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Abstract. To determine which non-invasive clinical tests can most easily differentiate

primary Sjogrens syndrome (pSS) dry eye from non-autoimmune aqueous deficient dry

eye (DE). The records of all patients seen at the University Health Network Sjogrens
Syndrome Clinic from October 1992 to July 2006 were reviewed and documented. Pa-

tients were diagnosed with pSS by the AECC criteria of 2002. DE controls were non-SS

patients with symptoms of dry eye and Schirmer scores less than 10 mm in 5 minutes
in at least one eye. The non-parametric statistical technique, Random Forests (RF),

was applied to the data set and these results were compared to the previous research

results obtained by a single classification tree [Caffery et al., 2010]. Rose bengal staining
of the conjunctiva and severity of the symptoms of dry eye and dry mouth were the

most important non-invasive variables in differentiating pSS from DE. Random Forest
analysis confirms the previous analysis of this data using single classification trees. The

advantage of RF was superior accuracy when classifying data or estimating values for

missing data.

1. Introduction. In recent years data mining techniques have been applied to a wide scope
of real world problems and have had huge impacts in Statistics, Computer Science and other
disciplines. Data mining can be viewed as a process in which various models, summaries,
derived values, and valuable information is discovered from collections of data, and can
be broken down into two main streams: directed or supervised learning and undirected or
unsupervised learning [[Kantardzic, 2003], [Berry and Linoff, 2000]]. This paper employs a
classification technique, Random Forests (RF) to identify which medical tests are the most
important in differentiating whether a patient has primary Sjogrens’s Syndrome (pSS) or
non-autoimmune aqueous deficient dry eye disease (DE).

In working toward a diagnosis, clinicians prefer to make judicious use of time and costs.
In the case of Sjogren’s syndrome, determining which non-invasive tests are most likely to
identify the disease is important as only those patients would be required to have further
invasive tests which necessarily have risks and higher costs. The previous research paper,
“Rose Bengal Staining of the Temporal Conjunctiva Differentiates Sjogren’s Syndrome from
Keratoconjunctivitis Sicca”, outlined a similar goal of finding non-invasive medical tests
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but using a different data mining technique, single classification trees [Caffery et al., 2010].
This paper focuses on determining the important non-invasive medical tests but with high
prediction accuracy, i.e. reduced misclassification error.

The paper is constructed as below. Section 2 gives a detailed description of the data
set. The data mining techniques, classification tree and random forest, are presented in
Section 3. The random forest algorithm was applied to the data set using the R software
to perform the desired analysis for the given problem. Basically a random forest is a large
group of unpruned classification trees created with bootstrap samples of the data set along
with elements of randomness (discussed in further detail in Section 3.2). Section 4 lists all
the results from RF analysis. A careful comparison between the results from RF and those
from single classification trees [Caffery et al., 2010] is also presented in this section. Finally,
the conclusions and discussions are given in Section 5.

2. Background. This section is divided into two parts. Section 2.1 gives a description
of the diseases presented within the data. This corresponds to the classes of the response
variable, “NAME”. Section 2.2, presents a detailed description of variables contained in the
data set.

2.1. Disease Background. There are two diseases within the data: aqueous deficient dry
eye (DE) and primary Sjogren’s syndrome (pSS). pSS is a systemic autoimmune disease
with the hallmark presentation of dry eye and dry mouth [Fox, 1996]. The secretory glands
of the eye and mouth become recognized as foreign by the immune system and are invaded
by lymphocytes. Many other systems of the body may be affected by the inflammation of
SS including lungs, skin and kidneys. Aqueous deficient dry eye occurs in patients without
SS who have reduced tear production and symptoms of irritation and dry eyes [Lemp et al.,
2007].

The diagnosis of Sjogren’s syndrome is based on the 2002 American European Consensus
criteria [Vitali et al., 2002]. The criteria includes (1) symptoms of dry eye, (2) symptoms of
dry mouth, (3) signs of dry eye that include vital staining of the cells of the ocular surface
and/or reduced tear flow as measured by Schirmer strips, (4) signs of dry mouth that include
a low volume of saliva, (5) serum antibodies to nuclear proteins Ro and/or La and (6) the
presence of foci of lymphocytes in the minor salivary gland biopsy. Four of the six criteria
must be present for the diagnosis and at least one of those four must be either a positive
blood serum or biopsy result. The diagnosis of aqueous deficient dry eye would include dry
eye symptoms, ocular surface staining and low tear flow test.

2.2. Data Set. The data set used throughout the paper came from the University Health
Network Sjogren’s Syndrome clinic and included the records of patients who went to the
clinic between October 1992 to July 2006 [Caffery et al., 2010]. The entire data set consisted
of 378 patients and originally contained 101 variables which included the results of patients
various invasive and non-invasive medical tests and their demographics.

Due to the omission of the qualitative results for the blood tests “ATA”, “IgM”, “IgG”,
“IgA” and “ANTI-MIC” listed in Table 3 from the original paper [Caffery et al., 2010],
and the dental variables “missing teeth”, “filled teeth”, “cervical cavities”, “D score”,
“DMF=dentate” and “missing filled” which contained a very large number of missing val-
ues, the final number of predictor variables actually used in the analysis was 89. Table 1
lists all the variables.

Among the 90 variables, “NAME” specifying which disease a patient was diagnosed with,
served as the categorical response (dependent) variable, Y , and the remaining 89 became
the predictor (independent) variables, xi, i = 1, . . . , 89. In order to do a fair comparison
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Table 1. List of Variables

Classification of Variables Non-Invasive Variables Invasive Variables

Demographics age, sex

AECC Criteria dry eye symptoms, dry mouth
symptoms, dry eye signs (pos-
itive Schirmer or rose bengal),
salivary flow positive

Biopsy, serum antibod-
ies for Ro and/or La

Variables Associated with the
AECC Criteria

severity of dry eye symptoms (0-
10), how long eyes have been dry,
severity of dry mouth symptoms
(0-10), how long mouth has been
dry, rose bengal staining score
(RB) of 4/9 or greater, RB value
in worst eye 0-9, Schirmer failed,
i.e., 5 or less, Schirmer value
worst eye, unstimulated salivary
flow, salivary flow score

biopsy focus score 0-
4, Chisholm Mason
biopsy score 3-4 is SS,
i.e., at least 1 focus in
4 mm, Ro present, La
present

Systemic Autoimmune Diag-
noses

mixed connective tissue (CT)
disease present, CREST (calci-
nosis, Raynaud’s, esophageal,
sclerodactyly, telangiectasia)
present, RA diagnosis, SLE
diagnosis, PBC diagnosis

Other Signs of Autoimmune
Disease

Parotid swell, myalgia, arthral-
gia, fibromyalgia, lymphoma, X-
ray positive

Other Systemic Diseases diabetes, hypothyroid

Blood Work (quantitative) IgG, IgM, IgA, M
spike, WBC, ANA,
RF, ATA, Anti Mic,
TSH, AMA, SMA

Other Systemic Symptoms dysphagia, dyspepsia, vaginal
dryness, dysparunia, Raynaud’s,
dry skin, pruritis, rash, alopecia,
photosensitive skin

Medications by Category diuretics, depression, anticholin-
ergics, anti-inflammatories

Other Eye Signs meibomian gland dysfunction,
superior limbic keratoconjunc-
tivitis (SLK)

Rose Bengal Stain Worst eye (WE) RB temporal
stain, WE corneal RB stain, WE
nasal RB stain, each eye total of
3 areas

Fluorescein Stain WE temporal cornea , WE nasal
cornea, WE superior cornea,
WE inferior cornea, WE central
cornea, each cornea by 5 quad-
rants, corneal stain of any kind

Dental Information candidiasis
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with the previous results published in the paper [Caffery et al., 2010], the analysis focused
mainly on three subsets of the final 89 predictor variables: (1) all the invasive and non-
invasive variables (total 89), (2) all the non-invasive excluding salivary flow (total 67) and
(3) all non-invasive variables including salivary flow (total 70).

3. Methodology. Before introducing the Random Forest technique, a brief description of
single classification tree method is presented in Section 3.1. Then, Section 3.2 will go into
detail of how the Random Forest technique works and the theory behind it.

3.1. Classification Tree Analysis.

3.1.1. Classification and Regression Trees (CART). The CART method (also called decision
trees) introduced by Breiman, Friedman, Olshen and Stone in the mid-1980s is defined to
be a non-parametric, exploratory data analysis method which implements binary recursive
partitioning as part of its algorithm [Sutton, 2005]. The type of decision tree that we focused
on was the classification tree as the response variable Y is categorical. According to the
values of the predictor variables, the observations are either sent to the left or the right
child node [Yohannes and Hoodinott, 1999]. The common splitting criterion is called the
Gini Index, which measures the purity of each node and the following equation (1) is the
definition of the Gini Index.

1−
J∑

j=1

p2j , (1)

where pj ’s are the class proportions and j = 1, . . . , J indexes the classes [Sutton, 2005]. In
order to avoid over fitting, pruning is needed to determine an optimal tree size. The chosen
pruning method was the 10-fold cross validation estimate with a cost complexity parameter
and the one standard error rule.

3.1.2. Single Tree Results. The results presented in the paper [Caffery et al., 2010] were
obtained by the CART technique using the R package “rpart”. A single classification tree
was conducted on each of the three variable sets mentioned in Section 2.2. They discovered
that the variables determining whether a patient has the anti-RO antibody and dealing with
biopsies were powerful in differentiating pSS and DE. For all the non-invasive tests, rose
bengal staining was proved to be the most important. We reproduced their analysis and
obtained the same conclusions. Table 2 lists the important variables for all variable sets.
The sensitivity and specificity calculated from each classification tree are presented in Table
3.
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Table 2. Important Variables: Single Classification Trees

Tree Important Variables

All Variables presence of anti-Ro immunoglobulin, biopsy score for
SS, temporal conjunctival staining with rose bengal
in the left eye

All Non-Invasive w/o Salivary Flow temporal conjunctival staining with rose bengal for
the worst eye, the severity of a patients dry mouth
symptoms out of 10, the presence of either rose ben-
gal staining in the worst eye or Schirmer score in the
worst eye, corneal staining of any kind, the value of
rose bengal staining in worst eye

All Non-Invasive w Salivary Flow temporal conjunctival staining with rose bengal for
the worst eye, the severity of a patients dry mouth
symptoms out of 10, the presence of either rose ben-
gal staining in the worst eye or Schirmer score in the
worst eye, the amount of salivary flow per minute
with stimulation, corneal staining of any kind

Table 3. Sensitivity and Specificity for Single Classification Trees

Tree True Predicted Sensitivity Specificity Overall Error

DE pSS

All Variables DE 75 14 99.57 84.27 4.69

pSS 1 230

All Non-Invasive DE 50 39 95.70 56.18 15.31

w/o Salivary Flow pSS 10 221

All Non-Invasive DE 54 35 95.24 60.67 14.38

w Salivary Flow pSS 11 220

3.2. Random Forest (RF). Random Forest is an ensemble process that builds a large
collection of de-correlated trees and then averages them to gain increased accuracy in pre-
dictions and classifications. It was proposed by Breiman in the late 1990’s and can be
described as a variation of the classification tree method [Roberts, 2009]. Random Forest
has been substantially successful for many data sets. In this paper, the Random Forest
method can simply be defined as a collection of classification trees where a final conclusion
about a certain response variable is drawn based on all the trees. Random Forest follows a
straightforward algorithm, which is described in Section 3.2.1. Other aspects of RF will be
introduced in Section 3.2.2.

3.2.1. The Algorithm. Random Forest is a large collection of single decision trees that are
not pruned. RF can be looked as a black box, meaning one knows the inputs and outputs
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but the internal mechanisms are left unseen. In the research, each tree produced in a forest
provides a classification for each data point which is usually expressed in terms of “votes”.
RF will then declare the class that has the majority of votes to be the classification for
each observation [Breiman and Cutler, 2004]. There are three parameters that should be
determined before the algorithm is implemented. They are: T , the number of trees grown
the forest; nmin, the minimum node size of a random-forest tree, and an integer range for
mtry, the number of predictor variables randomly selected for each split. mtry is usually
much less than the total number of predictor variables, M , (mtry << M). The default

value used in many softwares, is the integer of the positive square root of M (int(
√
M)).

Also this value is held constant throughout the entire construction process. In order to grow
each tree Ti, i = 1, ..., T , the following steps are executed:

1. For i = 1, . . . , T
(a). Take a random bootstrap sample (sample with replacement) of N observations

from the whole data set to form a random training data set where N is the total
number of observations in the data;

(b). Grow an unpruned classification tree from the bootstrapped data. At each split,
mtry randomly selected predictor variables are considered and tested to identify
the best split; until the minimum node size nmin is reached.

2. Output the ensemble of trees {Ti}T1 .

Then, the final classification for each observation is the majority vote of all the class
predictions based on {Ti}T1 .

3.2.2. Features of Random Forest. Out-of-bag (OOB) Error

Unlike single classification trees in which the Cross-validation (CV) error is employed
to determine an optimally sized tree, RF does not require the CV errors but instead uses
the Out-of-bag (OOB) error estimate. This is one of the most important features in RF
technique. The OOB error is calculated based on OOB samples. The OOB samples are the
observations whose predictions are constructed by averaging only those trees corresponding
to bootstrap samples in which these observations did not appear. The OOB error can be
easily computed during the run for each set of OOB samples.

Variable Importance

A key objective in our research is to determine which of the variables are of greatest
importance to the classification of the data. The computer software R gives two criteria
of ranking the variable importance: the Gini Index and randomization. The Gini index
determines the important variables based on which variables provide the largest decrease
in the overall impurity averaged over all the trees in the forest [Liaw and Wiener, 2009].
Randomization on the other hand takes the OOB samples and drops them down each tree,
taking vote of the correctly classified ones. This is then repeated but the values for variable
i are randomly permuted. The difference in the number of votes for the unmodified values
and the permuted ones is averaged over all trees. This value is then standardized by dividing
by the standard error to provide a value that can be used to rank each variable. Due to its
simplicity and easy implementation, the Gini Index was used to determine the important
variables.

Missing Values

In RF, two techniques are available to handle the missing values: mode imputation and
a combination of mode imputation and a proximity measure. The proximity measures are
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obtained by running all the observations down a tree, if two fall within the same terminal
node, then their proximity to one another is increased by a factor of one. This process
is repeated for each tree in the forest. Once a forest is completely constructed, all the
proximity measures are normalized dividing by the size of the forest [Breiman and Cutler,
2004].

Using mode imputation, for classification problems, the missing values are simply replaced
by the mode value of the corresponding predictor variable. This method saves computation
time but sacrifices the quality and precision of the results. However, a combination of mode
imputation and a proximity measure can give much better quality estimates [Breiman and
Cutler, 2004].

The second method requires two steps : (1) obtain rough estimates of the missing values
by using the mode imputation; (2) then if the missing value is for a continuous predictor
variable it is replaced by an average of all the non-missing values which is weighted by the
proximities of the observations. If it is from a categorical variable the missing value is filled
in by using the non-missing value that has the largest average proximity measure. This
is usually repeated 5 times to gain a reliable overall estimate [[Liaw and Wiener, 2009],
[Breiman and Cutler, 2004]].

4. Experiments and Results. An R package, “randomForest”, was used to implement
the RF algorithm on the three different variable sets described in Section 2.2. They are
(1) all the invasive and non-invasive variables (total 89), (2) all the non-invasive excluding
salivary flow (total 67) and (3) all non-invasive variables including salivary flow (total 70).

As mentioned in Section 3.2.1, one key parameter, the number of trees grown for each
forest T , is needed to be determined before the analysis is conducted. In order to figure
out the most proper value of T , different values of T were exploited to create forests and
the OOB error rates were calculated for each Ti. Figure 1 demonstrates the relationship
between the OOB error rates and the forest size with all predictor variables. The top and
bottom lines represent the OOB error rates for the DE and pSS classes respectively. The
middle line is the overall OOB error rate for DE and pSS. It is clear to see that as the
number of trees increases, the OOB error rate becomes stable and converges or plateaus to
some value. The same experiment was also carried out for the other two variable sets and
similar patterns were found. Therefore, T = 500 was chosen for the entire analysis.

The application of the random forest algorithm on the data produced nine different
forests, three for each set of variables. This was due to the different combinations of the
methods for handling missing values and the number of variables considered for each split,
mtry. Table 4 outlines each combination implemented. Mode imputation and proximity
measures are employed to fill the missing values. There are two options for mtry: the

default value mtry = |int(
√
M)| = 9 (M = 89 is the total number of variables) and the

value chosen by the R function “tuneRF”. Here, we only discuss how these combinations
were applied on the variable set with all the variables. A forest was first created when the
default value of mtry = 9 were employed along with the mode values (imputation) replacing
the missing ones. A second forest was produced where the missing values were filled in by
proximity measures, and mtry = 9. For the final combination, a mtry value which was twice
the default value was chosen, while keeping the proximity method. This exact process was
repeated on the other two variable sets. The results obtained for each set are presented in
Tables 5, 6 and 7.

It was not surprising that the chosen optimal value for mtry in each case was the twice
of the default value as the similar discovery has been found by many researchers [[Liaw and
Wiener, 2009], [Breiman, 2001]]. [Breiman, 2001] stated that when selecting an optimal value
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Figure 1. Effect on OOB error from changing the number of trees. (The
top and bottom lines represent the OOB error rates for the DE and pSS
classes respectively. The middle line is the overall OOB error rate.)

for mtry one should try half of the default, the default and the twice of the default, and then
choose the best one among the three. The proximity method of filling in the missing values
provided a significant improvement in the overall OOB misclassification error (a decrease
between ∼ 2% and ∼ 4%), sensitivity and specificity for all three variable sets. Moreover,
the combination of the proximity method and mtry equal to twice the default value resulted
in an even better performance for RF.

Compared to the results from a single classification tree in the paper [Caffery et al., 2010],
RF significantly improved the prediction accuracy for the data set with all the variables.
For the other two data sets, RF was not able to decrease the misclassification errors, so
an additional tuning method was implemented (look at the single classification error rates
in Table 3). [Breiman and Cutler, 2004] pointed out that it can be beneficial to utilize
the important variables at each split. Therefore, in the following analysis, we only selected
the possible predictor variables from a set containing only a number of variables that were
deemed important, which was determined by the initial run of random forest algorithm.
The R function “varSelRf” provides a convenient way to identify those important variables.
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Table 4. Tuning Method Combinations

Variable Set Random Forest Missing Values mtry Value

All Variables 1 Imputation (Mode Values) 9 (default)

(Total of 89) 2 Proximity 9 (default)

3 Proximity 18 (tuneRF)

All Non-Invasive 4 Imputation (Mode Values) 8 (default)

w/o Salivary Flow 5 Proximity 8 (default)

(Total of 67) 6 Proximity 16 (tuneRF)

All Non-Invasive 7 Imputation (Mode Values) 8 (default)

w Salivary Flow 8 Proximity 8 (default)

(Total of 70) 9 Proximity 16 (tuneRF)

Table 5. Sensitivity and Specificity for Set Containing All Variables

Random Forest True Predicted Sensitivity Specificity Overall Error

DE pSS

1 DE 75 14 97.84 84.27 5.94

pSS 5 226

2 DE 79 10 99.57 88.76 3.44

pSS 1 230

3 DE 81 8 99.57 91.01 2.81

pSS 1 230

Table 6. Sensitivity and Specificity for Set Containing All Non-Invasive
w/o Salivary Flow

Random Forest True Predicted Sensitivity Specificity Overall Error

DE pSS

4 DE 43 46 93.94 48.31 18.75

pSS 14 217

5 DE 44 45 96.54 49.44 16.56

pSS 8 223

6 DE 48 41 95.67 53.93 15.94

pSS 10 221

How many important variables should be considered? Four different choices are available
based on the OOB errors given by the function “varSelRF”, and are listed in Table 8. The
range of the number of important variables in Table 8 was based on selection criteria. Take
the third data set containing all non-invasive variables with salivary flow as an example, the
range of the number of important variables can be as small as 18 and as large as 29 if the
smallest OOB error is required. On the other hand, the range can be as wide as 5 to 70
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Table 7. Sensitivity and Specificity for Set Containing All Non-Invasive
w Salivary Flow

Random Forest True Predicted Sensitivity Specificity Overall Error

DE pSS

7 DE 49 40 90.48 55.06 19.38

pSS 22 209

8 DE 54 35 93.51 60.67 15.62

pSS 15 216

9 DE 56 33 92.64 62.92 15.62

pSS 17 214

when the smallest OOB+1SE is used as the selecting criterion. As before, the default value
of mtry equals |int(

√
Mimportant)| (Mimportant is the number of important variables chosen

by the R function “varSelRF” based on different criteria), and three different values were
tried: the default value, half the default value, and two times the default value. Overall, a
total of thirty six forests were produced.

Table 8. Range of Important Variables

Selection Criteria

Variable Set Smallest OOB Error Smallest OOB+1SE

All Variables 15-30 5-37

(Total 89)

All Non-Invasive w/o 27-34 14-67

Salivary Flow (Total 67)

All Non-Invasive w 18-29 5-70

Salivary Flow (Total 70)

By using only the important variables for each split, we were able to improve the predic-
tion accuracy or decrease the OOB misclassification rate for two of the variable sets: the
set with all the variables and the set with all the non-invasive variables with salivary flow.
However, for the set containing all of the non-invasive variables without salivary flow, there
was no such improvement but we were able to achieve an error equal to that of the single
tree. It should be noted that for all sets the combination of using the largest number of
important variables that gives smallest OOB errors and twice the default value of mtry gave
the best performance. The random forests that achieved the smallest OOB misclassification
errors were then chosen as the three final forests. The results are summarized in Table 9.
For the set containing all variables, the forest was the one with 30 important variables and
mtry = 10. The forest with 18 important variables and mtry = 4 was chosen for the set with
all the non-invasive variables with salivary flow. Finally, for the set with all the non-invasive
variables without salivary flow, the forest was the one by using 34 important variables and
mtry = 2.
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Table 9. Sensitivity and Specificity for Selected Random Forests

Random Forest True Predicted Sensitivity Specificity Overall Error

DE pSS

All Variables DE 82 7 99.57 92.13 2.50

pSS 1 230

All Non-Invasive DE 49 40 96.10 55.06 15.31

w/o Salivary Flow pSS 9 222

All Non-Invasive DE 61 28 93.94 68.54 13.12

w Salivary Flow pSS 14 217

Table 10. Error Rate Comparison

Single Classification Tree Random Forest

All Variables 4.69% 2.50%

All Non-Invasive w/o Salivary Flow 15.31% 15.31%

All Non-Invasive w Salivary Flow 14.38% 13.12%

As shown in Table 10, with some form of tuning for RF, we were able to improve the
overall OOB misclassification rates for the sets with all the variables and with all the non-
invasive variables with salivary flow. Particularly, for the set with all the variables, RF gave
an overall decrease of 2.19% from 4.69% to 2.5%. While, an overall decrease of 1.26% from
14.38% to 13.12% was shown for the set with all the non-invasive variables with salivary
flow. For the second variable set (all non-invasive variables without salivary flow) an error
of 15.31% was achieved by RF, the same as that obtained by the single classification tree. It
is well-known that RF is very robust to a large data set with noise variables. This explains
why RF did remarkable job compared to a single classification tree for the variable set with
89 predictors. For the other two variable sets, there are not many noise variables, i.e. all
the variables are important for the classification problem. Therefore, the performance of a
single classification is comparable to the results of random forest.
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Figure 2. RF Variable Importance: All Variables (Total 89)

Figure 3. RF Variable Importance: Non-Invasive w/o SFlow (Total 67)

Figures 2, 3, and 4 are the plots presenting the ranking of variables for the three variable
sets respectively. The figures also indicate how much each variable was able to decrease the
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Figure 4. RF Variable Importance: Non-Invasive w SFlow (Total 70)

Gini Index on average. The top five variables for the first variable set with 89 variables were
all in a far top-right region, and well separated from the remaining 25 variables. In terms of
how well they decreased the Gini Index these five variables were all around or above fifteen.
The second forest’s top variables were somewhat separated from the remaining ones where
they all provided decreases of at least seven with the majority of the remaining falling in a
range between one and five. The final forest had only one variable that stood out, i.e. the
amount of unstimulated salivary flow per minute (USS). This variable provided on average
a decrease of around twenty, while the next highest decrease was only around twelve. The
majority of the other variables were generally clustered together and provided decreases that
were less than five. The top five important variables for all three sets are listed in Table 11.

Now a comparison can be conducted between the variables selected by RF and those by
single classification trees. For the variable set with 89 variables, two of the three important
variables identified by the single classification tree were also selected by RF. They are the
presence of the anti-RO immunoglobulin (referred to as “Ro.” in the remaining part of the
paper. Similar abbreviated names will be used for other variables also.) and the biopsy score
for SS (referred to as “Biop.”). The one not ranked in the top of the variables by RF was
whether or not a patient had signs of rose bengal staining of the temporal conjunctival in
their left eye ( referred to as “OS.temp”), but it was still within the first quartile of variables
(ranked 16th out of a total of 89) and still considerable high. Three of the five variables
that were selected by RF for the second variable set (all non-invasive w/o salivary flow) were
identical tests to the ones found by the single tree. RF ranked the patients age (referred
to as “AGE”) and the severity of their dry eye symptoms (referred to as “sev.DE”) to be
in the top five important variables, while the single classification tree chose the presence of
either rose bengal staining in the worst eye or Schirmer score in the worst eye (referred to
as “eye.sign”), and whether or not the patient had any kind of corneal staining (referred to
as “corn.stain.l”). These variables are not similar in the least. It can be noted though that
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Table 11. Important Variables

Random Forest Important Variables

All Variables Chisholm Mason biopsy score, unstimulated
salivary flow, Ro present, serum antibodies for
Ro and/or La, biopsy

All Non-Invasive w/o Salivary Flow severity of dry mouth symptoms, rose bengal
value in worst eye, severity of dry eye symp-
toms, age of the patient, rose bengal staining
of the temporal in worst eye

All Non-Invasive w Salivary Flow unstimulated salivary flow, severity of dry
mouth symptoms, salivary flow positive, rose
bengal staining of the temporal in worst eye,
rose bengal value in worst eye

four of the next five important variables all deal with staining of some part of a patient’s eye,
which are similar to the ones chosen by single trees. For the final set of variables, three of
the five top ones remained the same for both methods again but the remaining two differed
greatly as RF chose the variables, the value of rose bengal staining in worst eye out of 9
(referred to as “RB.val”) and USS, while the single classification tree selected “eye.sign”
and “corn.stain.l”. RF did not even rank the “corn.stain.l” variable to be in the top thirty,
and only chose “eye.sign” as the one which only provided a decrease in Gini Index of a little
over one. One could see that although the final two variables selected by the single tree
are not even ranked closely to the top, if you look at the next few variables beyond the top
five from RF, it can be noted that they are “OS.temp” and “OD.temp”. These two are
qualitative variables that deal with rose bengal staining of the patients eyes, while the two
chosen by the single classification tree are also qualitative ones dealing with some sort of
staining.

The variables that are deemed important by random forest analysis are usually very
similar to the ones chosen by the single classification tree analysis. Rose bengal staining of
a patient’s eye or more specifically the temporal region was always the one of the crucial
non-invasive variables selected by both methods.

5. Conclusion. We have discovered that in all cases using the proximities of the predictor
variables to fill in the missing values rather than the mode values provides smaller OOB
estimates of the test set error and an increase of the specificity and sensitivity. Also a very
small decrease in error can be obtained if the number of chosen predictor variables, mtry, is
changed from the default value to the twice of the default or half of it.

Aside from a couple of variables, all the ones which were deemed as important by RF
were also chosen to be equally important by the single classification trees. Particularly, both
rose bengal staining and the questionnaires concerning the severity of a patients dry mouth
and dry eye symptoms were crucial in differentiating pSS from DE.

The method of RF retains many advantages that single classification trees have including
the ability to handle both categorical and continuous predictor variables. The main advan-
tage of RF is the superior accuracy when classifying data or estimating values for the data
in comparison to the other methods with similar purposes. Also in terms of efficiency, RF
can easily deal with hundred to thousands of potential predictor variables without having
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to delete any of them from the data [Breiman and Cutler, 2004]. A disadvantage of RF is
computational as it requires a large amount of memory in order to properly store the large
amount of trees produced by a single forest [Breiman and Cutler, 2004]. We found that a
single classification tree could be grown instantaneously (<< 1 second) whereas growing a
RF using T = 500 and iterating the proximity imputation 5 times took around 12 seconds.
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