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Abstract. While climate change is a complex, interdisciplinary topic, per-

haps the most important effect of climate change on the developing world is
through the issue of food security. We present some simple mathematical mod-

els for climate-change-induced food insecurity in the equatorial region. It is

believed that the primary effect of future climate change in equatorial Africa
will be a shift of the timing of the rainy season and an increase in the incidence

of violent rain events. By considering a stochastic parameter dependence in

simple models of crop yield we demonstrate the manner in which the distribu-
tion of crop yield varies. In particular we demonstrate that in some parameter

regimes an unexpected double-peaked distribution results, with a significant
probability of potentially disastrous low yields. We conclude by critiquing our

simple models and suggesting avenues for future work.

1. Introduction. The issue of climate change is the exemplar of interdisciplinar-
ity, spanning the physical, biological and computer sciences along with a profound
political dimension. The fourth IPCC report (Solomon et al. 2007) identifies several
future climate scenarios. In all but the most optimistic of these, the world’s climate
is expected to become far less regular, with the heavily populated regions of tropical
and subtropical Africa experiencing profound and difficult-to-predict changes due
to the shifts in atmospheric convergence bands. This is particularly problematic
since many developing economies are not well equipped to deal with resulting crop
failures, water shortages and a host of other issues lumped under the heading of
“food security”.
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The modeling of crops, while not as well known as physics-based computer models
of the climate system, is a vibrant part of so-called land surface models (Chalinor et
al 2004), and is closely tied to the manner in which meteorological modeling efforts
(Slingo et al 2005) are used to infer implications for agriculture, the spread of disease
and other so-called human factors. Much as their climate system counterparts, crop
models exhibit varying degrees of nonlinearity and number of parameters. However
even so-called intermediate complexity models (e.g. Chalinor et al 2004) require well
over twenty parameters, many of which are only weakly constrained. The model
of Chalinor et al, is specifically designed to minimize parameter calibration, while
more complex models (e.g. CROPGRO, Boote and Jones 1998) sometimes have
entire calibration methodologies (Basso et al 2001) in order to specify the model
parameters in a robust manner

In this article we develop several very simple models of crop yield using standard
equations and methods from population and mathematical biology. The focus is
on the simplest models, building on long accepted practice in climate modeling
(e.g. Stommel’s two box model, Stommel 1961, the delayed oscillator model of
the El Nino-Southern Oscillation, ENSO, Tziperman et al 1994). No attempt is
made to incorporate modern farming practices, including genetically modified seeds
and fertilizer application regimes, which, in any event, are largely out of reach for
typical farmers in developing countries. The role of climate change is introduced via
stochastic parameter dependencies and a variety of analytical and semi-analytical
results are derived. We identify mathematical issues that preclude a completely
analytical treatment, and at the same time, demonstrate the manner in which many
of our results carry over to wider classes of models. We conclude by criticizing our
models, and based on this criticism, identify avenues for future work.

2. Models.

2.1. The simplest model. Consider the total crop yield (biomass) for a typical
small plot of land in the tropics, tilled either by hand or with simple machinery.
Assume no fertilizers or pesticides are applied and that the biomass in the field
increases exponentially depending on the availability of moisture. Further assume
that at the time of planting t = 0 there is little rain, and a small biomass Y0. Steady
rains set in at a time 0 < t1 < 1 and continue until harvest at t = 1. We have thus
scaled time, and biomass so that our resulting models will be dimensionless. For
t < t1 we have

dY

dt
= α1Y

so that Y (t1) = Y0 exp(α1t1) and for t > t1 we have

dY

dt
= α2Y

where α2 � α1 so that at t = 1 we have

Y (1) = Y0 exp(α1t1) exp(α2[1 − t1]) = Y0 exp[−t1(α2 − α1) + α2].

Let us now consider a probability distribution for the time of onset of the rains,
t1, with a particularly simple choice being t1 ∼ N(1/2, σ2), a Gaussian distribution
centered at 1/2 with a standard deviation of σ. What distribution does Y (1) have?
Notice that we can rewrite the solution as

ln

(
Y (1)

Y0

)
= α2 − t1(α2 − α1)
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where the right hand side has a Gaussian distribution N(α2 − (α2 − α1)/2, (α2 −
α1)σ2), or in other words Y (1)/Y0 has a lognormal distribution. The expression may
be simplified further if we assume that α2 = βα1 and we scale by the value one would
get were the crop to grow exponentially under the optimal growth conditions. This
means our scaled variable will take a value between 0 and 1, so that its logarithm
is negative, and the probability distribution is given by

ln

(
Y (1)

Y0 exp(α1β)

)
∼ N(α1(1 − β)/2, σ2α1(β − 1)).

Note that the right hand has a standard deviation that is positive (since β > 1)
and is directly proportional to the standard deviation of the onset of rains (σ), the
pre-rain growth parameter α1 and the post-rain growth parameter βα1. Several
examples are presented in figure 1. These clearly demonstrate that for large differ-
ences between the optimal (βα1) and sub-optimal (α1) growth rates the probability
of a highly sub-optimal yield increases very quickly, so that even moderate variance
in the timing of the rains has possibly grave consequences.

2.2. Logistic model. The simple model presented above can be criticized in many
different ways. Perhaps the most obvious criticism is that the crop biomass cannot
increase without bound and indeed every field has some inherent carrying capacity
that provides a hard upper bound on crop yield. It is well known that the logistic
model is the simplest extension of the exponential model with a carrying capac-
ity (Murray 2002). Since a logistic model reduces to an exponential model when
biomass Y is small, we only modify the post-onset of the rains growth law from our
simplest model, so that for t > t1

dY

dt
= βα1Y (1 − Y ).

which can be solved to yield

Y (1) = − eα1t1 y0e−α1β t1

−eα1t1 y0e−α1β t1 − e−α1β + e−α1βeα1t1 y0
.

We have not been able to express the distribution of Y (1) in terms of standard
probability distributions, even when t1 has a Gaussian distribution. A formula
can be derived by the change-of-variable theorem, or samples can be generated in
standard mathematical software packages such as Maple and Matlab. Both of these
have been used to generate figures in the following. An ensemble size of 9 × 106

samples was used to obtain robust statistics throughout the following.
Since growth now has a hard bound we expect that parameter sets with larger

growth rates, which are more likely to run up against the hard limit on Y , will
yield qualitatively different probability distributions. This is confirmed in figure 2.
When β is small, the probability distribution is peaked at low values. This is
because whether rains come early or late, the biomass grows slowly. However, when
the growth rate is increased, a far broader probability distribution results, and for
larger growth rates still, the probability distribution peaks at the carrying capacity.

2.3. Modified Logistic model. The above-described logistic model is an obvious
improvement on the purely exponential model. Nevertheless, it ignores several key
aspects of the anticipated climate change assumed to affect the modeled crop yield.
In particular, delayed rains can lead to the death of a subset of the planted crop
(e.g. seeds, seedlings, juvenile plants), and (Solomon et al. 2007) delayed rains
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are often accompanied by higher incidence of extreme weather events, which can in
turn wash away a portion of the planted crop. The simplest model of both of these
effects is a carrying capacity that decreases as t1 increases above its mean value, so
that

dY

dt
= βα1Y (a− Y ).

where

a(t1) = 1 −H(t1 − 1/2)b[t1 − 1/2]

and H(.) is the Heaviside step function.
The empirical function a(t1), which specifies the carrying capacity, is chosen so

that early rains have no effect. The strength of influence of the later onset of rains
is controlled by the single parameter b. The linear nature of a(t1) is the simplest
possible choice. From the form of the model, we can predict that the most profound
differences with the pure logistic model can be expected when the growth rate is
large and the decrease in the carrying capacity is significant, b > 1. In these cases
we can expect an increase in the probability of low yields. This is confirmed in
figure 3, where we contrast two modified model parameter sets with the purely
logistic model. It is clear that for the largest values of b the probability distribution
has a second peak that is centered very near zero. Even for significantly reduced
values of b (dashed curve) the probability distribution is bimodal, with a peak near
optimal yields, a very sharp drop off near Y (1) ≈ 0.7 and a secondary peak centered
well below Y (1) = 0.1. By examining the individual ensemble members, we have
confirmed that the high yield peak corresponds to ensemble members for which the
rains set in early t1 < 1/2.

In figures 4 and 5 we show isolines of probability that Y (1) < 0.1 and Y (1) < 0.5,
respectively. These clearly show that the modified logistic model only leads to
significant differences from the purely logistic model when the growth parameter β is
large enough. Moreover, the effects on the probability of very low yields Y (1) < 0.1
cover a much larger section of parameter space.

2.4. Modifying the Probability distribution of the rains. While the Gauss-
ian distribution for the onset of the rains is the simplest it has several undesirable
properties: it is symmetric and has so-called fat tails, or instances in which draws
from it result in extreme values. One way to draw from a fixed interval is to use
the so-called Beta distribution. For the Beta distribution in standard form the
probability distribution function is zero outside the interval [0, 1] and is given by

P (t; ν, ω) =
t−1+ν (1 − t)

−1+ω

β (ν, ω)
,

where β(ν, ω) is a constant given in terms of the Gamma function by

β(ν, ω) =
Γ(ν)Γ(ω)

Γ(ν + ω)
.

The parameters ν and ω determine the shape of the probability distribution and
the range [0, 1] can be linearly shifted to any interval of choice (0.475 < t1 < 0.775
for the figure).

In figure 6 we show results for the three previously discussed models with the
beta distribution used in place of the normal. In panel (a) we show the histogram
for the 9 × 106 draws from the beta distribution used to construct subsequent
panels. We set (ν, ω) = (2, 3.2), though similar results would be obtained for many



STOCHASTIC MODELS OF FOOD INSECURITY 81

different parameter values. In panel (b) we show results from the exponential model.
In contrast to figure 1 we find that even low growth rates yield sharply peaked
probability distributions for yield. In panel (c) we show results for the purely
logistic model. It can be seen that again the probability distributions are more
peaked than those for the Gaussian t1, especially at low growth rates. This is
consistent with results shown in panel (b). In panel (d) we show results for the
modified logistic model. It can be seen that over a substantial range of b values
a double-peaked probability distribution results. Interestingly the peak for large
yields is substantially reduced in extent from results shown in figure 3. A direct
examination of the t1 values that give yields larger than 0.85 show that these are
never larger than 0.51. This implies that the broad peak of large yields in figure 3 is
a direct result of the symmetric nature of the Gaussian, and is probably unrealistic.

2.5. The effect of a nonlinear carrying capacity. Previously we have consid-
ered the decrease in carrying capacity to be a linear function in the delay of the
onset of the rains (t1 − 1/2). This is the simplest model, though unlikely to be re-
alistic. While many possible models for a(t1) are possible, one in which a decreases
quickly once a critical delay is reached is the logical counterpoint to the linear model
discussed above. We thus consider

dY

dt
= βα1Y (a− Y ),

where

a(t1) = (1 −B) +B tanh

(
t1 − b

d

)
.

Since the hyperbolic tangent varies between −1 and 1, the parameter 2B determines
the size of the decrease in a, the parameter b determines the t1 value at the center of
the change, and d determines how sharply a decreases. We wish to consider large,
rapid variations in a and hence consider B = 0.45 and d = 0.05 and allow b to vary.
The onset of the rains is taken as being drawn from the same beta distribution as
the results shown in figure 7. In panel 7 a we show the probability distribution of
Y (1) for various choices of b. The results should be compared those in figure 6d.
It can be seen that the primary effect of the highly nonlinear change in a is to
decrease the high yield peak, and to decrease the peak for very low yields. This is
especially true as b decreases. Panel 7b shows the low yield range in detail while
panel 7c shows a(t1). As the width of the hyperbolic tangent in the specification of
a is increased the linear results from figure 6 may be recovered (not shown).

3. Discussion. The above discussed models clearly demonstrate that the uncer-
tainty in the onset of and increase in violent rain events during the rainy season
(the so-called long rains in the equatorial East African context) yield parameter
regimes for which the probability of catastrophically low yields is greatly increased.
The models constructed exhibit this property due to the variation in the maximum
attainable yield due to, for example, seed death due to drought and seed washout
due to flooding. Due to their simplicity, our models do not require parameter fit-
ting, and indeed are not designed to fit any particular data set. Indeed, detailed
predictions are best left to well calibrated models that form a part of a modern me-
teorological observation, data assimilation and prediction network. However, many
developing countries (e.g. Uganda) lack the infrastructure and resources for such a
network, and for such settings simple models can convey information to a variety
of stakeholders in a compact manner.
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While the presented models should eventually be superceded by a multi-stake
holder modeling effort driven by the needs of the local, national entities, the present
work could be extended in a number of useful ways that do not require vast ex-
penditures or infrastructure. The primary extension to a tropical setting is via
consideration of different types of crops. For example, while subsistence farming of
maize can be reasonably be considered to be roughly reflected in the models pre-
sented above, more economically complex crops such as coffee and bananas cannot
be. The construction of simple models that link the economics of cash crops with
“cartoons” of predicted climate change form the most immediate extension of the
present work.

On the climate side it would be worth comparing the stochastic perturbations
due to either observed or modelled ENSO system variability, including toy models
such as the delayed oscillator (Tziperman et al 1994), to the idealized perturbations
considered above. Moreover, due to the well known problems many climate models
have with the correct characterization of the Inter-Tropical Convergence Zone (the
so-called double ITCZ problem, see Wu et al 2007) a serious nested modeling effort
focusing on Tropical Africa is needed.
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Figure 1. Sample PDFs for Y (1)/Y (0) exp(βα1) from the sim-
plest model as β varies. α1 = 0.1 and σ = 0.1. Note how the
effects of delayed rains increase for larger disparities between the
sub-optimal (α1) and optimal (βα1) growth parameters.
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Figure 2. Sample PDFs for Y (1) from the logistic model as β
varies. α1 = 0.1 and σ = 0.1. Note how the effects of delayed rains
can be qualitatively different depending on the growth rate.
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Figure 3. Sample PDFs for Y (1) from the modified logistic model
as b varies. (β, α1) = (155, 0.1) and σ = 0.1. The dotted line
correspond to the pure logistic model of figure 2. Note how the
effect of delayed rains on the carrying capacity can lead to a double
peaked probability distribution.
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Figure 4. Contours of probability that Y (1) < 0.1 in β − b pa-
rameter space. Note how the effect of delayed rains on the carrying
capacity is only evident for large enough β.
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Figure 5. Contours of probability that Y (1) < 0.3 in β − b pa-
rameter space. Note how the effect of delayed rains on the carrying
capacity is only evident for the largest values of β (contrast with
figure 4).
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Figure 6. (a) Histogram of realizations from the beta distribution
used in place of a Gaussian, (b) results of exponential model; con-
trast with figure 1, (c) results of purely logistic model with β = 176,
contrast with figure 2, (d) results of modified logistic model; con-
trast with figure 3.
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Figure 7. Results of a modified logistic model with a highly non-
linear change in maximum yield for fixed beta distribution and
various choices of yield function. (a) Sample PDFs for Y (1) from
the modified logistic model as the center of a hyperbolic tangent b
function varies, (b) detail of (a) for low yields, (c) a(t1), linestyles
match profiles in panels (a) and (b).


