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Abstract. We give a combinatorial interpretation of a classical meta-Fibonacci se-

quence defined by G(n) = n − G(G(n − 1)) with the initial condition G(1) = 1, which
appears in Hofstadter’s “Gödel, Escher, Bach: An Eternal Golden Braid”. The interpre-
tation is in terms of an infinite labelled tree. We then show a couple of corollaries about
the behaviour of the sequence G(n) directly from the interpretation.

1. Introduction. In his famous book Gödel, Escher, Bach: An Eternal Golden Braid,
Douglas Hofstadter introduced his G-sequence [4, p. 137] defined as

G(n) = n−G(G(n− 1)) ; G(1) = 1. (1)

This recursion is part of the general family of recursions given by G(n) = n−G(Gk(n− 1))
with initial condition G(1) = 1. The superscript of k ≥ 1 means a k-fold composition
of the function G(n). Recursions of this form, where the argument of the defining terms
depend on previous values of the recursive function, are called meta-Fibonacci or nested
recursions. There is knowledge about Hofstadter’s G-sequence in literature nowadays, but
little is known about the other k-fold recursions above.

Let Fn denote the Fibonacci numbers, defined by Fn = Fn−1 + Fn−2 and F1 = F2 = 1.
Meek and Van Rees [5] showed that if n = Fr1 + · · ·+Frj is the Zeckendorf representation1

of n then G(n) = Fr1−1 + · · · + Frj−1. Soon both Granville and Rasson [3], and Downey

and Griswold [2] showed that G(n) = ⌊(n + 1)ϕ−1⌋ where ϕ =
√
5+1
2 is the golden ratio.

Our result is an interpretation for G(n) in terms of counting labels in an infinite labelled
tree. After our discovery we learned that the result was known by some in meta-Fibonacci
circles2, but to the best of our knowledge there is no published proof of this combinatorial
interpretation in literature. The purpose of this paper is not only to give a proof of the
interpretation, but also to provide motivation for adapting this approach in order to find a
combinatorial interpretation of the related k-fold recursion above.

2000 Mathematics Subject Classification. Primary: 05A15; Secondary: 11B37, 11B39.
Key words and phrases. meta-Fibonacci recursion, Hofstadter’s G–sequence.
1Given any positive integer n, it is possible to write n uniquely as n = Fr1 + · · ·+Frj where ri ≥ ri+1+2

for 1 ≤ i ≤ j − 1. This is called the Zeckendorf representation of n.
2In private communication with Steve Tanny, Hofstadter recalled having prior knowledge of this

interpretation.
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2. Combinatorial interpretation of the recursion G(n). Throughout this section we
will refer to Hofstadter’s G-sequence as defined in (1) as G(n). Table 1 contains the first 20
values of G(n). Notice from this table that the difference between a term of G(n) from the
previous term is always 0 or 1. Such a sequence of positive integers is called slow-growing.
It is not difficult to show via induction that G(n) remains slow-growing for all n. More
importantly, let f(n) = #G−1({n}) for n ≥ 1, which we call the frequency sequence of
G(n). The frequency sequence displays many patterns (see Table 2), for example, it consists
only of 1s and 2s. In fact, let us interpret the frequency sequence as an infinite word W =∏∞

n=1 f(n) where the product stands for concatenation. Setting w1 = 2, w2 = 1, w3 = 2,
and wn = wn−1wn−2 for n ≥ 4, we can experimentally verify that the initial segments of
the word W factorizes as W = w1w2w

2
3w

2
4 · · ·w2

n. Such observations about the frequency
sequence motivate us to define a labelled tree such that for each n, G(n) is the label of the
parent of vertex n+ 1.

Table 1. First 20 terms of G(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
G(n) 1 1 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11 11 12 12

Table 2. First 20 terms of the frequency sequence f(n)

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
f(n) 2 1 2 2 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 1

This tree, denoted as G, is defined recursively as follows. G has a root vertex whose left
subtree is a copy of G. The root also has a right child which itself has a copy of G as its only
subtree. The definition is pictured in the left-half of Figure 1. The labeling procedure works
by denoting the root of G as vertex 1, and then labeling the vertices in increasing order of
their height from the root. All vertices at a specific height are labelled in increasing order
from right to left. The right half of Figure 1 shows G labeled up to height three.

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

G =

G

G

1

23

56 4

7891011

1213141516171819

Figure 1. G is defined on the left. To the right is G labelled up to height 4.

Lemma 1. The tree G contains Fh+2 vertices at height h. Consequently, the number of
vertices in G from height 0 through h is Fh+4 − 2.
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Proof. From the definition of G we note that vertices at height h of G consists of vertices
at height h − 2 of G contributed by the right subtree of the root and vertices at height
h− 1 contributed by the left subtree of the root. As such, the number of vertices at height
h satisfies the Fibonacci recursion with initial conditions F2 and F3 for heights 0 and 1
respectively. It follows that there are Fh+2 vertices at height h and that the number of
vertices from height 0 to h is F2 + · · · + Fh+2 = Fh+4 − 2. We deduce the latter from the
well-known Fibonacci identity F1 + · · ·+Fh = Fh+2 − 1. See, for example, [1, p. 2] where a
combinatorial proof is provided.

Remark 1. We could alter the tree G to make it so that G(n) is the label of the parent of
vertex n. To do this we need to insert a new vertex below the current root of G and then
attach it to the root. We then redo the labeling starting from the new vertex. However,
there are certain advantages with the current definition. First, we think that it makes the
recursive definition of G more pleasant. Further, the definition as it stands will make some of
the computations in the proof of the combinatorial interpretation easier and the exposition
more clear.

Theorem 1. Let g(n) denote the label of the parent of vertex n + 1 in the infinite tree G.
Then g(n) satisfies the recursion g(n) = n− g(g(n− 1)) with the initial value g(1) = 1.

Proof. The proof is by induction on the vertex labels n. By comparing the values of G(n)
from Table 1 with the values of g(n) from Figure 1, we see that the theorem holds for the
first 19 vertices, which consists of all vertices of G up to height 4. Now suppose that vertex
n + 1 is located at height h > 4 and that the theorem holds for all vertices in G preceding
n+ 1.

As h > 4, vertex n+ 1 is either located on the left subtree of vertex 1 or on the subtree
emanating from vertex 2. Both these subtrees are a copy of G. Denote the subtree containing
vertex n + 1 as G′, and the subtree not containing n + 1 as G′′. If we now remove all the
labels of G′ that it inherits from G, and relabel G′ in the same manner as we labeled G
starting from 1, then vertex n + 1 of G will receive a new label n0 + 1 on G′ with n0 < n
since n0 +1 is located at a lower height in G′. (Specifically, at height h− 1 of G′ if G′ is the
left subtree of vertex 1 or at height h−2 of G′ if it is the subtree of vertex 2.) As an example,
consider n + 1 = 10 in which case G′ is the left subtree of vertex 1 and n0 + 1 = 5. We
establish the recursive formula at index n through its validity at index n0 and by evaluating
the differences (n+ 1)− (n0 + 1), g(n)− g(n0), and g(g(n− 1))− g(g(n0 − 1)).

The difference (n + 1) − (n0 + 1) is the number of vertices in G consisting of vertices 1,
2, and all the vertices preceding n + 1 that are in G′′. Such vertices preceding n + 1 in G′′

consist of all vertices from height 0 to h − 2 of G′′. As G′′ is isomorphic to G, there are
Fh+2 − 2 vertices from height 0 to h− 2 by Lemma 1. Therefore,

n+ 1 = (n0 + 1) + 2 + (Fh+2 − 2). (2)

Now we evaluate g(n) − g(n0). Notice that the parent of vertex n + 1 in G is the same
as the parent of the vertex labelled n0 + 1 in G′, but its label differs between the two trees.
Vertices 1 or 2 cannot be the parent as n+1 is above height 4. The difference g(n)− g(n0)
is again given by accounting for vertices 1 and 2 in G along with the vertices in G preceding
the parent of n + 1 and residing in G′′. Since the parent of vertex n + 1 is at height h − 1
of G, the vertices in G′′ that precede the parent of n + 1 range from height 0 to h − 3 of
G′′. Counting as before we deduce that g(n) − g(n0) = Fh+1. Thus, since n = n0 + Fh+2

from (2), we conclude that

n− g(n) = n0 − g(n0) + Fh. (3)
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We now compare g(g(n− 1)) with g(g(n0− 1)). Except for some instances, we show that
vertex g(g(n− 1)) in G is the same as the one labeled g(g(n0− 1) in the separate labeling of
G′. Let us assume that vertex n+ 1, considered as a vertex of G situated in the subtree G′,
is not the first or last vertex at its height in G′. In that case, vertex n lies in G′ and points
to the same vertex as the one labelled n0 in the separate labeling of G′. As such g(n − 1)
points to the parent vertex of n0 in G′, which is labelled g(n0 − 1) in the separate labeling
of G′. This parent cannot be the last vertex at its height in G′, for otherwise, it would be
the common parent of vertices n0 and n0 + 1 in G′ located at the height above. This would
make n0 + 1 the last vertex at its height in G′, contradicting the assumption that vertex
n+1 in G, pointing to the same vertex as the one separately labeled n0 +1 in G′, is not so.

As vertex g(n − 1) of G is not the last vertex at its height in the subtree G′, vertex
g(n− 1) + 1 of G lies in the subtree G′ and points to the same vertex as the one separately
labelled g(n0 + 1) in G′. Hence the parent of vertex g(n− 1) + 1 in G, lying at height h− 2
of G, also lies in G′ and points to vertex g(g(n0 − 1)) in the separate labeling of G′ (recall
that h > 4 so vertex g(g(n0 − 1)) is defined in G′). This confirms that vertex g(g(n− 1)) in
G is the same as the vertex labeled g(g(n0 − 1)) in G′.

The difference g(g(n − 1)) − g(g(n0 − 1)) in labels once again comes from vertices 1, 2
and all vertices in G preceding g(g(n − 1)) that lie on G′′. Since vertex g(g(n − 1)) is at
height h − 2 of G, the vertices preceding g(g(n − 1)) that lie on G′′ range from height 0 to
h− 4 of that subtree. There are Fh − 2 of them by Lemma 1 and thus

g(g(n− 1)) = g(g(n0 − 1)) + 2 + (Fh − 2) = g(g(n0 − 1)) + Fh .

By the induction hypothesis n0 − g(n0) = g(g(n0 − 1)), and so by (3) we get

n− g(n) = n0 − g(n0) + Fh = g(g(n0 − 1)) + Fh = g(g(n− 1)) .

We now deal with the exceptional cases, assuming first that vertex n+ 1 in G is located
on the left subtree of vertex 1 and at heigh h > 4. Deviating from the previous notation a
bit, denote the left subtree containing n + 1 as Gl and the subtree emanating from vertex
2 as Gr. Vertex n + 1 is at height h − 1 of Gl. If it is the first vertex at height h − 1 of Gl

then vertex n is the last vertex at height h− 2 of Gr. So g(n− 1) is the last vertex at height
h− 3 of Gr and so g(n− 1) + 1 is the first vertex at height h− 2 of Gl. Vertex g(g(n− 1))
is then the first one at height h− 3 of Gl.

Meanwhile, when Gl is labeled separately as before, vertex n + 1 in G will again point
to the same vertex as some vertex labeled n0 + 1 in Gl. Then the vertex labeled n0 in Gl

becomes the last vertex at height h− 2 of Gl, which implies that g(n0 − 1) is the last vertex
at height h − 3 of Gl, and g(n0 − 1) + 1 is thus the first vertex of Gl at height h − 2. So
vertex g(g(n0 − 1)) in Gl, the parent of g(n0 − 1) + 1, is the first vertex at height h − 3
of Gl. It points to the same vertex as the one labelled g(g(n − 1)) in G. The difference
g(g(n− 1))− g(g(n0 − 1)) is thus Fh due to the same reasons as in the previous case. Thus
from the induction hypothesis for n0, we deduce as before that n− g(n) = g(g(n− 1)).

When vertex n+ 1 in G is the last vertex at height at height h− 1 of Gl, vertex g(n− 1)
is the common parent of vertices n and n+ 1, situated as the last vertex at height h− 2 of
Gl. So g(n−1)+1 is the first vertex at height h−2 of Gr making g(g(n−1)) the first vertex
at height h− 3 of Gr. On the other hand, with n0 +1 defined as before, vertex g(g(n0 − 1))
in Gl will be the first one at height h− 2 of Gl. Both vertices g(g(n− 1)) and g(g(n0 − 1))
are located at height h− 1 of G.

One must be careful about calculating g(g(n−1))−g(g(n0−1)) because vertex g(g(n−1))
of G occurs before the vertex pointing to g(g(n0 − 1)) in G. Although the label of the
latter vertex on Gl, which is g(g(n0 − 1)), is less than g(g(n − 1)). In this situation we
simply note that since vertex g(g(n0 − 1)) is the first one at height h − 2 of Gl, its label is
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F2 + · · ·+ Fh−1 + 1 = Fh+1 − 1. Similarly, as g(g(n− 1)) is the first vertex at height h− 1
of G, its label is Fh+2 − 1. Therefore g(g(n − 1)) − g(g(n0 − 1)) = Fh+2 − Fh+1 = Fh. As
before it follows from the induction hypothesis on n0 that n− g(n) = g(g(n− 1)).

When vertex n + 1 is located on the subtree Gr, the exceptional cases are analogous to
the previous ones. The case for vertex n + 1 being the last one at height h − 2 of Gr is
analogous to the case when n+1 is the first vertex at height h− 1 of Gl. When vertex n+1
is the first vertex at height h− 2 of Gr the situation is analogous to when n+ 1 is the last
vertex at height h−1 of Gl. This completes our induction and the proof of the theorem.

We now present a corollary which is the simplest case of Meek and Van Rees’s result on
how G(n) acts on positive integers when written in their Zeckendorf representation. Recall
from the introduction that the authors showed if n = Fr1 + · · · + Frj is the Zeckendorf
representation of n then G(n) = Fr1−1 + · · · + Frj−1. We now show this for n = Fr,
that is, for the Fibonacci numbers. With more work one could get the whole result from
the combinatorial interpretation but we will not pursue that direction because the proof
is tedious. Instead we will prove the factorization property of the word

∏∞
n=1 f(n) that

we observed earlier experimentally, and which led to our discovery of the combinatorial
interpretation for G(n).

Corollary 1. g(Fn) = Fn−1 for n ≥ 2, where Fn is the nth Fibonacci number.

Proof. For n > 4, the second vertex at height n − 3 is labeled F2 + · · · + Fn−2 + 2 = Fn.
Its parent is the first vertex at height n− 4 with label Fn−1 − 1. Thus the parent of vertex
Fn + 1 is the second vertex at height n − 4 since the first one has vertices Fn − 1 and Fn

as its children. Hence g(Fn) = Fn−1. For 2 ≤ n ≤ 4, one can verify the claim from Figure
1.

Corollary 2. Define words w1 = 2, w2 = 1, w3 = 2 = w1 and wn = wn−2wn−1 for n > 3.
Let f(n) denote the frequency sequence of g(n). The infinite word W =

∏∞
n=1 f(n) factorizes

as W = w1w2

∏∞
n=3 w

2
n.

Proof. The combinatorial interpretation makes it clear that g(n) is slow-growing, and The-
orem 1 implies that the frequency sequence of G(n) from (1) is the same as that of g(n). We
note that f(n) is the number of children of vertex n in G. Indeed, if vertex n has children
labeled from a to b then g(k) = n precisely when k ranges from a + 1 to b + 1. Let Wh

denote the word produced by concatenating from left to right the values of f(n) as n ranges
in increasing order over the vertices at height h of G. For h > 1, the vertices at height h
of G are arranged by placing the vertices at height h − 2 of G to the right of the vertices
at height h − 1 of G, following from the recursive definition of G. Thus Wh = Wh−2Wh−1

with W0 = 2 and W1 = 12. We show that Wh = wh+1wh+2 for h > 0. We have that
W1 = 12 = w2w3 and W2 = 212 = w3w4. Assuming that Wh = wh+1wh+2 for 1 ≤ h < N ,
we get that WN = WN−2WN−1 = wN−1wNwNwN+1 = wN+1wN+2 where the last equality
uses the recursive definition of wn. The claim follows by induction. Finally, to finish the
proof we note that W0 = 2 = w1 and so

∞∏
n=1

f(n) =
∞∏
h=0

Wh = W0

∞∏
h=1

Wh = w1

∞∏
h=1

wh+1wh+2 = w1w2

∞∏
h=3

w2
h.

The consequence of Corollary 2 is that it allows us to view the word W as two intertwined
copies of itself along with the initial seeds w1 and w2. More precisely, the above factorization
shows that W = w1w2

∏∞
n=3 w

2
n = w3

∏∞
n=2 wnwn+1 = w3

∏∞
n=2 wn+2 =

∏∞
n=3 wn. What
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we hope is that one can find analogous factorizations of the frequency sequences generated
by the k-fold recursions that was discussed in the introduction. In this manner one may find
corresponding infinite trees for the k-fold recursions and proceed to derive a combinatorial
interpretation.
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