = 0) terms are allowed. A (term) language of type 7 is any set of terms
of that type. Our terms will be defined over finite sets X,, = {z1,...,z,} of variables,
for n > 1, and over the infinite variable set X = {z1,22,23,...}. Terms of type 7
are defined inductively: each variable symbol x1, ..., x, is a term of arity n, and if
t1,...,tn, are n-ary terms and f; is an n;-ary operation symbol, then f;(¢1,...,t,,)
is an n-ary term. Because of this, many definitions and proofs involving properties
of terms are done inductively, using induction on the depth of a term. Formally, the
depth of a term ¢ is the number depth(t), equal to 0 if ¢ is a variable, and equal to
1+ max{depth(t1),...,depth(ty,)}, for t = fi(t1,...,tn;). We denote by W;(X,,) the
set of all terms of type 7 on alphabet X,.

Although terms are purely formal expressions on a given type and variable set, they
can be combined much as functions of different arities on a fixed set can be combined.
For example, if functions o and 3 have arities 3 and 2 respectively, the classical substi-
tution of functions gives a 3-ary function S(«, «). The analogous operation on terms
is called superposition. It can be defined for any arities, but in this paper we need only
the special case where all terms involved have the same arity n, for a natural number
n > 1. This is the basis for the following definition.

Definition 1. For any natural number n > 1, the function
Sp ¢ W (X)) — W (X,),
is defined inductively by:
(i) Sn(zj,t1,...,ts) :=t; for any variable z; € X,,, and
(11) Sn(fi(sl, ey Sni),tl, ceey tn) = fi(Sn(Shth . ,tn>7 ey Sn<8ni,t1, e 7tn))
The next definition extends the superposition operation S, to apply to sets of terms.
Definition 2. Let n > 1 be a natural number. We define
St P(We (X)) = P(Wo(X,))
inductively as follows. Let B and B, ..., B, be in P(W,(X,,)).
(i) If B={x;} for 1 < j < n, then S’n({xj},Bl,...7Bn) = B;.

28 MARK THOM AND SHELLY WISMATH

(ii) If B = {fi(t1,...,tn,)} and the sets S,({t;},Bu,...,By) for 1 < j < n; have
been defined, then Sn({fi(tl, cestn)}, B1y ..., By)

= {fi(r1,...,mn,) | 75 € Su({t;}, Ba, ..., Bn), 1 < j <y}
(iii) If B is an arbitrary subset of W, (X)), then

Su(B,By,...,By) = | JSu({b}, By,..., By).
beB R
(iv) If one of the sets B, By, ..., B, is empty, then S, (B, By,...,B,) = 0.

Now we can define the binary operation +, on languages to be studied here, as it
was introduced by Denecke and Sarasit in [1] and [2].

Definition 3. For any languages B; and Bs on X,,, let
Bl +n B2 = Sn(Bla BQ7 e 7B2)-

This operation has been shown to be associative. This means that for any n > 1
we have a semigroup (P(W-(X,,)); +»). We are interested in languages L which are
idempotent with respect to this operation +,, that is, in languages which satisfy L+, L
=L

2. Idempotent Tree Languages. Idempotence with respect to +,, was characterized
in [3], using the concept of random replacement of variables over a language. We begin
by defining this concept.

Definition 4. Let L be a language of type 7. A term s is said to be obtained from a
term t by random replacement of variables over L if s can be formed from ¢ by replacing
every occurrence of a variable in ¢ by some term from L, randomly in the sense that
different occurrences of the same variable in ¢ can be replaced by different terms.

This is also referred to in the literature as OI-substitution (see [6]).

To formalize this concept of random replacement of variables over L, we define for
any term t a set RRVL({t}) of terms, inductively as follows:

(i) If t = x; is a variable, then RRVL({t}) = L;

(i) If t = fi(t1,...,tn,) where all the terms ¢y, ...,t,, are variables, then RRVy({t})
= {fi(sla e wsni) | S1,...,8n,; € L}a

(iii) If ¢t = fi(t1,...,tn,) for some terms ty,...,t,,, then

RRVL({t}> = {fi(sl, .. .,Sm) | S5 € RRVL<{tj}), for 1 <j< nl}

Then the set RRVy ({t}) consists exactly of those terms which may be formed from ¢
by replacing each occurrence of each variable in ¢, randomly in the sense that different
occurrences of the same variable may be replaced by different terms, by a term from L.
We denote by RRVL(L) the union of all sets of the form RRVL({t}) for ¢t € L. Then
we say that a set L is closed under random replacement of variables over L if RRVy (L)
C L.

These definitions can now be used to characterize idempotence of languages L. First,
it is easy to see that for any non-empty language L, we have L C L+, L iff LN X,
= (); that is, iff L contains at least one variable. For the inclusion L+, L C L we need
the next lemma.

Lemma 1. For any language L of terms of type 7, L+, L = RRVL(L).

Proof. Since both L 4, L and RRVy (L) are defined as unions, it will suffice to show
that RRVy({t}) = Sn({t}, L, ..., L) for any term ¢ of type 7. We do this by induction
on the complexity of the term ¢. If ¢ is a variable, then both sets RRVy({t}) and

IDEMPOTENT TREE LANGUAGES 29

S.({t},L,...,L) reduce to L itself. In the case that ¢ has the form t = fi(t,... t,,)

for some terms t1,...,t,, which are all variables, both sets reduce to {f;(ss, ..., Sn,) |

s; € L for 1 < j < n;}. Inductively, suppose that ¢t = fi(ti1,...,t,,) for some terms

t1,.. . tn,, and that RRVL({t;}) = Su({t;},L,..., L), for 1 < j < n;. Then we have
S,({t},L,...,L)

= {fi(s1,---,8n;) | 55 € Su({t;}, L,..., L) for 1<j<n;}

= {fi(Sl,. . .,Sni) | Sj S RRVL({t]}) for 1 S _] S nl}

= RRV.({t}). O

Corollary 1. Let L be any language of terms of type 7. Then L+, L C L iff RRV,(L)
C L; that is, iff L is closed under random replacement of variables over L.

This result then gives us the following theorem characterizing languages idempotent
with respect to the operation +,,.

Theorem 1. ([3]) Let L be a non-empty language of type 7 over X,,. Then L is
idempotent with respect to +,, iff L contains at least one variable and is closed under
random replacement of variables over L.

This characterization allows us to present some examples of idempotent languages.
Clearly both () and W, (X,,) are idempotent. Any finite set of variables is idempotent,
and such sets are the only finite idempotent languages. An obvious question to consider
is whether the intersection of idempotent sets is again idempotent. This will be true
as long as the sets contain a common variable; but in general it is possible for two
idempotent sets to have a non-empty intersection which does not contain any variables,
making the intersection non-idempotent.

Our next examples of idempotent languages make use of structural properties of
terms.

Example 2. The content of a term ¢ is the set of all variables which occur in ¢. For
any non-empty set A of variables from X, let Cont 4 be the language consisting of all
terms ¢t whose content is a subset of A. Then Cont 4 is idempotent, by Theorem 2.4.
The case A = X,, of course gives the language W.(X,,). Another special case occurs
for A = {z;} for some variable x;, in which case we get the language of all terms using
only the variable x;.

Example 3. For any term ¢, let I(¢) be the variable symbol that occurs on the leftmost
of t. For any fixed non-empty subset A of X,,, let Lefts be the language consisting
of all terms ¢ for which I(¢) is in A. Then Left, contains at least one variable, and
is clearly closed under the random replacement of variables over Lefta, so it is again
an idempotent language. A dual example can be made, using r(¢) as the rightmost
variable symbol in t.

Example 4. For any natural number k > 1, let Dy, be the set of all terms of type 7
which have depth at least k. We define Depthy to be the language X,, U Dy. Again
this gives an idempotent language, by Theorem 2.4. The same is true for A U Dy, for
any non-empty subset A of X,,.

3. Generating Sets for Idempotent Languages. In order to define a generating
set for a language, we first consider what it means for a set to generate a language,
and what an idempotent language generated by a given set B of terms would be.
For any such B C W.(X,,), the usual method to construct the smallest idempotent
language containing B is to form the intersection of all the idempotent languages

30 MARK THOM AND SHELLY WISMATH

containing B. There is at least one such idempotent language, namely W, (X,,) itself.
However, in general the intersection of idempotent languages containing B need not
be an idempotent language, since it need not contain any variables. We shall discuss
briefly below what happens in the case that B contains no variables, but for the most
part we consider in this section only sets B of terms which contain at least one variable.

Definition 5. Let B C W,(X,,) be a set of terms containing at least one variable
term. We define (B);4 to be the intersection of all idempotent languages on X,, which
contain B. Clearly (B);q is the smallest idempotent language to contain B, and we
shall call it the idempotent language generated by set B. We shall also say that a
subset B of an idempotent language L generates L if B contains at least one variable
and 7d = L.

By Theorem 2.4, we could also define (B);q as the intersection of all languages
containing B which are closed under random replacement of variables over themselves.
Moreover, (B);q is closed under random replacement of variables over itself.

Another useful observation is that if B contains at least one variable, then there
is an idempotent language M containing B with exactly the same set of variables as
B; an example is the language M consisting of all terms of W, (X,,) except for those
variables from X,, which are not in B. This means that (B);q will contain exactly
the same variables as B. This allows us to clarify what happens if our base set B
does not contain any variables. In this situation, for any non-empty set A of variables
from X,,, the set (BU A);4 is an idempotent language containing B and having exactly
the variables from set A. Thus we cannot find a unique smallest idempotent language
containing B, when B N X, is empty, but rather one such language for each choice of
a variable to use in the idempotent language.

There is another natural way to produce the smallest idempotent language generated
by a set B containing at least one variable. That is to add to B any terms in L 4, L,
and then terms formed from those by random replacement of variables, and so on. The
next definition formalizes this idea.

Definition 6. Let B be a set of terms containing at least one variable. We set B? =
BnX, B'=B andﬁBQ = B! 4,, B'. Then inductively we set B! = B! 4+ B,
for m > 2. Finally, let B be the union of the sets B™ for m > 0.

It was shown in [1] that the operation +, is an associative one, so we can think of
B3 = B'+,, B2 = B2+, B', and so on for B™. It follows that for any natural numbers
a and b, we have B¢ +,, B® = Bot?,

Theorem 5. Let B be a subset of W.(X,,) containing at least one variable term. Then
(B);a = B.

Proof. By definition any language idempotent with respect to +, which contains B
must also contain all of B. Therefore we have B C (B);q. For the opposite inclusion,
we shall show that B is an idempotent language, clearly containing B, and so must
contain (B);4. To show that B is idempotent, we note that since it contains a variable
term we have B C B +,, B, and must now show that B +,, B C B.

We let ¢t be any term in B +,, B. By Lemma 2.2, this means that ¢ is in RRV5(B).
That is, ¢ can be obtained from some term p in B by random replacement of the
variables in p by terms from B. This means that there is a finite list (z;,, 2, ..., %,)
of all the variables in p, including all multiplicities, for some k& > 1. There is also a
corresponding list (¢;,,¢;,,- . .,;,) of terms from B such that term ¢, is used to replace
variable occurrence x; when ¢ is formed from p, for 1 <r < k.

IDEMPOTENT TREE LANGUAGES 31

Each of the terms p, t;,,...,%; isin B. By construction of B therefore, there exist
natural number indices m and m;,, ..., m;, such that p € B™ and t¢;, € B™ for each
1 <r < k. Now we take M to be the maximum of the finite set {m,m;,,...,m;,}.
Since B contains at least one variable we have B* C B® for any natural numbers a < b,
and hence the sets B™, B™1, ..., B™i are all subsets of BM. That is, all of the
terms p,t;,,...,t;, arein BM . Our term t then can be formed from term p, which is in
BM by random replacement of variables over BM. This shows that t € RRVu (BM),
which by Lemma 2.2 equals BM +,, BM. Therefore ¢ is in B> and so is in B. O

We now give some examples of generating sets, for the idempotent languages de-
scribed in Section 2. In several cases we shall illustrate our examples using n = 2 and
binary languages of type (2), where we have two variables z and y and one binary
operation symbol, which we shall denote simply by juxtaposition.

Example 6. Let W = W, (X,,) be the language of all n-ary terms of type 7. This
language can be generated by the set B which contains all the variables in X,,, along
with for every ¢ € I one term of the form f;(z,,...,z;,), where z;,,...,x;, are
variables. For example, in type (2), we can use any of the following sets to generate
W:

By ={x1,x2,m122}; Bz = {x1,22,0211}; Bs = {1, 22, x1201}; By = {x1, 22,2222}

Notice here that given the two variable terms 21 and x2, we can generate any three
of the four terms x1x2, Tox1, 121 Or T2x2 from the fourth, using random replacement
of variables.

This example motivates an observation regarding the depth of terms obtainable by
random replacement of variables. Each of the four depth one terms in the example is
obtainable from any of the others by a random replacement in which only variables
are substituted, rather than more complex terms. We shall say that term s is obtained
from term ¢ by a simple random replacement of variables over a set L if s is obtained
from t by replacing (randomly) every variable in ¢ by a variable in L. In this case, the
depth of term ¢ is equal to the depth of the term s obtained from it.

Example 7. Consider the language L = Cont 4 from Example 2.5. To illustrate, we
use type (2), with n = 2, and A = {z}. In this case our language consists of all binary
terms which contain only the variable symbol x. It is clear that any generating set for
this language must contain at least the terms x and xx, and that these are the only
depth 0 or 1 terms in L. We take B = {x,zz}. There are three terms in L of depth 2,
the terms z(xx), (xzz)r and (xz)(zx), and these can be obtained from B by random
replacement of variables over B, so are in B 4, B. Thus far we see that for m =0, 1,2
we have that any term ¢ in L has depth(t) = m iff t € L™\ L™~ 1. This can be extended
by a straightforward induction to all natural numbers m > 0. This shows that B is a
basis for L, and that the sets B™ correspond to the terms in L at depth of m or lower.

Example 8. Next we consider the language Le ft 4 from Example 2.6, again with type
(2) and n = 2, and A = {z} only. That is, our language consists of all binary type
(2) terms in which the leftmost variable symbol is 2. We claim that any generating
set B for this language must be infinite. To prove this we shall show that any term
which is in (B);q but not in B must contain at least two occurrences of the variable
x. But there are terms in Left 4, of arbitrarily high depth, which contain exactly one
occurrence of z: for example, terms of the form z(y(y(... (yy)...))). This means that
no finite generating set is possible.

32 MARK THOM AND SHELLY WISMATH

Since by Theorem 3.3 (B)iq = |,,,~, B™, it will suffice to prove by induction on m
that any term ¢ in B™\ B, for m > 2, must have at least two occurrences of the variable
z in it. For m = 2, any term in B2 = B +,, B can be obtained by random replacement
of variables over B from some term p in B. If p is a variable, the result is a term in B.
If p is not a variable, then the result of the random replacement on p involves at least
one instance of a juxtaposition of terms from B, all of which start with = on their left,
and so the result of the random replacement has at least two occurrences of z. Now
inductively let t € B™t! = B! 4+ B™. Again we can obtain ¢ by random replacement
of variables from a term p € B, where the terms used to replace variables in p come
from B™. If p is a variable term, then the result of the replacement is in B™, and by
induction if it is not in B it contains at least two occurrences of . And if p is not
a variable, then it involves at least one binary juxtaposition operation on terms from
B™, and so has at least two occurrences of z.

Example 9. For the language L = Depthy, from Example 2.7, again in type (2) and
with k& = 2, we shall show that a finite generating set exists. We let B be the set of all
terms of depth 2 or 3 with content x only, along with the two variables x and y.

First, we observe that any term s in the language L can be generated, by a simple
random replacement over {x,y}, from a term ¢ of the same depth as s but using only
the variable x; the term t is simply the term s with every variable replaced by x. Thus
it is enough to consider in our generating set B only terms of depth two or three which
have content z.

Moreover, to prove that B does generate L it suffices to verify that we can produce
any content = term t of depth four or more, from the set B. We do this by induction
on the depth of t. Since t has depth at least four, there exists one or more instances
in ¢ of a variable x occurring at the end of a path in ¢ of length at least four. Any
such occurrence is a leaf-node on a depth two subterm w;, again using only z, and
such terms w; are in our set B. Now let ¢ be the term obtained by removing all such
subterms w; from ¢, and replacing each one with a variable z. By construction, ¢ can
be obtained by random replacement of variables from #, with each newly occurring
being replaced by the appropriate w;. When t has depth four, the term ¢ has depth two,
and so t is obtainable from B by random replacement of variables over B. Inductively,
if t has depth k > 5, the term ¢ has depth at least three, and is obtainable from B, so
that ¢ is also obtainable from B.

4. Decomposition of Idempotent Languages. Let L be an idempotent language,
and let B be a generating set for L, containing at least one variable. In Theorem 3.3 we
proved that L can be expressed as B = U,so B™. This gives us a way to decompose
the idempotent language generated by B into disjoint sets: we can take CY = B? =
BN X,, and then C™ = B™ — B™ ! for m > 1. Since the sets B™ are nested, the
sets C™ give us disjoint sets whose union is all of L. We call this union L = |J,,~, C™
an idempotent decomposition of language L. Moreover, this allows us to assign to
each term in L an idempotent level: t has idempotent level m if t € C™. We shall
use the notation idvalg for the function from L to Ny which assigns to each term its
idempotent level in the decomposition determined by the generating set B.

There are many ways to decompose a language into such nested sets, the most
obvious one here being by the depth of the terms. We shall show in some examples
that the idempotent decomposition sometimes coincides with the depth decomposition,
but does not always do so. First, we note from Example 3.4 that our decomposition of
an idempotent language is not unique. In type (2), the language W of all binary terms

IDEMPOTENT TREE LANGUAGES 33

on the two variables 1 and x5 has four different generating sets of size three, depending
on which of the four depth 1 terms we put in the generating set B. In fact the depth
1 term selected for B will have idempotent level 1, while the other three terms, which
can be obtained in B +,, B, will have level 2. In this case it is thus a matter of choice
which of the four depth one terms is given idempotent level 1, while the other three
are given level 2. But these terms are in some sense equal in complexity, since each
one is obtainable from any of the others by a simple random replacement, using only
variables as replacement. To avoid such simple random replacements having different
levels, we define the following procedure for decomposing an idempotent language L
into disjoint subsets.

Definition 7. Let L be a non-empty language which is idempotent under the operation
+,. Let
GV = {teL|t=_S8.(s1,t1,....,tn), 51 €L\ Xy, t; € Lfor1<i<n,
3 j such that t; € L\ X,,, x; € var(s1)}.
We let L© = X, N L, and LY = L\ GV, Inductively, let L™ = L) 4, Lm=1)
for m > 2. To decompose L into disjoint sets, we form L(®* = X, N L and L(™* =
L\ LD for m > 1.

Lemma 2. Let L be an idempotent language. Then any terms in Q(Ll) have depth at
least 2; and as a consequence, any term in L of depth 0 or 1 must be in LY.

Proof. Let t € gg”. Then t = S,(s,t1,...,t,) for some terms s,tq,...,t, with the
following properties. First, s is not a variable, and there is at least one variable z;
occurring in s for which the corresponding term t; is not a variable either. This
means that both s and ¢; have depth at least one, and hence the composition ¢ =
Sn(8,t1,...,t,) must have depth at least two. O

Proposition 1. Suppose L C W (X,,) is idempotent under +,,. Then

L= D Lm
m=0

Proof. L is idempotent, and every element of L("™)*

L using +,,. Therefore, we immediately have

is obtained by combining terms of

o0
U L= C L.
m=0

Conversely, we must show that any term ¢ in L is in some L(™* which we do by

induction on the depth of ¢t. By the previous lemma, any terms of depth 0 or 1 in L
must be in L), Now let ¢ be a term from L of depth k. If t & Q(LI), then t is by

definition in L(M). So we suppose that t € Q(Ll), and we can write t = S, (s1,¢1,...,tn)
for some non-variable term s; and some terms tq,...,t,, all in L, with the additional

property that there is a variable x; occurring in s; for which the term ¢; is not a
variable.

Now each of the terms s1, t1,...,%, isin L and has depth < k. Therefore by induction
there are indices mg, and my, such that s; € L(m=1) and ¢, € L) for 1 < r < n.
By taking M to be sufficiently large, for example the sum of all these indices, we can
make t an element of L), O

34 MARK THOM AND SHELLY WISMATH

Corollary 2. Let L C W, (X,,) be a non-empty idempotent language. Then there exists
a sequence I(L) = (L™ | m € Ny) of languages whose union is equal to L, with the
properties that L™ +,, L*) = L+8) for every m,k > 1 and L™ C L) for every
k> m > 0. There exists a valuation function v : L — Ny defined on terms t in L by
v(t) = m if and only if t € LI™*.

At this point we introduce some new terminology.

Definition 8. Given any idempotent language L C W,(X,,), we refer to L(}) as the
core of L, and |, _, L(™)* as the core entanglement of L. We refer to the mapping
idval; i) from Corollary 4.4 as the idempotency valuation induced by L, and for ease
of notation shall denote it simply as idvaly,.

We observe that terms which can be formed from each other by simple random
replacement of variables are given the same idempotency level here. If L is a language
closed under random replacement of variables, we can consider L(!) as the minimal
language contained within L that generates L as its core entanglement. Then L is
closed under random replacement if and only if L is equal to its core entanglement,
and idempotent if and only if it is closed under random replacement and L(®) = (.

Example 10. Let W = W,.(X,,) be the language of all terms of type 7 = (2). It
follows from Lemma 4.2 that all depth 0 and depth 1 terms must be in the core of
the language W, and it is clear that all terms of higher depth can be obtained from
such terms by means of +,. Thus the set of depth 0 and 1 terms forms the core of
W. Moreover, it can be shown by straightforward induction that in this example, the
idempotency valuation function idvaly, coincides with the depth function on W, (X,,).

Example 11. Consider the language L = Cont 4 from Examples 2.5 and 3.5. We have
a core B = L(M) for L containing two terms, one in BY at depth 0 and one in B! at
depth 1. We see from the argument in Example 3.5 that in this case the idempotent
valuation function coincides with the depth function on the set of all terms.

Example 12. The idempotent languages of Examples 3.6 and 3.7 show situations in
which the idempotent valuation mapping does not agree with the depth mapping on
the set of all terms.

5. Extensions of Idempotency-Valuation Maps. We have seen in the previous
section that for any idempotent term language L, we have associated with the core and
core entanglement of L a mapping idvaly, from L to Ng. We now consider whether it
is possible to extend this mapping to a mapping on all of W..(X,,), in a consistent way.

Definition 9. Let L be an idempotent language with idempotency valuation idvaly .
We shall say that this valuation is extendable to W.(X,,) if there exists a set B con-
taining L1 such that

W, (X,) = U B™ and B™NL =1L for every m € Np.
m=0

Given the definition of the idempotency valuation mappings, the second condition
in this definition is equivalent to the requirement that for all terms ¢ in the language
L, we must have idvalg(t) = idvalr(t). That is, the idempotent valuation determined
by B must agree with that for L on the set L.

The first condition of this definition means that the set B must generate the full
language W, (X,,). This is equivalent to the condition that all terms of depth 0 or 1

IDEMPOTENT TREE LANGUAGES 35

must be in B. If we take B to be precisely this set, then the decomposition of W =
W, (X,,) into the sets W) corresponds to the depth valuation on W, as in Example
4.6. In this case then, an idempotency valuation idval; on a language L can only be
extended to W, (X,) if v agrees with the depth function on L.

Example 13. The valuation on the language Cont 4 from Example 4.7 is extendable
to W-(X,,), in the case A = {z}, n =2 and 7 = (2).

Example 14. Let L be any language containing some but not all of the variables from
X, along with all non-variable terms of type 7. Then the valuation idval; respects
the depth function, and so can be extended to the depth valuation on W, (X,,).

It is also possible to take the set B to be larger than the set of all terms of depth 0
or 1. In particular, some of the languages L in the examples of the previous section had
some terms of depth > 2 in LM, In order to satisfy the second condition of Definition
5.1, we need to have L(1) contained in B. This condition also means that no other
terms from L are contained in B; but it is possible that some other terms not in L
could be contained in B.

We can summarize this by saying that if the valuation of the language L is going to
be extendable to W, (X,,), then the generating set B to be used must contain at least
all of the terms of type 7 of depth 0 or 1, along with all terms from L(}).

6. Varieties of Recognizable Languages. An interesting class of languages is that
of the recognizable languages; see for example [7], [9], [10], and [11]. By a straightfor-
ward extension of the finite automaton case, a term or tree language is recognizable
if it is the set of terms accepted by some tree automaton. The family Rec(r, X,,) of
all recognizable languages of type 7 on alphabet X, forms a Boolean algebra. That
is, the empty set and W, (X,,) itself are both recognizable, every finite tree language is
recognizable, and the union, intersection and set difference of any two recognizable lan-
guages is recognizable. Moreover, Rec(r, X,,) has two other important properties. The
first is closure under inverse homomorphisms, in the following sense: if L C W.(X,,)
is recognizable, and ¢ : Fr(X,,) — F,(X,) is a homomorphism, then ¢~!(L) is also
a recognizable language on X,,. The second property is closure under inverse transla-
tion. Let L C W,(X,,) and let p be any unary polynomial operation symbol of type 7
on X,,. The inverse translation or cancellation of L under p is defined by

pN(L):={t|teW,(X,) and p(t) € L}.

A class of languages is closed under inverse translation if for every language L in the
class and every unary polynomial symbol p, we have p~!(L) also in the class.
These three properties are used to define a variety of tree languages.

Definition 10. A wvariety of tree languages of type 7 is a sequence VL := (VL,),en+
such that

(i) each VL, forms a Boolean subalgebra of Rec(T, X,,);

(ii) each V'L, is closed under inverse translation;

(iii) V'L is closed under inverse homomorphisms.

Example 15. For each n > 1, let VL, = {0,W,.(X,,)}, and let VL = (VL,)p>1.
Each of the sets in V' L,, is recognizable, and it can easily be shown that this is a variety
of tree languages. Moreover, it is the smallest of all such varieties, in the sense that it
must be contained in every variety. For if VL is a variety of tree languages, and for
each n > 1 there is a language L in VL, then L — L = () must be in V L,, and so also
its complement W..(X,,) must be in VL,,.

36 MARK THOM AND SHELLY WISMATH

It can be shown that the intersection of varieties of tree languages is also a variety.
Steinby showed (see [10] and [11]) that there is a one-to-one correspondence between
varieties of tree languages of type 7 and pseudovarieties of finite algebras of type 7.
A variation on the definition of a variety of languages is that of a positive variety
([11]). A sequence of sets of recognizable languages is called a positive variety of tree
languages, if all the necessary properties of a variety hold except possibly complemen-
tation. Salehi ([9]) has shown that positive varieties of tree languages correspond to
ordered pseudovarieties of finite ordered algebras.

Imitating the proof from [1] that the sum L 4, M is recognizable when L and M
are recognizable languages, it can be shown that g(Ll) is a recognizable language if L

is recognizable. Thus, the set difference L \ Q(Ll) is also recognizable. It follows that if
L is a recognizable idempotent language, then each element L™ of its decomposition
sequence is also recognizable.

The languages from Example 5.3 give us an example of a positive variety of lan-
guages. For each n > 1, let V L, be the class of all languages of the form AU D, where
D; is the set of all terms from W, (X,,) of depth one or more, and A is any subset of
the set X,, of variables. The languages in V' L,, all have finite complement, and since
any finite set is recognizable, the languages are also recognizable. We note that as long
as A is a non-empty set of variables, the language A U D; is idempotent, by Theorem
2.4. In the case that A is the empty set, the language A U D; is not idempotent; but
this language must be included in V' L,, in order to give us closure under intersection.

Proposition 2. For each n > 1, let VL, consist of the languages on W.(X,,) of the
form AU Dy, where A is any subset of X, and D1 is the set of all terms of type
7 of depth one or higher. Then the family VL = (VLN)p>1 is a positive variety of
languages, with the property that for all n > 1, all but one of the languages in V L, is
idempotent.

Proof. We have shown that the languages in V L,, are recognizable, and are all idem-
potent except for Dy. It is clear that V' L,, is closed under union and intersection, since
the union of two sets A1 U D1 and Ay U Dy is (A1 U As) U Dy while their intersection
is (A1 N Ag) U Dl.

For each n > 1, the set W,(X,,) forms the universe of the free algebra F.(X,).
Closure under inverse homomorphisms requires that if ¢ : F(X,,,) — F-(X,,) is any
homomorphism of free algebras, then for any L = AU Dy in V L,,, the language ¢~ 1(L)
must be in V L,,. We also need each V L,, to have closure under inverse translation or
cancellation. Let L C W, (X,,) and let p be any unary polynomial operation of type 7
on X,,. The inverse translation or cancellation of L under p is defined by

p (L) :={t|teW,(X,) and p(t) € L}.

It follows easily from the definition of the languages in V' L,, that both of these closure
properties hold. O

REFERENCES

[1] K. Denecke and N. Sarasit, Semigroups of Tree Languages, Asian-Furopean J. Mathematics
1,4 (2008) 489-507.

[2] K. Denecke and N. Sarasit, Products of Tree Languages, preprint, 2009.

[3] K. Denecke, N. Sarasit and S. L. Wismath, Idempotent Tree Lanuages, to appear in Demonstratio
Mathematicae.

[4] S. Eilenberger, Automata, Languages, and Machines, Volume A Academic Press, New York,
1974.

(5]

(9]
[10]

11]

IDEMPOTENT TREE LANGUAGES 37

S. Eilenberg, Automata, Languages, and Machines, Vol. B., Pure and Applied Mathematics, Vol.
59, Academic Press, New York & London, 1976.

Joost Engelfriet and Erik Meineche Schmidt, IO and OI, I. J. Comput. Syst. Sci. Vol 15(3) 328
- 353.

F. Gécseg and M. Steinby, Tree Languages, Handbook of Formal Languages, Vol. 3, Springer,
Berlin, 1997, 1-68.

J. Rutten, Universal Co-algebra: A Theory of Systems, Theoretical Computer Science 249
(2000) no. 1, 3 - 80.

S. Salehi, Varieties of Tree Languages, TUCS Dissertations, NO. 64, July 2005.

M. Steinby, Syntactic algebras and varieties of recognizable sets, in: M. Bidoit and M.
Dauchet,(eds.), (eds.) Proc. CAAP’79, (University of Lille 1979), 226-240.

M. Steinby, A theory of tree language varieties, in: Nivat, M. & Podolski, A. (eds.) Tree Automata
and Languages Elsevier, Amsterdam (1992).

Authors’ Addresses:

Mark Thom, Dept. of Mathematics, University of British Columbia, B.C., Canada;
email markth@math.ubc.ca
Shelly Wismath, Dept. of Mathematics and Computer Science, University of Leth-

bri

dge, Lethbridge AB Canada; email: wismaths@uleth.ca

