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Abstract. Maximum Distance Separable (MDS) codes are those error - cor-

rection codes that meet the singleton bound, thus they have the largest mini-

mum distance possible. The main research problem is to find an upper bound
on the length of the codewords when the alphabet size and dimension of the

code are fixed.

This paper will present a new technique using the Partition Weight Enu-
merator for solving this problem in some cases.

1. Introduction. A q-ary code C of length n and dimension k is a collection of
qk n-tuples, called codewords, with entries from a set (or alphabet) A of size q. In
other words, C is a subset of An with |C| = qk.
A code is linear if its codewords form a k-dimensional subspace of the vector space
Fn
q where Fq denotes the field of order q. Unless otherwise stated, the codes discussed

in the sequel shall not be assumed to be linear.
The (Hamming) distance between two elements of An is the number of coordinate
positions in which they differ. Hamming distance dH serves as a metric on An. In
particular the triangle inequality holds:

dH(c1, c2) + dH(c2, c3) ≥ dH(c1, c3) for all c1, c2, c3 ∈ An.

The minimum distance d of C is the minimum over all distances between distinct
pairs of codewords. It follows that any two codewords agree in at most n − d
common coordinates. The information rate of C is k/n, and essentially measures
the proportion of a code that is useful (non-redundant).
Error detection is the ability to decide whether the received data is correct or not
without having a copy of the original message. Hence, a code C is t error detecting
if changing up to t digits in a codeword never produces another codeword.
We say that an (n, k, d)q code C is e error correcting if from any n-tuple differing
from some codeword in at most e places allows the codeword to be deduced.
Error correcting codes enable the provision of reliable digital data transmission and
storage when the communication medium (channel) used is subject to bit errors,
or “noise”. Through the use of an error correcting code, the receiver is able to
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automatically correct certain errors. The key to error correction is redundancy,
adding extra bits to a data string (at a cost to the information rate).

· · · · · ·

total of m+ r bits

Data: m bits Redundancy

r bits

Figure 1. Key to error correction: Add redundancy.

For example, instead of sending 1023, the word 10231023 is sent. Such a method
is able to detect a single error, but cannot correct any errors. Now for each α ∈ A
use “ααα” to represent α. Any single error can be now be corrected (by majority
rules). More errors can be corrected by making more repetitions, but this rapidly
reduces the information rate of the code, yielding it inefficient. One of the main
objectives in information theory is to produce efficient codes with high error cor-
recting ability.

The set of all n-tuples within a distance of t from a given word c is often called
a Hamming ball of radius t. If C is a code of minimum distance d, then (by the
triangle inequality) any two Hamming balls of radius bd−12 c must be disjoint.
Hence, through nearest neighbour decoding, an (n, k, d)q code C can correct e errors,

where e = bd−12 c. It is therefore desirable to construct codes with large minimum
distance.

An

Figure 2. Any two hamming balls of radius bd−12 c are disjoint.

To obtain a bound on how large d can be, we observe that in an (n, k, d)q code C,
no two words agree in as many as n− d+ 1 coordinates. There are qn−d+1 possible
(n − d + 1)-tuples over A, and each of these may occur at most once as the first
n − d + 1 coordinates of a codeword. Consequently we have |C| = qk ≤ qn−d+1,
hence k ≤ n− d+ 1. This is the Singleton bound, most often expressed as follows:

d ≤ n− k + 1.
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If C meets the Singleton bound, it is said to be Maximum Distance Separable (MDS),
denoted (n, k)q-MDS (or [n, k]q-MDS in the linear case). Thus, MDS codes satisfy
d = n− k + 1 and are in this sense optimal.

Since MDS codes have the largest minimum distance possible, they can detect
and correct more errors than any other type of code, a desirable property in the
industry. Indeed, over 10,000 U.S. patent applications in the past decade involved
MDS codes. A certain type of linear MDS codes, called Reed-Solomon codes, are
among the most ubiquitous of error correcting codes, having applications that vary
from digital audio, data transfer over mobile radio, satellite communications, and
spread spectrum systems. We refer to [24] for detailed discussions regarding both
historic and neoteric applications of MDS codes. In addition, MDS codes are equiv-
alent to many constructs in finite geometry, combinatorics, and statistics.

For fixed q and k, a much-studied problem is that of finding the longest code
length (n) possible, denoted M(k, q). This fundamental problem has its roots in a
statistical question discussed in 1952 by K.A. Bush [6] in a part of combinatorics
connected with the orthogonal arrays discussed by R.C. Bose and others. MDS
codes were also studied in [19] by R.C. Singleton. F.J. MacWilliams and N.J.A.
Sloane [12] introduce their chapter on MDS codes as “one of the most fascinating
[. . . ] in all of coding theory”. There is indeed voluminous literature on the subject.

For example, let k = 2. Then C is a set of q2 codewords of length n, no two of
which agree in as many as 2 positions. This is equivalent to the existence of a (Bruck)
net of order q and degree n [5], or equivalently a set of n − 2 mutually orthogonal
Latin squares (MOLS) of order q. Thus, determining M(2, q) is equivalent to finding
the maximum number MOLS of order q. This problem attracted the attention of L.
Euler in the 18th century by way of the 36 officer problem. Tarry [21, 22] showed
at the beginning of the last century that the problem had no solution (and hence
M(2, 6) = 3).

It follows that M(2, q) ≤ q + 1, the case of equality corresponding to an affine
plane (and hence a projective plane) of order q.

For q a prime power, the existence of affine planes has been known since 1896
[15], but otherwise the problem is almost completely open. The long-standing prime
power conjecture states that the order of a finite projective plane must be the power
of a prime. At the moment an exact answer to the question of the existence and
structure of a finite plane of general order q seems well beyond known techniques.
The best result we have so far is the Bruck-Ryser-Chowla Theorem (1949-1950): If
a finite projective plane of order q exists and q is congruent to 1 or 2 (mod 4), then
q must be the sum of two squares. Accordingly, it seems that one cannot expect
much progress with determining M(2, q) in full generality.

The higher dimensional cases, in which MDS codes are equivalent to certain
sets of mutually orthogonal latin hypercubes, are even more resistant towards a
solution. Similarly to the 2-dimensional case, the problem of determining M(k, q)
in the linear case has been met with more success than the general case.

The main results in the linear case have been obtained building on the geometrical
methods used by B. Segre [17]. Segre asked a question that eventually became
known as the Main Conjecture for Linear MDS Codes: M(k, q) = k + 1 if k ≥ q
and M(k, q) = q + 1 if k ≤ q, except for M(k, q) = q + 2 if k = 3 or k = q − 1 and
q even.
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In the decades since the question has been posed, a lot of work has been done
towards proving the Main Conjecture for linear MDS codes; [9] contains a compre-
hensive list of cases in which the conjecture is known to be true. The recent work of
Ball [2], and Ball and DeBeule [3] show the Main Conjecture for linear MDS codes
to hold for the majority of cases. Thus the problem of finding M(k, q) is close to
being solved for linear MDS codes.

For general, not necessarily linear, MDS codes on the other hand very little
is known. Counting arguments show that M(k, q) ≤ q + k − 1 (see for example
[18]), but as the dimension increases, the gap between this bound and the Main
Conjecture increases.

Many of the results obtained in the sequel may be found in [25]. Our results were
arrived at independently, however for the sake of consistency we have endeavoured
where possible to adopt the notation of [25].

2. Preliminaries. Two MDS codes are called equivalent if one can be obtained
from the other through the application of a series of the following operations:

(a) Symbol permutations: fix a coordinate position and apply a permutation over
the alphabet to all entries in that position;

(b) Positional permutations: choose two coordinate positions and exchange their
entries in every codeword.

Given an arbitrary MDS code C and any codeword c ∈ C one may clearly apply op-
erations of type (a) to transform c to the zero codeword. This proves the following,
which we shall make use of in the sequel.

Lemma 1. Any (n, k)q-MDS code is equivalent to an (n, k)q-MDS code which con-
tains the all zero codeword.

An (n, k)q-MDS code holds qk codewords, no two having as many as k (= n−d+1)
common coordinates. Consequently if k (ordered) coordinate positions are fixed,
then every possible k-tuple over A arises precisely once in these positions as one
ranges over all codewords. Similar observations give the following.

Lemma 2. [18] Let C be an (n, k)q MDS code over the alphabet A. Fix a set
of r ≤ k coordinate positions {i1, . . . , ir}, and let α1, . . . , αr be (not necessarily
distinct) elements of A. There are exactly qk−r codewords with αj in position ij.

The support of a codeword c, denoted by supp(c), is the set of coordinate positions
in which c has non-zero entries. The weight of a codeword, denoted by wt(c), is
the size of the support or equivalently, if the code contains the zero codeword, the
distance to the zero codeword.

The weight enumerator E(w) for a code C counts the codewords of a given weight
w. That is E(w) = |{c ∈ C : wt(c) = w}|.

Theorem 1. [23] The weight distribution for (n, k)q MDS codes which contain the
zero codeword is completely determined: E(0) = 1; for 0 < w < d E(w) = 0; and
for d ≤ w

E(w) = (q − 1)

(
n

w

)w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j (1)

As observed by El-Khamy and McEliece [8], the weight enumerator can be gen-
eralized as follows. Let T = {T1, T2, . . . , Ts} be a partition on the set of coordi-
nate positions {1, . . . , n}, where |Ti| = ni for i = 1, . . . , s. For each c ∈ C let
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wi = |supp(c) ∩ Ti|, then c is said to have T -weight profile

WT (c) = (w1, . . . , ws).

The partition weight enumerator for a code C with partition T and associated
weight profile (w1, . . . , ws) is given by

AT (w1, w2, . . . , ws) = |{c ∈ C |WT (c) = (w1, . . . , ws)}| .

The following Theorem is established by El-Khamy and McEliece in [8] for linear
MDS codes. Though their proof can be suitably modified to hold for arbitrary MDS
codes containing the zero codeword, we provide an alternate proof.

Theorem 2. ([8]-for linear codes)
Let C be an (n, k)q MDS code containing the zero codeword and let T = {T1, . . . , Ts}
be a partition with associated weight profile (w1, . . . , ws). Then the partition weight
enumerator is given by

AT (w1, . . . , ws) = (q − 1)

(
n1
w1

)(
n2
w2

)
. . .

(
ns
ws

)w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j (2)

where d ≤ w =
∑s

i=1 wi.

Proof. Fix w ≥ d coordinate positions, say W = {i1, . . . , iw}, and let N be the
number of codewords with support W , i.e. N = |{c ∈ C | supp(c) = W}|. For
S ⊆ W , let AS = {c ∈ C | c 6= 0, supp(c) ⊆ W \ S}. Observe that if |S| ≥
k − (n−w) = w − d+ 1, then |AS | = 0. Second, if |S| = t ≤ w − d, then n−w + t
positions have fixed zero entries, moreover, 0 /∈ AS , so we have (Lemma 2):

|AS | = qk−(n−w+t) − 1
(
= qw−d−t+1 − 1

)
.

For each i, 0 ≤ i ≤ w, let Ai be the number of ordered pairs (S, c) where S ⊆
W, |S| = i, c ∈ C, supp(c) ⊆W \S. It follows by the principle of inclusion-exclusion
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that

N =

w∑
j=0

(−1)jAj

=

w−d∑
j=0

(−1)jAj

=

w−d∑
j=0

(−1)j
(
w

j

)
(qw−d−j+1 − 1)

=

w−d∑
j=1

(−1)j
(
w − 1

j − 1

)
(qw−d+1−j − 1) +

w−d∑
j=0

(−1)j
(
w − 1

j

)
(qw−d+1−j − 1)

=

w−d−1∑
j=0

(−1)j+1

(
w − 1

j

)
(qw−d−j − 1) +

w−d∑
j=0

(−1)j
(
w − 1

j

)
(qw−d+1−j − 1)

= −
w−d−1∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j +

w−d−1∑
j=0

(−1)j
(
w − 1

j

)

+

w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d+1−j −

w−d∑
j=0

(−1)j
(
w − 1

j

)

= q

w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j −

w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j

+ (−1)w−d
(
w − 1

w − d

)
qw−d−(w−d) − (−1)w−d

(
w − 1

w − d

)
= (q − 1)

w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j .

Therefore

AT (w1, . . . , ws) = (q − 1)

(
n1
w1

)(
n2
w2

)
. . .

(
ns
ws

)w−d∑
j=0

(−1)j
(
w − 1

j

)
qw−d−j .

Taking any (n, k)q MDS code C and deleting a fixed coordinate from each code-
word, the resulting code C ′ is an (n−1, k)q MDS code. Taking as a subset of C those
codewords that have a fixed entry in a fixed position and deleting that coordinate
from each codeword, the resulting code C ′′ is an (n− 1, k − 1)q MDS code. These
observations result in the following lemmata, whose contrapositive forms shall prove
useful in what follows.

Lemma 3. [18] If an (n, k)q MDS code exists, then an (n−1, k)q MDS code exists.

Lemma 4. [13] If an (n, k)q MDS code exists, then an (n − 1, k − 1)q MDS code
exists.

3. A summary of some known results. The following is a selection of some
long established bounds on the length of MDS codes:

Proposition 1. For an (n, k)q MDS code the following holds:
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1. k + 1 ≤M(k, q) ≤ q + k − 1;
2. M(k, q) = k + 1 if k ≥ q;
3. M(k, q) ≤ q + k − 2 if q is odd, k ≥ 3;
4. M(k, q) ≤ q + k − 3 if q ≡ 2 (mod 4), k ≥ 3;
5. M(k, q) ≤ q + k − 3 if q is even, 36 - q, k ≥ 4;
6. M(k, q) ≤ q+k−3 if q ≡ 1, 2 (mod 4) and the square-free part of q is divisible

by a prime of the form 4t+ 3.

Proof. For the first three items see [18]. Items 4 and 5 are found in [1], and for 6
see [13, Theorem 1 (8)].

For some codes of restrictive dimension or alphabet size it is sometimes possible
to improve upon the bounds stated above.

Proposition 2. (Bounds for codes of small dimension)

1. M(2, 6) = 3;
2. 4 ≤M(2, q) ≤ q + 1 if q 6= 2, 6;
3. M(2, 10) ≤ 8;
4. If q ≡ 1, 2 (mod 4) and q is not the sum of two squares, then

(a) Let t be the largest positive integer for which 1
2 t

4 − t3 + t2 + 1
2 t − 1 < q.

Then M(2, q) ≤ q − t.
(b) Let t be the largest positive integer for which 8t3 + 18t2 + 8t+ 4− 2ρ(t2−

t− 1) + 9
2ρ(ρ− 1)(t− 1) < 3q, where ρ ∈ {0, 1, 2} and ρ ≡ t+ 1 (mod 3).

Then M(2, q) ≤ q − t.
5. M(3, q) ≤ q if q ≡ 2 (mod 4).

Proof. The first item is from Tarry [21, 22]. For the second point see [4] and
Proposition 1. Lam et al. [10] showed that M(2, 10) ≤ 10, which results in the
third item when combined with the main result in [20] (as mentioned in [16]). Part
1 of item 4 can be found in [5] and part 2 in [14]. The last result is from [1].

Proposition 2 (4) together with Lemma 4 give the following result which does
not seem to appear in the literature.

Corollary 1. If q ≡ 1, 2 (mod 4) and q is not the sum of two squares, and t is the
largest positive integer for which either

1

2
t4 − t3 + t2 +

1

2
t− 1 < q,

or

8t3 + 18t2 + 8t+ 4− 2ρ(t2 − t− 1) +
9

2
ρ(ρ− 1)(t− 1) < 3q

where ρ ∈ {0, 1, 2} and ρ ≡ t+ 1 (mod 3), then M(k, q) ≤ q + k − 2− t.

Quite recently, Yang, Zhang, and Wang [25] established new bounds on MDS
codes using the generalized weight enumerator.

Proposition 3. (See [25])

1. If q is odd, then M(q − 1, q) ≤ q + 1.
2. If q is even, t ≥ 4, and (t − 1)! does not divide (q − t + 4)(q − t + 3) · · · (q +

1)(q)(q − 2), then M(t, q) ≤ q + t− 3, and M(q − 2, q) ≤ q + t− 3.

As we see, the main conjecture for linear MDS codes does not hold for general
MDS. Relaxing the conditions to inequalities gives the general conjecture.
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Conjecture 1 (The Main Conjecture for General MDS Codes).

M(k, q) = k + 1 if q ≤ k.

Taking q > k we have

M(k, q) ≤
{
q + 2 if q = 2t, t ≥ 2 and k = 3 or k = q − 1,
q + 1 otherwise.

4. Some new proofs. The following has been shown in many different ways. To
our knowledge, the alternative proof given here is new.

Theorem 3. If q is odd and k ≥ 3, then M(k, q) ≤ q + k − 2.

Proof. Let C be a (q + k − 1, k)q-MDS code, thus d = q. Assume without loss of
generality that the zero codeword is contained in C.

We choose to partition the code the following way with associated weight profile:

T1 = {1, 2} T2 = {3, 4, . . . , k − 1} T3 = {k, k + 1, . . . , q + k − 1};

w1 = 2 w2 = 0 w3 = q − 2.

(Note that T2 = ∅ is admissible.) Let S ⊆ C be the collection of codewords satisfying
this characteristic. From Equation 2 we know

|S| = AT (2, 0, q − 2) = (q − 1)

(
q

2

)
=
q(q − 1)2

2
.

Let Ca,b = {c ∈ S | c1 = a, c2 = b} with a, b 6= 0. Then S =
⋃
Ca,b. From the

(q − 1)2 choices for the pair a, b, there will be one such that

|Ca,b| ≥
⌈q

2

⌉
. (3)

Each codeword in Ca,b has exactly two zeroes in the positions of T3, moreover,
no two words in Ca,b have a zero entry in a common coordinate of T3 (else d = q is
violated in C). It follows that

|Ca,b| ≤
⌊q

2

⌋
. (4)

From (3) and (4) we have q
2 an integer, so q is even. The result follows.

Remark 1. Proposition 3-part 1 can be proven similarly by choosing {T1 =
{1, 2}, T2 = {3, . . . , q + 2}} as a partition and (2, 2) as the weight profile. Ob-
serving that (supp(α) ∩ T2) ∩ (supp(β) ∩ T2) = ∅ for any two distinct α, β ∈ Ca,b

(else d < 4) gives |Ca,b| ≤ bq/2c.

The next result follows from Proposition 3. However, the proof given here is new,
and demonstrates the use of the partition weight enumerator as well as a link with
triple systems.

Theorem 4. If q ≡ 4 (mod 6), then M(q − 2, q) ≤ q + 1.

Proof. Assume that a (q + 2, q − 2)q MDS code C with q ≡ 4 (mod 6) exists, thus
d = 5. Without loss of generality assume that the code contains the zero codeword.

We choose to partition the code and associate a weight profile in the following
way:

T1 = {1, 2} T2 = {3, 4, . . . , q + 2};
w1 = 2 w2 = 3.
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Let S ⊆ C be the set of all codewords satisfying these criteria. From the partition
weight enumerator (Equation 2) we know that

|S| = AT (2, 3) = (q − 1)

(
q

3

)
=
q(q − 1)2(q − 2)

6
.

Then there exist a, b 6= 0 from the alphabet, such that

|Ca,b| ≥
⌈
q(q − 2)

6

⌉
, (5)

where Ca,b = {c ∈ S | c1 = a, c2 = b}.
To achieve a minimum distance of d = 5, for any two codewords α, β ∈ Ca,b it

has to hold that supp(α) ∩ T2 and supp(β) ∩ T2 have at most one coordinate in
common. Thus the collection {supp(α) ∩ T2 | α ∈ Ca,b} forms a set of triples with
no pair in common (a triple system).
Counting ordered pairs (α, t) where α ∈ Ca,b and t ∈ supp(α) ∩ T2, we get

(|Ca,b|)(3) ≤ (q)

⌊
q − 1

2

⌋
. (6)

Since q is even, combining (5) and (6) results in

|Ca,b| =
q(q − 2)

6
.

Then, q(q−2)
6 has to be an integer, thus q ≡ 0, 2 (mod 6) which is a contradiction

to q ≡ 4 (mod 6). Therefore if q ≡ 4 (mod 6) no (q + 2, q − 2)q MDS code exists
and by Lemma 3, M(q − 2, q) ≤ q + 1.

Combining the result of Theorem 4 with Lemma 4, we get the following.

Corollary 2. If q ≡ 4 (mod 6), then M(q − 1, q) ≤ q + 2.

5. Conclusion. There are still many open questions concerning the upper bound
of general MDS codes. Except for small or very large dimensions, little is known
regarding truth of the main conjecture. Moreover a motivating question is that of
when the conjectured bounds are met with equality. In short, even though the case
for linear codes has been largely solved, there is still plenty of room for progress
regarding general MDS codes.

The Partition Weight Enumerator seems to provide some useful techniques for
tackling the problem of determining M(k, q), and we hope that further work will
confirm this.
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