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Abstract. This paper studies the existence and characterization of optimal

solutions to the principal-agent problem with adverse selection for both discrete
and continuous problems. The existence results are derived by the abstract

concepts of differentiability and convexity. It is known that under the Spence

Mirrlees condition, the principal-agent problem can be reduced to a simpler
problem which can be solved explicitly. But not much results on the solution

are known when the Spence Mirrlees condition does not hold. For the prob-

lem without the Spence Mirrlees condition, we give some sufficient conditions
to verify the linear independence and the Mangasarian Fromovitz constraint

qualification.

1. Introduction. The principal-agent problem is a problem which frequently oc-
curs in economics (contract theory) and also political science [2, 7, 11]. It arises
when a principal (e.g., firm, organization, employer, seller) assigns a task to an agent
(e.g., worker, employee, buyer) through a contract. And the goal of the principal
is to assign the contract in a way that maximizes his profit while compensating the
agent for performing the task required from him. This problem has been discussed
extensively in many mathematics and economics literature, e.g., [6, 12]. There
are two types of principal-agent problems based on information asymmetry, that
is, when one party of the contract has more or better information than the other.
These are the moral-hazard or hidden action (i.e., the case where the agent can take
an action unobservable to the principal), and the adverse selection or hidden knowl-
edge (i.e., the case where some relevant information of the agent is unobservable to
the principal).

In this paper, we focus on the principal-agent problem with adverse selection. It
is based on an economic contract that relates a principal and an agent such that
some relevant characteristics (defined here by θ) of the agent is unobservable by
the principal [6]. Here, without loss of generality, we assume that the principal
is the owner of a restaurant and his customers are the agents. The asymmetric
information is the customer’s taste which is not known to the owner. In this case,
the only available information to the owner of the restaurant are the proportions of
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customers with specific taste-type. In our model, θ represents the taste of customers
which belongs to some bounded domain Θ ⊂ Rp. The customer with taste θ goes to
the restaurant and orders a food with quality q ∈ Rm+ and pays a monetary transfer
t ∈ R+ for the price of the food. Let h(θ, q) denote the satisfaction of the customer
of type θ buying the food with quality q. Then the welfare or utility of this agent
(defined here by “a”) is

Ua(θ) = h(θ, q(θ))− t(θ).
Roughly speaking, Ua(θ) quantifies how much a customer with taste θ enjoys the
food with quality q, knowing that he spends the amount t for it. If C(q) represents
the cost of producing the food with quality q, then the utility of the principal
(defined here by “p”) is

Up(θ) = t(θ)− C(q(θ)).

Here Up(θ) can be viewed as the profit that the owner of the restaurant makes in
selling the food with quality q to the customer with taste θ. Since the goal of the
owner is to make more profit, then he tries to anticipate the customers’ choices
so that each customer reveals his taste by choosing the food that is targeted for
him. Therefore, the principal’s utility Up(θ) is subject to some constraints, called
incentive compatible constraints, meaning that the customers are given incentive to
reveal their real tastes. Mathematically, the incentive compatible constraints can
be represented as

h(θ, q(θ))− t(θ) ≥ h(θ, q(θ′))− t(θ′) ∀θ, θ′ ∈ Θ.

So, the principal-agent problem can be formulated as follows:

(PA) max
q(θ),t(θ)

∫
Θ

(t(θ)− C(q(θ)))f(θ)dθ (1)

s.t. h(θ, q(θ))− t(θ) ≥ 0, ∀θ ∈ Θ (IR)

h(θ, q(θ))− t(θ) ≥ h(θ, q(θ′))− t(θ′), ∀θ, θ′ ∈ Θ (IC)

where f(θ) ∈ L∞(Θ) is the probability density function representing the distribution
of customers’ tastes. The first set of constraints represents individual rationality
constraint (IR for short) meaning that customers go to the restaurant only if they
receive at least zero level of utility, otherwise the customers will choose to go to
another restaurant. The second set of constraints is the incentive compatibility
constraints (IC for short) described above.

In the discrete case, when there are n customers, by using the argument discussed
earlier, the problem can be formulated as:

(PA)d max
qi,ti

n∑
i=1

(ti − C(qi))fi (2)

s.t. h(θi, qi)− ti ≥ 0, ∀i = 1, . . . , n (IR)

h(θi, qi)− ti ≥ h(θi, qj)− tj ∀i, j = 1, . . . , n (IC).

Existence of solutions to problems (1) and (2), as well as characterization of
solutions have been one of the main issues discussed in the past thirty years by
many economists and mathematicians [4, 12]. The concept of adverse selection in
contract theory was first introduced and analyzed by Mussa and Rosen [9] in a
model of nonlinear monopoly pricing. Maskin and Riley [8] addressed this problem
from a different perspective, by using a graphical method. Carlier [4] studied the
general existence of solutions to the principal-agent problem when the principal is
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an employer and the agent is his employee. For the characterization of the solution
to this problem, it is customary to require that the utility of the agent satisfies some
technical condition, namely the Spence Mirrlees condition [2, 10]. This condition
means that the marginal rate of substitution between quality and money is either
increasing or decreasing with respect to the customer’s taste. In fact the Spence
Mirrlees condition allows the principal-agent problem to be reduced to a simpler
problem which can be solved explicitly [2].

Although there are many utility functions that do not satisfy the Spence Mirrlees
condition, very little is known about the solution to the principal-agent problem in
these cases. One notable exception is the paper by Araujo and Moreira [1] where
a special class of continuum of type problem is solved explicitly under a relaxed
condition called U-shaped condition.

One of the goals of this paper is to study the principal-agent problem in the
discrete case without imposing the Spence Mirrlees condition. More precisely, this
paper has two main objectives. The primal one is to obtain existence results to
problems (1) and (2) by adapting the proof used by Carlier [4] for the model of
employers and employees. The second one is to study the problem (2) without
imposing the Spence Mirrlees condition.

The paper is organized as follows. In section 2, we introduce some sufficient con-
ditions that guarantee the existence of the solution to the principal-agent problem
in continuum of type problem. This is followed by the discrete problem in section
3. In section 4, we study the discrete problem when the Spence Mirrlees condition
does not hold.

2. Existence of Solutions. In this section, we study existence of solutions to the
principal-agent problem (1). We will adapt the proof of Carlier [4] to our model of a
monopolist and his customers. Hereafter, we assume that the taste, θ, of a customer
belongs to some open and bounded convex subset Θ of Rp with a C1 boundary. We
denote by Θ̄ the closure of Θ, and by h(θ, q) : Θ̄ × Rm+ → R, the satisfaction of
the customer of type θ ordering the food with quality q. The customer’s utility is
then given by Ua(θ, q, t) = h(θ, q)− t, and that of the owner is Up(t, q) = t− C(q),
where t ∈ R+ denotes the price of the food with quality q, and C(q) is the cost of
producing this food. We assume that ‖f‖L∞(Θ) > 0.

In [4], Carlier presented a general existence result to the principal-agent prob-
lem in the context of employers and employees. Here, we propose to adapt the
hypotheses in his proof to our model which deals with a monopolist (i.e, the owner
of a restaurant) and his consumers (i.e., the customers). Because of the similarities
between these two models, most of the propositions in [4] will be applicable here.
Before stating the main theorem, we first introduce some definitions and proposi-
tions which will be useful in the proof of the existence theorem. For their proofs,
we refer to [4]. Below, we will rewrite the principal’s problem as an optimal control
problem.

2.1. The principal’s problem as an optimal control problem. Here and be-
low, we assume that (q, t) is a contract, meaning that it is a pair of functions
(q, t) : Θ→ Rm+ × R+.

Definition 1. (Implementability)
A function q : Θ→ Rm+ is called implementable if there exists a function t : Θ→ R+
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such that the pair (q, t) is an incentive compatible contract (IC), i.e.,

h(θ, q(θ))− t(θ) ≥ h(θ, q(θ′))− t(θ′), ∀(θ, θ′) ∈ Θ2.

Definition 2. The potential associated with a contract (q, t) is the function Uq,t :
Θ→ R defined by

Uq,t(θ) = h(θ, q(θ))− t(θ).

Definition 3. (h-convexity)
A function V : Θ → R ∪ {+∞} is h-convex if there exists a nonempty subset A of
Rm+ × R+ such that

V (θ) = sup
(q,t)∈A

{h(θ, q)− t}.

The notion of h-convexity is a generalization of the concept of convexity. To
illustrate, suppose A is a convex set and h(θ, q) = θq. Then, the above definition
gives us the classic definition of convexity as follows:

V (λθ1 + (1− λ)θ2) = sup
(q,t)∈A

{h(λθ1 + (1− λ)θ2, q)− t}

= sup
(q,t)∈A

{λθ1q + (1− λ)θ2q − λt− (1− λ)t}

= sup
(q,t)∈A

{λ(θ1q − t) + (1− λ)(θ2q − t)}

≤ sup
(q,t)∈A

{λ(θ1q − t)}+ sup
(q,t)∈A

{(1− λ)(θ2q − t)}

≤ λV (θ1) + (1− λ)V (θ2).

Definition 4. (h-differentiability)
Let V : Θ→ R ∪ {+∞}. A vector q ∈ Rm+ is called a h-subgradient of V at θ if

V (θ′) ≥ V (θ) + h(θ′, q)− h(θ, q), ∀θ′ ∈ Θ.

The set of all h-subgradients of V at θ ∈ Θ is called the h-subdifferential of V
at θ and is denoted by ∂hV (θ). If ∂hV (θ) 6= ∅ for θ ∈ Θ, we say that V is h-
subdifferentiable at θ.

It would give us the classic definition of subgradient if we suppose that V is a

convex function, Θ is an open convex set and dT = h(θ′,q)−h(θ,q)
θ′−θ .

The following proposition gives the relation between implementability and the no-
tions of h-convexity and h-subdifferentiability.

Proposition 1. A function q : Θ→ Rm+ is implementable if and only if there exists

some h-convex and h-subdifferentiable mapping V : Θ→ R such that q(θ) ∈ ∂hV (θ)
for all θ ∈ Θ [4].

From now on, we assume the following hypotheses:

H1. h ∈ C0(Θ̄×Rm+ ,R) and for every q ∈ Rm+ , θ 7→ h(θ, q) is nondecreasing i.e. for
all α and β in Θ2, if αi ≥ βi for all i = 1, ..., p (shortly α ≥ β) then h(α, q) ≥ h(β, q).
H2. For every (θ, q) ∈ Θ×Rm+ , ∂h∂θ (θ, q) exists, and the map ∂h

∂θ (·, ·) is continuous
with respect to both arguments. Moreover, for every compact subset K of Θ×Rm+ ,
there exists k > 0 such that for all ((θ, q), (θ′, q)) ∈ K2

‖ ∂h
∂θ

(θ, q)− ∂h

∂θ
(θ′, q) ‖≤ k ‖ θ − θ′ ‖ .
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H3. For every M > 0, there exists r > 0 such that for all (θ, q) ∈ Θ× Rm+

‖q‖ ≥ r ⇒
n∑
i=1

∂h

∂θi
(θ, q) ≥M.

Remark 1. From (H1), we have that

V (θ) := sup
(q,t)∈A

{h(θ, q)− t}

is also nondecreasing in θ.

The following proposition gives the relation between h-convexity and h-differentiability.

Proposition 2. Let V : Θ→ (−∞,+∞] be h-convex. If K ⊂ Θ is compact, δ > 0
and R > 0 satisfy K + δB̄(0, 1) ⊂ Θ, and |V (θ)| ≤ R for all θ ∈ K + δB̄(0, 1),
(where B̄(0, 1) is the closed unit ball of Rp), then

1. V is h-subdifferentiable at every point of K.
2. There exists a positive constant M(R,K, δ) such that for all θ ∈ K and q ∈
∂hV (θ), we have ‖q‖ ≤M(R,K, δ) [4].

Remark 2. As a result of the proposition 2, if V is h-convex and locally bounded,
then the set valued map ∂hV (·) takes non-empty compact values.

Definition 5. A function V is called locally semi-convex if and only if for all convex
compact subsets K of Θ there exists λ > 0 such that Vλ(·) := V (·)+λ‖·‖2 is convex
in K. Any λ > 0 for which this property holds is called a semi-convexity modulus
of V in K.

The next proposition will be used in the proof of the existence theorem. It states
that h-convex potentials are locally semi-convex.

Proposition 3. Assume that V and K are as in proposition 2. If furthermore K
is convex, then V is locally semi-convex in K. In particular, any locally bounded
h-convex mapping V is locally semi-convex in Θ [4].

The following proposition relates h-subdifferentiability to the classical notion of
gradient.

Proposition 4. Let V : Θ → R. Assume q ∈ ∂hV (θ), where θ ∈ Θ and V is
differentiable at θ. Then, ∇V (θ) = ∂h

∂θ (θ, q) [4].

Remark 3. Combining Propositions 2, 3 and 4 and Rademacher’s Theorem [3],
we obtain that every locally bounded h-convex potential V is almost everywhere
differentiable, everywhere h-subdifferentiable so that

∇V (θ) =
∂h

∂θ
(θ, q), for almost every θ ∈ Θ, for every q ∈ ∂hV (θ).

Now, we can rewrite the principal-agent problem (1) as a variational problem
with a h-convexity constraint:

(PA)

 inf Π(q, t) :=
∫

Θ
[C(q)− t(θ)]f(θ)dθ

s.t. (q, t) incentive-compatible
h(θ, q(θ))− t(θ) ≥ 0, ∀θ ∈ Θ

.

Proposition 5. The principal-agent problem (1) is equivalent to the following prob-
lem:
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(PA′)


inf J(q, V ) :=

∫
Θ

[C(q)− h(θ, q(θ)) + V (θ)]f(θ)dθ
s.t. V is h-convex,

q(θ) ∈ ∂hV (θ), ∀θ ∈ Θ
V (θ) ≥ 0, ∀θ ∈ Θ

Proof. The proof follows directly from Proposition 1.

2.2. Compactness. In this section, by V : Θ → R h-convex, we mean that there
exists a h-convex function Ṽ : Θ→ R such that Ṽ = V almost everywhere in Θ.
ω ⊂⊂ Θ means that the closure of ω is included in Θ.
The proof of the next proposition can be found in Carlier [5].

Proposition 6. Let (un) be a sequence of convex functions in Θ such that for every
open convex set ω with ω ⊂⊂ Θ, the following holds:

sup
n
‖un‖W 1,1(ω) < +∞.

Then, there exists a function ū that is convex in Θ, a measurable subset A of Θ and
a (non relabelled) subsequence of (un), such that:

1. (un) converges to ū uniformly on compact subsets of Θ,
2. (∇un) converges to ∇ū pointwise on A and dimH(Θ \ A) ≤ n − 1, where

dimH(Θ \ A) is the Hausdorff dimension of Θ \ A. In particular, (∇un)
converges to ∇ū almost everywhere in Θ.

This proposition extends to h-convex functions as follows:

Proposition 7. Let (Vn) be a sequence of h-convex functions in Θ such that the
following holds:

sup
n
‖Vn‖W 1,1(Θ) < +∞.

Then, there exists a function V ∈ W 1,1(Θ), that is h-convex in Θ, a measurable
subset A of Θ and a (non relabelled) subsequence of (Vn), such that:

1. (Vn) converges to V uniformly on compact subsets of Θ,

2. (∇Vn) converges to ∇V pointwise in A and dimH(Θ\A) ≤ n−1. In particular,
(∇Vn) converges to ∇V almost everywhere in Θ.

Proof is available in [4].

2.3. Existence result for a linear cost function. First, we show the existence
result for linear cost functions, then we will extend the argument to more general
cost functions. In this section, we assume that C(q) = 〈p, q〉, where p ∈ Rm+ denotes
the range of food prices. Then, the principal-agent problem becomes:

(PA)

 inf Π(q, t) :=
∫

Θ
[〈p, q〉 − t(θ)]f(θ)dθ

s.t. (q, t) is incentive-compatible
h(θ, q(θ))− t(θ) ≥ 0,∀θ ∈ Θ,

or equivalently

(PA′)


inf J(q, V ) :=

∫
Θ

[〈p, q〉 − h(θ, q(θ)) + V (θ)]f(θ)dθ
s.t. V is h-convex,

q(θ) ∈ ∂hV (θ),∀θ ∈ Θ
V (θ) ≥ 0,∀θ ∈ Θ.
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In addition to the previously mentioned hypotheses, we assume the following tech-
nical hypotheses:

H4. There exist α ≤ 1, a > 0 and b ∈ R, such that for all (θ, q) ∈ Θ × Rm+ , we
have

h(θ, q) ≤ a‖q‖α − b.
and if α = 1, a < min1≤i≤m pi.
H5. There exist β ∈ (0, α), c > 0, d ∈ R such that for all (θ, q) ∈ Θ× Rm+

‖∂h
∂θ

(θ, q)‖ ≤ c‖q‖β + d.

Under the above assumptions, the following existence result holds.

Theorem 1. (PA′) admits at least one solution.

Proof. Consider an arbitrary V that is both h-convex and locally bounded. Then,
Proposition 2 and the measurable selection theorem imply that both set-valued
maps ∂hV (·) and ΦV : θ → argmin

∂hV (θ)

{−h(θ, ·) + 〈p, ·〉} are non-empty, compact-

valued and admit measurable selections.
Let (Vn, qn) be a minimizing sequence of (PA′). Without loss of generality, we may
assume that for all n, qn is measurable and qn(θ) ∈ ΦVn(θ) ∀θ ∈ Θ. Then,

|
∫

Θ

(Vn(θ)− h(θ, qn(θ)) + 〈p, qn(θ)〉)f(θ)dθ| ≤ C, (2.1)

where C is a positive constant.
Since Vn(θ) and f(θ) are both positive, we have∫

Θ

(−h(θ, qn(θ)) + 〈p, qn(θ)〉)f(θ)dθ ≤ C.

By adding 〈p, qn(θ)〉 to both sides of the inequality in Hypothesis (H4), we have∫
Θ

(−a‖qn(θ)‖α + 〈p, qn(θ)〉)f(θ)dθ ≤
∫

Θ

(−h(θ, qn(θ))− b+ 〈p, qn(θ)〉)f(θ)dθ ≤ C ′,

where C ′ = C − b, C ′ > 0 by choosing C large enough.
Equivalently,

−a
∫

Θ

‖qn(θ)‖αf(θ)dθ +

∫
Θ

〈p, qn(θ)〉 f(θ)dθ ≤ C ′. (2.2)

Let M = min1≤i≤m pi > 0. Then∫
Θ

〈p, qn(θ)〉 f(θ)dθ =

∫
Θ

m∑
i=1

piq
i
nf(θ)dθ

≥M
m∑
i=1

∫
Θ

qin(θ)f(θ)dθ

= M

∫
Θ

‖qn(θ)‖f(θ)dθ. (2.3)

Inserting (2.3) into (2.2) yields

−a
∫

Θ

‖qn(θ)‖αf(θ)dθ +M

∫
Θ

‖qn(θ)‖f(θ)dθ ≤ C ′. (2.4)
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At this step we consider two different cases: α < 1 and α = 1. First assume α < 1.
Then by Young’s inequality we have

‖qn(θ)‖α = δ‖qn(θ)‖α 1

δ

≤ (δ‖qn(θ)‖α)η

η
+
| 1δ |

η′

η′

where η and η′ are positive real numbers such that 1
η + 1

η′ = 1. Now, by choosing

η = 1
α , we have

‖qn(θ)‖α ≤ αδ 1
α ‖qn(θ)‖+

1− α
δ

1
1−α

. (2.5)

Inserting (2.5) into (2.4) yields

(M − aαδ 1
α )

∫
Θ

‖qn(θ)‖f(θ)dθ − a(1− α)

δ
1

1−α

∫
Θ

f(θ)dθ ≤ C ′.

Consequently,

(M − aαδ 1
α )

∫
Θ

‖qn(θ)‖f(θ) ≤ C ′′,

where C ′′ = C ′ + a(1−α)

δ
1

1−α
.

Choosing δ small enough so that M − aαδ 1
α > 0 and using that ‖f‖L∞(Θ) > 0 , we

have that (qn) is bounded in L1(Θ,Rm+ ).
Now we consider the case that α = 1. Rewriting equation (2.4) for α = 1 gives

(M − a)

∫
Θ

‖qn(θ)‖f(θ)dθ ≤ C ′.

We know from (H4) that M − a > 0. Dividing both sides of the above equation
by (M − a) and using the fact that ‖f‖L∞(Θ) > 0 implies that (qn) is bounded is

L1(Θ,Rm+ ). Moreover, by (H4) we know that

h(θ, qn(θ)) ≤ a‖qn(θ)‖α − b. (2.6)

At the same time using Young’s inequality we have

‖qn(θ)‖α ≤ (‖qn(θ)‖α)η

η
+

1

η′

where η and η′ are positive real numbers such that 1
η + 1

η′ = 1. Inserting the above

equation into (2.6) implies

h(θ, qn(θ)) ≤ a
(
‖qn(θ)‖αη

η
+

1

η′

)
− b.

Choosing η = 1
α and using the fact that (qn) is bounded in L1, then h(θ, qn) is

bounded in L1. Using this fact and that (qn) is bounded in L1(Θ) and ‖f‖L∞(Θ) > 0,

then (2.1) ensures that (Vn) is also bounded in L1(Θ,R+). For all n, Vn is locally
bounded. From Propositions 3 and 4, we deduce that for all n and for almost every
θ ∈ Θ,

∇Vn(θ) =
∂h

∂θ
(θ, qn(θ)).
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Using Hypothesis (H4) we get,

‖∇Vn‖ = ‖∂h
∂θ

(θ, qn(θ))‖

≤ c‖q‖β + d, β ∈ (0, α)

≤ c(1 + ‖qn(θ)‖) + d a.e. in Θ.

Thus, ∇Vn is bounded in L1(Θ) and Vn satisfies the assumptions of Proposition 6
Consequently, we may now assume that{

(Vn) converges in L1(Θ) and uniformly on compact subsets of Θ,
(∇Vn) converges a.e. to ∇V̄ ,

where V̄ ∈W 1,1(Θ,R+) is h-convex.
Finally, define q̄(.) as a measurable selection of ΦV̄ (·).
First, since (Vn) converges to V̄ in L1(Θ) and f ∈ L∞(Θ) we have

lim
n

∫
Θ

Vn(θ)f(θ)dθ =

∫
Θ

V̄ (θ)f(θ)dθ. (2.7)

Fatou’s Lemma yields,

lim inf
n

∫
Θ

[−h(θ, qn(θ)) +C(qn)]f(θ)dθ ≥
∫

Θ

lim inf
n

[−h(θ, qn(θ)) +C(qn(θ))]f(θ)dθ.

(2.8)
Let us define for all fixed θ,

α(θ) := lim inf
n
{−h(θ, qn(θ)) + C(qn(θ))}.

Since (qn(θ)) is bounded in L1 by Hypothesis (H4), up to a subsequence, we may
assume that{
α(θ) = lim infn−h(θ, qn(θ)) + C(qn(θ)),
qn(θ)→ y(θ) a.e.

We know that for all θ′ ∈ Θ and all n,

Vn(θ′) ≥ Vn(θ) + h(θ′, qn(θ))− h(θ, qn(θ)).

In the limit, we obtain

V̄ (θ′) ≥ V̄ (θ) + h(θ′, y(θ))− h(θ, y(θ)).

The above equation means that y(θ) ∈ ∂hV̄ (θ).
Then, we get

α(θ) = −h(θ, y(θ)) + C(y(θ)) ≥ −h(θ, q̄(θ)) + C(q̄(θ)). (2.9)

Therefore, we have

inf (PA′) = lim inf
n

∫
Θ

[Vn(θ)− h(θ, qn(θ)) + C(qn(θ))]f(θ)dθ

≥
∫

Θ

[V̄ (θ)− h(θ, q̄(θ)) + C(q̄(θ))]f(θ)dθ

= J(V̄ , q̄)

where in the above inequality we used equations (2.7), (2.8) and (2.9).
This shows that (V̄ , q̄) is a solution of (PA′).
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2.4. Existence of solutions for the general cost functions. In this section,
we extend Carlier’s proof [4] to our model for the general cost functions. Suppose
h satisfies (H1)-(H3) and (H5). We recall the minimization problem (PA′):

(PA′)


min

q(θ),V (θ)

∫
Θ
φ(θ, V (θ), q(θ))dθ

s.t. V is h-convex,
q(θ) ∈ ∂hV (θ),
V (θ) ≥ 0

where φ(θ, V (θ), q(θ)) = [V (θ) − h(θ, q(θ)) + C(q(θ))]f(θ). To prove the extension
of the previous result regarding existence of solutions, we generalize (H4) to a larger
class of cost functions and we further add an hypothesis (H6):
H4′. There exist α ≤ 1, a > 0 and b ∈ R, such that for all (θ, q) ∈ Θ× Rm+

h(θ, q) ≤ a‖q‖α − b.

H6. φ(·, ·, ·) is a normal integrand, which means that for almost every θ ∈ Θ,
φ(θ, ·, ·) is lower semi-continuous and that there exists a borelian map φ̄ such that
φ(θ, ·, ·) = φ̄(θ, ·, ·) for almost every θ ∈ Θ. There exist A > 0 and Ψ ∈ L1(Θ) such
that for almost every θ ∈ Θ and every (V, q) ∈ R× Rm+ ,

φ(θ, V, q) = V − h(θ, q) + C(q)

≥ A(|V |+ ‖q‖γ) + Ψ(θ), γ ≥ 1.

Theorem 2. Problem (PA′) admits at least one solution.

Proof. The proof is similar to that of Theorem 1. Indeed, according to (H6), we
know that (Vn) is bounded in W 1,1(Θ). Using Proposition 7 we have:{
Vn converges to V̄ in L1(Θ) and uniformly on compact subsets of Θ,
∇Vn converges almost everywhere in Θ to ∇V̄ ,

where V̄ is h-convex and belongs to W 1,1(Θ).
Following the proof of Theorem 1, we can choose qn to be measurable and such that
for all θ ∈ Θ,

qn(θ) ∈ argmin
q∈∂hVn(θ)

{Vn(θ)− h(θ, q) + C(q)}.

We can now define q̄ as the measurable selection of set-valued maps

θ → argmin
q∈∂hV̄n(θ)

{V̄n(θ)− h(θ, q) + C(q)}.

Lastly, if y is a cluster point of a sequence of elements of ∂hVn(θ), then y ∈ ∂hV̄ (θ).
This enables us to prove that (V̄ , x̄) is a solution using Fatou’s Lemma.

Note that there is a large class of cost functions φ(θ, V (θ), q(θ)) = [V (θ) −
h(θ, q(θ)) + C(q(θ))]f(θ) (e.g., polynomials) satisfying the conditions imposed in
(H4′) and (H6).
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3. Discrete problem. Since Θ is an open bounded convex subset of Rp, then the
continuous problem (1) can be discretized in p dimensions as follows:

(PD) max
qi,ti

mp∑
ip=1

. . .

m1∑
i1=1

(ti1,...ip − C(qi1,...ip))fi1,...ip∆i1 . . .∆ip

s.t. h(θi1,...ip , qi1,...ip)− ti1,...ip ≥ 0, i = 1, 2, ..., p (IR)

h(θi1,...ip , qi1,...ip)− ti1,...ip ≥ h(θi1,...ip , qj1,...,jp)− tj1,...,jp ,
∀i, j = 1, 2, ..., p (IC)

where

ti1,...,ip = t
(
θ1
i1 , . . . , θ

n
ip

)
,

qi1,...,ip = q
(
θ1
i1 , . . . , θ

n
ip

)
,

fi1,...,ip = f
(
θ1
i1 , . . . , θ

n
ip

)
,

in which θjij represents the ij-th point in the j-th coordinate. The mj denotes the

total subintervals in the j-th coordinate and ∆ij = θjij − θ
j
ij−1.

Existence Result for the Discrete Problem
To prove the existence result for the discrete problem we need to keep (H1), (H4′)
and slightly modify (H6):
H6′. φ(·, ·) is a normal integrand and there exist A > 0 and Ψ ∈ L1(Θ) such that
for almost every θ ∈ Θ

φ(θ, q) = −h(θ, q) + C(q)

≥ A‖q‖γ + Ψ(θ), γ ≥ 1.

Under the assumptions imposed above, the following existence result holds.

Theorem 3. The discrete problem (PD) has at least one solution.

Proof. From the (IR) constraint, we have

ti1,...ip ≤ h(θi1,...ip , qi1,...ip), (3.1)

and then

ti1,...ip − C(qi1,...ip) ≤ h(θi1,...ip , qi1,...ip)− C(qi1,...ip). (3.2)

Recall by (H6′) that, we have for fixed value of θ ∈ Θ, if q → ∞, then −h(θ, q) +
C(q) → +∞. As a result, h(θ, q) − C(q) → −∞. As a result, by (3.2), ti1,...ip −
C(qi1,...ip) → −∞ which does not affect our maximization problem. This implies
qi1,...ip is bounded. So is h(θi1,...ip , qi1,...ip) using (H4′). This means that ti1,...ip is
bounded by (3.1). Therefore, we are searching for a maximum of the upper semi-
continuous function on a compact set which definitely exists (Weiestrass-Lebesgue
Lemma).

4. Solutions without the Spence Mirrlees condition. In this section we study
the discrete principal-agent problem (2). We first recall the following definition.

Definition 6. A function h(θ, q) satisfies the discrete Spence Mirrles condition if

h(θ′, q′)− h(θ, q′) > h(θ′, q)− h(θ, q) ∀θ′ > θ, q′ > q.
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As we discussed in the introduction, the Spence Mirrlees condition plays an
important role in solving the principal-agent problem. Without the Spence Mir-
rlees condition, there is no way to characterize the analytic solutions of the general
problem (2); so numerical algorithms may be required to solve for an approximate
solution. To characterize a local optimal solution as a stationary point of the prob-
lem, one needs to verify certain constraint qualifications. The commonly used con-
straint qualifications are the linear independence and the Mangasarian Fromovitz
constraint qualification. The aim of this section is to find some sufficient condition
for these constraint qualifications.

4.1. Linear independence constraint qualification (LICQ). Recall that a
feasible solution of an optimization problem with inequality constraints satifies the
LICQ if the gradients of all active constraints are linearly independent. The diffi-
culty in verifying LICQ is that we are not able to say which of our constraints are
active and which are inactive at the optimum. We have to consider the worst case
where all of the inequality constraints are active at the optimum. It is clear that
any subset of the linearly independent vectors is itself linearly independent. This
means we are looking for sufficient conditions for LICQ.

Theorem 4. LICQ holds for n = 2 if,
∂h
∂q (θ1, q1) 6= ∂h

∂q (θ2, q1);

and
∂h
∂q (θ2, q2) 6= ∂h

∂q (θ1, q2).

Proof. When we have only 2 customers, the constraints of the problem are:

h(θ1, q1)− t1 ≥ 0,

h(θ2, q2)− t2 ≥ 0,

h(θ1, q1)− t1 ≥ h(θ1, q2)− t2,
h(θ2, q2)− t2 ≥ h(θ2, q1)− t1.

Suppose that all of our constraints are active at optimum. Then the linear combina-
tion of the gradient vectors gives four equations with four unknowns, λ1, λ2, λ3, λ4,
−λ1

∂h
∂q (θ1, q1)− λ3

∂h
∂q (θ1, q1) + λ4

∂h
∂q (θ2, q1) = 0,

−λ2
∂h
∂q (θ2, q2) + λ3

∂h
∂q (θ1, q2)− λ4

∂h
∂q (θ2, q2) = 0,

λ1 + λ3 − λ4 = 0,
λ2 − λ3 + λ4 = 0.

Finding λ1 and λ2 from the last two equations and substituting them back into
the rest of the equations yields{
−λ4

∂h
∂q (θ1, q1) + λ4

∂h
∂q (θ2, q1) = 0,

−λ3
∂h
∂q (θ2, q2) + λ3

∂h
∂q (θ1, q2) = 0.

By the above equations, it is obvious that if
∂h
∂q (θ1, q1) 6= ∂h

∂q (θ2, q1);

and
∂h
∂q (θ2, q2) 6= ∂h

∂q (θ1, q2)

then all the λi, i = 1, 2, 3, 4 have to be zero. This implies that LICQ is satisfied.
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The theorem below shows the weakness of LICQ for dealing with the principal-
agent problem without the Spence Mirrlees condition in general.

Theorem 5. LICQ is never satisfied for n ≥ 3 when all of our constraints are
active.

Proof. Suppose λi are the coefficients of the gradient vectors. Then LICQ holds if

n2∑
i=1

λi



∂Wi

∂q1
...

∂Wi

∂qn

−−−−
∂Wi

∂t1
...

∂Wi

∂tn


= 0,

implies all λi are zero where Wi represents the i-th constraint. The number of λis
is equal to the number of constraints, which is n2. On the other hand, the number
of equations is equal to the number of components of each gradient matrix, which
is 2n. For n ≥ 3 the number of λis is larger than the number of equations. Hence,
λis are always dependent.

4.2. Mangasarian-Fromovitz constraint qualification (MFCQ). First, recall
that the Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds at a feasi-
ble solution of an optimization problem with inequality constraints if and only if all
gradient of the active constraints are positively linearly independent. We assume
the worst case scenario, which is the case in which all of the inequality constraints
are active at the optimum. If only a subset of the inequality constraints were active,
then our sufficient condition would still make sure that the vectors corresponding
to these quality constraints are positively linearly independent because the set of
vectors would be a subset of all the vectors that we prove to be positively linearly
independent under our sufficient condition.

Definition 7. (Principal-Agent Problem Constraint Qualification)
Principal-Agent Problem Constraint Qualification (PAPCQ) holds at a certain point
if for each fixed value of j we have,

∂h

∂q
(θi, qj) >

∂h

∂q
(θj , qj), ∀i 6= j.

Then we have the following theorem.

Theorem 6. MFCQ holds if PAPCQ holds.

Proof. Suppose λi is the multiplier of the (IR) constraint associated with the cus-
tomer with type θi and λij is the multiplier of the (IC) constraint associated with
the customer with type θi who likes to hide his type as θj . In the general case of
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having n taste-type customers we deal with the following gradient vectors

n∑
i=1

λi



0
−∂h∂q (θi, qi)

0
−−−−

0
1
0


i-th row

i-th row

+

n∑
i=1

n∑
j=1

λij



0
−∂h∂q (θi, qi)
∂h
∂q (θi, qj)

0
−−−−

0
1
−1
0



i-th row
j-th row

i-th row
j-th row

= 0.

where the horizontal line (−−−−) divides the matrix into two parts. The first part
is the gradient with respect to q and the second part is the gradient with respect
to t. The 0 denotes that in each part of the matrix every entry is zero except the
i-th and j-th rows.
This implies the set of equations:{
−λi ∂h∂q (θi, qi)−

∑n
j=1,j 6=i λij

∂h
∂q (θi, qi) +

∑n
j=1,j 6=i λji

∂h
∂q (θj , qi) = 0, ∀1 ≤ i ≤ n

λi +
∑n
j=1 λij −

∑n
j=1 λji = 0. ∀1 ≤ i ≤ n

From the last equation we know that λi = −
∑n
j=1 λij +

∑n
j=1 λji for all i. Substi-

tuting in the first equation yields

k∑
j=1

λji

(
−∂h
∂q

(θj , qi) +
∂h

∂q
(θi, qi)

)
= 0, ∀i.

Hence, if all
(
−∂h∂q (θj , qi) + ∂h

∂q (θi, qi)
)

have the same sign then all the λjis will be

forced to be zero. Thus, we will have MFCQ.

If the problem satisfies the PAPCQ then we are able to write the Karush-Kuhn-
Tucker condition for the problem. If the problem is concave, the Karush-Kuhn-
Tucker condition is necessary and sufficient for optimality. Otherwise it just gives
us a set of stationary points that the optimal solution will belong to.
Example. There is a large class of functions h(θ, q) that do not satisfy the Spence
Mirrlees Condition. However, they satisfy the PAPCQ at a certain point. In the
following we will see one of those examples. Suppose we have three customers.
Define,

C(q) =

∣∣∣∣(q − 0)

(
q − 5π

4

)(
q − 7π

4

)∣∣∣∣ ,
and

h(θ, q) =


cos(q) θ = θ1

cos
(

15
4 q −

43π
16

)
θ = θ2

cos
(

10
7 q + 3π

2

)
θ = θ3.

We claim that the optimal point is (q∗1 , q
∗
2 , q
∗
3 , t
∗
1, t
∗
2, t
∗
3) = (0, 5π

4 ,
7π
4 , 1, 1, 1), since

at this point the negative part of the objective function, C(q), will disappear and
the positive term, t, achieves its maximum value; using the fact that h(θ, q) is an
upper bound for t. In other words, cos(·) is the upper bound for t. So, the maxi-
mum value that t can achieve is 1. This point also satisfies all of our constraints.
This means (q∗, t∗) is feasible. Hence, this is a real optimal solution for this problem.
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The function h(θ, q) does not satisfy the Spence Mirrlees Condition in the discrete
term. To see the point, without loss of generality suppose q1 > q3. This case is
impossible since h(θ3, q1)− h(θ1, q1) = −1 and h(θ3, q3)− h(θ1, q3) = 1− 0.7 = 0.3.
Now, assume q1 < q3. This case is also impossible since, h(θ3, q3)− h(θ2, q3) = 0.08
and h(θ3, q1)− h(θ2, q1) = 0.5.

It is also possible to make the function h(θ, q) continuous such that the Spence
Mirrlees Condition fails. To do that, we need to define a small enough neighbor-
hood around each point θ1, θ2 and θ3 such that their pairwise intersection is empty.
Then, the function h(θ, q) that we already defined can be used in each small neigh-
borhood. Any other function can be defined between those neighborhoods to make
the whole function continuous. In that case, since on a small enough neighborhood
for each of θ1, θ2 and θ3 the satisfaction of the customer is just a function of q, SMC
will fail at θ1, θ2 and θ3.
Although this function does not satisfy the Spence Mirrlees Condition, it satisfies
the PAPCQ. This means, for all i and j, we have

∂h

∂q
(θi, qj) >

∂h

∂q
(θj , qj)

which is the PAPCQ condition. So, the problem satisfies the MFCQ constraint
qualification at the optimum point. This example can be generalized to any number
of customers.
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