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ČEBYŠEV SETS IN THE HYPERSPACE K1
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Abstract. We characterize the Čebyšev sets in the hyperspace K1 of closed segments in
R with the Hausdorff metric. These will be seen to include sets with varying dimension.
We also show that an arc in K1 is Čebyšev if and only if it is monotone, proving the

one-dimensional case of a conjecture made in [6].

1. Introduction. Consider the set R×R of all ordered pairs x = (x1, x2) of real numbers.
On its own it isn’t particularly interesting. Because it’s a set of ordered pairs, every element
has a “first coordinate” and a “second coordinate” which are real numbers, but that’s all
the structure that it has. To do interesting mathematics with it, we need to define some
extra structure; of course, the new structure ought to respect what was already there!

One way to do this is to turn it into a vector space, usually referred to as R2. To do this,
we create a couple of new operations. Vector addition is defined on any two ordered pairs
as follows: (x1, x2) + (y1, y2) = (x1 + y1, x2 + y2); the result is another ordered pair. Scalar
multiplication starts with a real number k and an ordered pair (x1, x2) and the result is the
ordered pair (kx1, kx2). For this structure to be a vector space, vector addition must be
commutative:

x+ y = y + x (1)

and associative:
(x+ y) + z = x+ (y + z) (2)

while scalar multiplication must be associative in the sense that

k(lx) = (kl)x (3)

and distribute over both additions:

(k + l)x = kx+ lx , k(x+ y) = kx+ ky . (4)

The reader may verify that these conditions are indeed satisfied. All other properties of
vector spaces – for instance, the existence and uniqueness of the zero vector – follow from
these axioms.

At this point the attentive reader may ask (for instance) “what about the dot product?”
or “what about convergence?” The answer is that these are not part of the structure of a
“vanilla” vector space, and must be added separately. A vector space that has been given a
dot product is an “inner product space”; one that has been given a concept of convergence is
a “topological vector space”. In familiar cases such as R2 there may be a single obvious way
of defining such “optional extras”. In other cases there may be no way, or many different
ways, to perform the upgrade.

In any vector space, we can define a line segment ab to consist of all points of the form
(1− k)a+ kb for k ∈ [0, 1]. (If we allow k to range over all real numbers, we get the infinite
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line
←→
ab .) A set in a vector space will be said to be convex if, whenever it contains points a

and b, it contains the segment ab. Convexity is a very important concept in geometry and
analysis, and there are many equivalent definitions. (The curious reader is referred to e.g.,
Benson [1] or Valentine [11].)

Another structure that we can place onto R×R is a “metric”, a rule assigning a distance
d(x, y) to any pair of points. This must be strictly positive for distinct points and zero
otherwise:

d(x,y) > 0, d(x,x) = 0 . (5)

It must be symmetric:
d(x,y) = d(y,x) (6)

and obey the triangle inequality

d(x,y) + dy, z) ≥ d(x, z) . (7)

Some of the (infinitely many) metrics we can put onto R×R are:

(i) The Euclidean plane E2 has distance between points (x1, x2) and (y1, y2) given by√
(x1 − y1)2 + (x2 − y2)2.

(ii) The “taxicab plane” R2
⋄ has the same underlying set as the Euclidean plane but the

distance is |x1− y1|+ |x2− y2|, the distance that a driver in a grid of city streets, who
can only go north-south or east-west, would have to drive.

(iii) The “ℓ∞ plane” R2
2 again has the same underlying set but the distance is max(|x1 −

y1|, |x2 − y2|).
These metrics work nicely with the vector space structure of R2. Specifically, they are

unaffected by translation:
d(x,y) = d(x+ z,y + z) (8)

and they scale properly:
d(kx, ky) = |k|d(x,y) . (9)

(Warning: not all metrics on the plane have these properties! The reader may enjoy discov-
ering some that don’t.) A finite-dimensional vector space with a “well-behaved” metric is
called a Minkowski space.

All distances in a Minkowski space are determined if we know just the distances from
0, because d(x,y) = d(0,y − x). That is to say, the metric on such a space is given by
a norm, ∥x∥ := d(0,x). In fact, we need even less data; by (9), if we know the unit ball
B := {x : ∥x∥ ≤ 1}, we can figure out the norm of any vector. Figure 1 shows the unit balls
of the Euclidean, taxicab, and ℓ∞ planes. These are respectively {(x1, x2) : x2

1 + x2
2 ≤ 1},

{(x1, x2) : |x1|+ |x2| ≤ 1}, and {(x1, x2) : |x1|, |x2| ≤ 1}.

Figure 1. Unit balls of the Euclidean, taxicab, and ℓ∞ planes

The unit ball of R2
2 can be obtained from the unit ball of R2

⋄ by rotating and scaling.
This is not a coincidence; if we define(

u1

u2

)
:=

[
1 1
−1 1

](
x1

x2

)
=
√
2

[
sin 45◦ cos 45◦

− cos 45◦ sin 45◦

](
x1

x2

)
(10)
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then

|x1|+ |x2| =

{
|u1| : if x1x2 ≥ 0

|u2| : if x1x2 ≤ 0
(11)

= max{|u1|, |u2|} . (12)

But the matrix in (10) is
√
2 times a 45◦ rotation matrix. (Canadian readers may recall

a 2008 advertising campaign for a certain breakfast cereal based on a similar observation
[12].)

The unit ball is always symmetric about the origin; this is because ∥ − x∥ = d(0,−x) =
| − 1|d(0,x) = ∥x∥. It must also be convex. Let x,y ∈ B, and z = (1 − k)x + ky (Figure
2). Then

∥z∥ ≤ (1− k)∥x∥+ k∥y∥ ≤ (1− k) + k = 1

and z ∈ B also. In the Euclidean case, B is strictly convex, meaning that except perhaps
for its endpoints xy always lies on the interior of B. In the other two cases it isn’t.

Figure 2. Balls are always convex

The unit ball must also (by (6)) be centrally symmetric about 0; and it must be a body:
that is, a compact set which is the closure of its own interior. In a finite-dimensional real
vector space, “compact” is the same thing as being closed and bounded. This is the famous
Heine-Borel theorem (see any introductory analysis textbook), but readers unfamiliar with
compactness may pretend, for now, that this is the definition. It may be shown (we won’t)
that any convex body in Rn that is centrally symmetric about 0 is the unit ball of some
norm. Thus every such set corresponds to a Minkowski space structure on Rn and vice
versa.

In a metric space, a set A will be said to “have the Čebyšev property” (or “be a Čebyšev
set”) if every point x of the space has a unique nearest neighbour ξA(x) in A (the map
ξA(−) is sometimes called the “metric projection”). Intuitively, this means that every point
outside the set has a smallest ball around it that touches the set, and that ball touches the
set in only one point. In the Euclidean plane E2, the sets with this property are precisely the
closed nonempty convex sets. This is interesting because the Čebyšev property is defined
in terms of the metric structure of E2, not the vector space structure. The Euclidean plane
is not unique in this regard; the observation holds in any Minkowski space with a smooth
and strictly convex unit ball (see [8]). However, in other Banach spaces, neither convexity
nor the Čebyšev property implies the other. Figure 3 shows that in the taxicab plane R2

3 a
Čebyšev set need not be convex , and a convex set need not be Čebyšev .

Given a metric space (X, d), we can construct a hyperspace. This is a collection of
nonempty compact sets with a metric of its own, which would normally be based in some
way on the old metric. Informally, we are treating the compact sets of the first space as “fat
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Figure 3. A is Čebyšev but not convex; B is convex but not Čebyšev .

points”. There are many ways to do this; one that is often used is the Hausdorff metric.
This is defined as

ϱH(A,B) := max{ϱ⃗H(A,B), ϱ⃗H(B,A)}
where ϱ⃗H(X,Y ) is the directed Hausdorff quasimetric

ϱ⃗H(A,B) := max
x∈A

min
y∈B

d(x, y) .

The following may make this easier to visualize. Suppose we have a cat that lives in A
and a dog that lives in B (Figure 4). The dog is curious about the cat and wants to get
as close as possible; the cat wants to keep its distance. The equilibrium distance between
them is the directed Hausdorff quasimetric. If also we give the cat first choice of where it
lives, the distance is the Hausdorff metric.

A

B

Figure 4. Visualizing the Hausdorff metric

Some interesting examples of hyperspaces over Rn are:

Cn:: nonempty compact sets in Rn

Kn:: nonempty convex compact sets in Rn

Kn
0 :: convex bodies [compact sets with nonempty interior] in Rn

On:: nonempty strictly convex compact sets in Rn

Hyperspaces inherit a weak sort of linear structure. If A and B are compact sets we can
define kA = {kx : x ∈ A} (scaling by k) and A + B = {x = y : x ∈ A,y ∈ B} (the
Minkowski sum). These operations obey (9) in all three hyperspaces listed above, and (8)
in Kn and On. However, these are not vector space operations! In particular, A + −A is
only equal to 0A if A is a singleton. In most cases hyperspaces are infinite-dimensional, in
the sense that no finite set of elements forms a basis for any neighborhood. K1 (which is the
same as O1, and whose elements are just closed line segments and points) is an exception.

In general the problem of identifying the Čebyšev sets in a hyperspace seems to be very
difficult. (Remember that a set in a hyperspace corresponds to a family of compact sets
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in the underlying space.) Singletons and the whole space are Čebyšev in any metric space.
In Kn convex sets of singletons, the family Bn containing all balls and singletons, and
any affine-convex family, are Čebyšev [3]. (Note that an affine-convex family that is not a
singleton spans Kn, and is thus infinite-dimensional for n > 1.) Any nested family in Kn

such that the smaller set is always contained in the interior of the larger one is also Čebyšev
[7]. In On there are more examples, such as sets of translates {A + t : t ∈ T} where A is
strictly convex, T convex (ibid.) Other Čebyšev families in Kn and On are given in [4, 6],
but there is as yet no general characterization of them. In the remainder of this paper we
will give a complete characterization of the Čebyšev sets in the hyperspace K1 and K1

0.

2. Čebyšev sets in R2
3 and K1. We first observe that the convex compact sets in the

real line admit a much simpler description than their counterparts in higher dimensions do.

Proposition 1. The hyperspace K1 is isometrically equivalent to the closed upper halfplane
with the taxicab metric, under the map

ϕ : [a1, a2] 7→
(
a1 + a2

2
,
a2 − a2

2

)
. (13)

Proof: The points of K1 are simply closed line segments or points, and every such set is
uniquely identified by its endpoints, a pair (x1, x2) with x1 ≤ x2. Conversely, every such
pair defines a point (if x1 = x2) or a line segment. Thus we can identify the elements of K1

with the points of a closed half-plane, bounded by the line x1 = x2.
We now need to find the Hausdorff distance from [a, b] to [c, d]. To do this, we first find

the directed distance

ϱ⃗H([a, b], [c, d]) = max
x∈[a,b]

min
y∈[c,d]

|x− y| .

If c ≤ a and b ≤ d, this is 0; otherwise it is the larger of c− a and b− d. Equivalently,

ϱ⃗H([a, b], [c, d]) = max{(c− a), (b− d), 0} .

By the same argument, the other directed distance is given by

ϱ⃗H([c, d], [a, b]) = max{(a− c), (d− b), 0} .

Combining these:

ϱH([a, b], [c, d]) = max{ϱ⃗H([a, b], [c, d]), ϱ⃗H([c, d], [a, b])}
= max{(c− a), (a− c), (b− d), (d− b), 0}
= max{|a− c|, |b− d|}

and this is just the ℓ∞ distance between (a, b) and (c, d).

Thus, K1 can be represented - including its metric structure - as {(x1, x2) : x1 ≤ x2} in
R2

2; or, equivalently, as the closed upper half U of the taxicab plane R2
3 (Figure 5.) In the

latter representation, x1 is the midpoint of the line segment, x2 its radius (that is, half its
length.) �

Corollary 1. The hyperspace K1
0 is isometrically equivalent, under a restriction of ϕ, to

the open upper halfplane U with the taxicab metric.

Proof: The hyperspace K1
0 differs from K1 only by the omission of singletons; it thus

corresponds to the points (x1, x2) ∈ R2
2 with x1 < x2, or to the points (x1, x2) ∈ R2

3 with
x2 > 0. �
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Figure 5. Three equivalent representations of K1.

We now ask, exactly what are the Čebyšev sets in R2
3, and in the closed upper half-

planes? As shown in Figure 3, they are not the same as the convex sets; but a complete
characterization, while not difficult, does not appear to be in the literature. Clearly such a
set S must be closed, as if it has a boundary point that is not an element, that point has
no closest neighbour.

Lemma 1. Let S be a Čebyšev set in R2
3 or U , and let s = ξS(x), with r = d(s,x). Then

no other point of S lies in the closed cone
∪

y∈Br(x)
−→sy generated at s by the ball Br(x).

Proof: The point s may be a vertex of the ball (Figure 6a) or on the relative interior of
an edge (Figure 6b); the cone (in R2

3) is respectively a quadrant or a halfplane. In either
case it is the union of a nested family of balls with s on their boundaries. If this has another
intersection with S, which is closed, there is a smallest ball for which this happens; and the
center of that ball has two or more closest neighbours in S.

Figure 6. Cones that cannot contain another point of S

In U the same argument holds, except that we must restrict the centers of the family of
balls to lie within the closed halfplane (Figure 6c). �

Proposition 2. If S is a Čebyšev set in R2
3 or U , then for each of the four linear functions

f±± : x 7→ ±x1 ± x2, there is at most one point p±± maximizing f±±over S.

Suppose that p++ is a local maximum of the function x 7→ x1 + x2 for x ∈ Bϵ(p++)∩S.
Let x = p++ + (ϵ, ϵ) for some small positive ϵ; then p++ = ξS(x), and by Lemma 1 p++

is a unique global maximum (Figure 7a). Virtually the same argument holds for the other
three choices of sign: if f±± has a local maximum on S, there is a unique global maximum
p±±. The only variation necessary occurs for p±− in U if p2 = 0 (Figure 7b). In this case
we must take x = p±− + (±ϵ, 0). �

We will call PS := {p±± : p±± exists in S} the set of cardinal points of S. In R2
3, it

may be verified that all 24 subsets of {p±±} can occur. Moreover, it is possible that a pair
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Figure 7. Unique corner points

of cardinal points will coincide; e.g., we may have p++ = p+−. (If two “opposite” points
such as p++ and p−− coincide, then f−− is maximized – and f++ minimized – at the same
unique point at which f++ is maximized, and S is a singleton.)

In U , the second coordinate is necessarily bounded below; thus if (for instance) p++

exists and the function f++ is bounded above on S, then f+− is also. Moreover, the set
{x ∈ S : f+−(x) > f+−(p++)} is nonempty and compact (Figure 7c); thus p+− exists. In
general, we have:

Proposition 3. For any Čebyšev set in U , if p±+ exists, so does p±−.

This leaves 9 legal subsets of {p±±} that may exist; it may be verified that all are pos-
sible. Again, pairs may coincide.

We now give a sufficient condition for ξS(x) to be in PS .

Proposition 4. If S is Čebyšev in R2
3 or U , and if both coordinates of ξS(x) differ from the

corresponding coordinates of x, then ξS(x) ∈ PS. Specifically, if (ξS(x))1 < x1, (ξS(x))2 <
x2, then ξS(x) = p++ (etc).

Proof: Suppose that (ξS(x))1 < x1, (ξS(x))2 < x2. Then ξS(x) lies on the relative
interior of the lower left edge of a ball about x which contains no other points of S (as in
Figure 6b.) Thus ξS(x) is thus a local maximum for f++, and hence by 1 must be p++. �

Stating this contrapositively, if s := ξS(x) ̸∈ PS , then s has a coordinate in common with
x. This motivates the following definitions: if x1 = y1 and x2 < y2, we write x < y, and if
x1 < y1 and x2 = y2 we write x ≺ y.

Proposition 5. If S is Čebyšev in R2
3 or U , suppose x and ξS(x) have a coordinate in

common: without loss of generality, x > ξS(x). Then every point of the ray
−−−−−→
ξS(x),x is

mapped to ξS(x) by ξS. In particular, the ray contains no other point of S.

Proof: This follows from Proposition 4 if s ∈ PS ; otherwise it follows from the “vertex
case” of Lemma 1 (Figure 6a). The point x is on the central ray of a right-angled cone that
contains no other points of S; thus s is the closest point. �

Proposition 6. Let S be Čebyšev in R2
3 or U . Then, if x1 < z1, ξS(x) < x, and ξS(z) < z,

for any y1 ∈ (x1, z1) there exists y = (y1, y2) with ξS(y) < y.

Proof: Let y2 = max(x2, z2) + (z1 − x1). First we note that y1 > x1 > (p−+)1, so
ξS(y) ̸= p−+; the same argument rules out p++. Again, f−−(y) < f−−(x) < f−−(p−−),

so that point and p+− are eliminated. Suppose ξS(y) ≺ y; then the ray
−−−−→
ξS(y)y intersects

the ray
−−−−→
ξS(z)z, which by Proposition 5 is impossible (Figure 8). Finally, suppose that
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Figure 8. Locations of nearest points

y < s = ξS(y); there is a point x′ := (x1, (ξS(y)2) which is in the ray
−−−−→
ξS(x)x but closer to

ξS(y) than to ξS(x), contradicting Proposition 5.
This argument carries over unchanged for all other cases in R2

3. In U , if x < ξS(x) and
z < ξS(z), take y2 = 0, which avoids the possibility that ξS(y) might be below y. �

Combining this with Proposition 5 we see that the set {x : ξS(x) < x} is, if nonempty,
unbounded above; and to the left and right it is either unbounded or bounded by vertical
rays. It is clearly bounded below.

Proposition 7. If S is Čebyšev in R2
3 or U , ξS(x) < x and ξS(y) < y, then

|(ξS(x))2 − (ξS(y))2| < |(ξS(x))1 − (ξS(y))1| (14)

and
||ξS(x)− ξS(y)|| < 2||x− y|| . (15)

Proof: The inequality (14) follows immediately from Lemma 1, and

||ξS(x)− ξS(y)|| = |(ξS(x))2 − (ξS(y))2|+ |(ξS(x))1 − (ξS(y))1|
< 2|(ξS(x))1 − (ξS(y))1| by (14)

= 2|x1 − y1|
≤ 2||x− y||

proving (15). �

Corollary 2. The lower boundary of {x : ξS(x) < x} (that is, the set {ξS(x) : ξS(x) < x})
is the graph {x : x2 = f(x1)} of a distance-decreasing function I → R where I is a closed
interval, closed ray, or R.

We are now in possession of a set of conditions that are not only necessary but sufficient
for a set in R2

3 or U to be Čebyšev .

Theorem 1. A nonempty closed set S in R2
3 or U is Čebyšev if and only if its boundary

is the union of a subset, possibly empty, of the following:

• a curve St of the form {x : x1 ∈ I+, x2 = f+(x1)}, where I+ is a point, a segment, a
closed ray, or R; f+ is distance-decreasing; and if s ∈ S, s1 = x1, then s2 ≤ x2;
• a curve Sr of the form {x : x2 ∈ J+, x1 = g+(x2)}, where J+ is a point, a segment, a
closed ray, or R; g+ is distance-decreasing; and if s ∈ S, s2 = x2, then s1 ≤ x1;
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• a curve Sb of the form {x : x1 ∈ I−, x2 = f−(x1)}, where I− is a point, a segment, a
closed ray, or R; f− is distance-decreasing; and if s ∈ S, s1 = x1, then s2 ≥ x2;
• a curve Sl of the form {x : x2 ∈ J−, x1 = g−(x2)}, where J− is a point, a segment, a
closed ray, or R; g− is distance-decreasing; and if s ∈ S, s2 = x2, then s1 ≥ x1.

Proof: We have shown above that any Čebyšev set has such a boundary. If none of the
four bounding curves exists, S is the entire space and trivially Čebyšev. Otherwise, suppose,
without loss of generality, that St exists. If I+ = [a, b], extend f+ to all of R by letting
f(t) = f(a) for t < a and f(t) = f(b) for t > b; if I+ = (−∞, b] or [a,∞) extend it in
one direction only. Call the graph of this function St. Do the same for any other bounding
curves that may exist.

For every point s ∈ S there is a unique x ∈ St with x1 = s1; then x2 ≥ s2. We deduce
that St is everywhere above or coincident with Sb; and in particular that no point can
be strictly on the opposite side of both curves from S. We also note that if e.g. St and
Sr meet, they can do so at only one point p, which must be in S. Moreover, the line
{x : f++(x) = f++(p)} cannot meet any other point of S, so p = p++.

Figure 9. Positions of the extended boundaries

Now, as the union of the four curves contains bdS, any point in Sc is strictly on the
opposite side of at least one of these curves from S. As observed above, no point is strictly
on the opposite side of both Sl and Sr, or of St and Sb. Thus a point can be on the opposite
side of at most two curves, and they must be St and Sr, Sr and Sb, Sb and Sl, or Sl and St.

If e.g. a point (x1, x2) is on the far side of both St and Sr from S, its nearest point in S
is p++,and this is unique by Proposition 2. If it is on the far side of only (say) St, then its
nearest point in S is (x1, f+(x1)) and this is unique by Lemma 1. �

Proposition 8. Let S be Čebyšev in R2
3 or U . If St is unbounded to the right and Sr

exists, they have slant asymptotes x1 = x2 + bt and x1 = x2 + br respectively, with bt ≥ br.

Proof: If St is unbounded to the right, there is no point p++; thus if Sr exists, it is
unbounded above. The function x 7→ f+(x) is thus defined for all large enough x. As f+ is
distance decreasing, the function x 7→ (f+(x)− f+(0))− (x− 0) is strictly decreasing. Thus
either limx→∞ f+(x) − x = k for some finite k, or limx→∞ f+(x) − x = −∞. In the first
case there is a 45◦ slant asymptote; in the second case the curve contains points for which
x2−x1 < k for all k. By the same argument Sr either has a 45◦ slant asymptote or contains
points for which x2 − x1 is arbitrarily large. Unless they both have slant asymptotes as
described above (see Figure 10a below) they must meet, which is impossible. �

Corollary 3. In U , suppose Sb is unbounded to the right; then Sr does not exist, and if St

exists it is unbounded to the right.
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Proof: By Proposition 8, if Sb were unbounded to the right and Sr existed, they would
have slant asymptotes approaching (∞,−∞), which is impossible in U . �

Example 1. The set {x : |x2
1 − x2

2| ≤ 1} is Čebyšev in R2
3; all four boundary curves exist

and are doubly infinite in extent (Figure 10a).

Example 2. The set {x : x2
2 − x2

1 ≤ 1} is Čebyšev in U(Figure 10b).

Figure 10. Examples of Čebyšev sets in R2
3 and U

Note that it is possible that (for instance) Sb and St intersect, even in their relative
interiors.

Example 3. The set {x : x2 ≤ max(sin(x1), 0)} is Čebyšev in U (Figure 10c).

Observation 1. This set is locally one-dimensional in some neighborhoods and locally
two-dimensional elsewhere. The first author has conjectured in lectures (and implicitly in
[5]) that a Čebyšev set in Kn must have a invariant local dimension; Example 3 provides a
counterexample.

Proposition 9. Let S be Čebyšev in U ; unless S is a singleton, at most one of Sb ∩St and
Sl ∩ Sr can be nonempty.

Proof: If s ∈ Sb then, by Lemma 1, for any other x ∈ S we have |x1 − s1| > x2 − s2.
Thus if s ∈ Sb ∩ St, then

|x1 − s1| > |x2 − s2| . (16)

But by the same argument, if s ∈ Sl∩Sr, then |x1−s1| < |x2−s2| and this and (16) cannot
be simultaneously satisfied. �

An arc is a continuous 1−1 image of an (open or closed) interval of the real line. Special
Čebyšev arcs in hyperspaces were considered in [3, 7, 4]. In [6] the idea of a monotone arc in
Kn was introduced; an arc A = (At : t ∈ I) is defined to be monotone if, for every nonzero
vector u, maxa∈At u · a is a monotone function of t (possibly constant;) and if constant, the
points at at which the maximum is achieved must be different for each t. It was shown
in [6] that for such an arc, when one of the functions maxa∈At u · a is nonconstant, that
function is strictly monotone. In K1 the situation is even simpler; an arc is a parametrized
set of intervals [l(t), r(t)], and it is monotone if and only if l(−) and r(−) are strictly
monotone functions. If they are strictly monotone in opposite senses the arc is strongly
nested; otherwise we will call it antinested.

It was shown in [6] that in On all monotone arcs have the Čebyšev property, while in Kn,
n > 1, those (and only those) that are nested or consist of singleton sets do. The hyperspace
K1 is an exception because its elements are all strictly convex; so (e.g.) the translates of a
given interval form a Čebyšev arc. It was conjectured in [4] that all Čebyšev arcs in Kn or
On are monotone; we now prove this conjecture for K1.
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Theorem 2. An arc in K1 is Čebyšev if and only if it is monotone.

Proof: As observed above, it suffices to show that a Čebyšev arc is monotone. An arc
(at : t ∈ I) in R2

3 or U is Čebyšev if and only if it has no secant line with a slope of ±45◦;
that is,

|(as)1 − (at)1| ̸= |(as)2 − (at)2| . (17)

For if there is such a secant, then its intersection with the arc is closed; there thus exists
either a closed interval in which the arc coincides with the secant, or an open interval in
which the arc lies entirely on one side of the secant. In either case (Figure 11) we can
construct a point with multiple nearest neighbours in the arc. Conversely, if there is no
such secant, the Čebyšev property follows immediately from Lemma 1.

Figure 11. Arcs with a 45◦ secant are not Čebyšev

Under the isometric equivalence map U → K1, the point at maps to an interval with
endpoints l(t) = (at)1 − (at)2 and r(t) = (at)1 + (at)2. If (17) holds, then for all distinct
s, t ∈ I,

l(s)− l(t) = ((as)1 − (as)2)− ((at)1 − (at)2)

= ((as)1 − (at)1)− ((as)2 − (at)2) (18)

̸= 0

so l(−) is 1-1; and
r(s)− r(t) = ((as)1 + (as)2)− ((at)1 + (at)2)

= ((as)1 − (at)1) + ((as)2 − (at)2) (19)

̸= 0

giving the same result for r(−). Conversely, if both l(−) and r(−) are 1-1, then (18) and
(19) are both nonzero, yielding (17). Finally, we note that a continuous function on an
interval is strictly monotone if and only if it is 1-1, and we are done. �

Translating Theorem 1 into terms appropriate to K1, we obtain:

Theorem 3. A set S ∈ K1 is Čebyšev if and only if its boundary is the union of a subset,
possibly empty, of:

• an antinested arc St such that if [x, y] ∈ S, [p, q] ∈ St, and x + y = p + q, then
p ≤ x ≤ y ≤ q;
• an antinested arc Sb such that if [x, y] ∈ S, [p, q] ∈ Sb, and x + y = p + q, then
x ≤ p ≤ q ≤ y;
• a strongly nested arc Sl such that if [x, y] ∈ S, [p, q] ∈ Sl, and y − x = q − p,then
p ≤ x ≤ q ≤ y; and
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• a strongly nested arc Sr such that if [x, y] ∈ S, [p, q] ∈ Sr, and y − x = q − p,then
x ≤ p ≤ y ≤ q.

We now consider the hyperspace K1
0 of proper intervals, which is isometrically equivalent

to the open upper halfplane U . While the extension of the results above to U and K1
0 is

simple, the proof is somewhat technical.

Theorem 4. A relatively closed set S ∈ U is Čebyšev if and only if its closure S in U is
Čebyšev and St ⊂ U .

Proof: Suppose S is a Čebyšev set. Then for any x ∈ U , either x2 ≤ (ξS(x))2, in which

case ξS(x) ∈ U ; or x2 > (ξS(x))2, in which case ξS(x) ∈ St ⊂ U . In either case ξS(x) ∈ S,
and clearly no other point of S is as close.

Conversely, suppose S to be Čebyšev in U . We first note that d(x, S) = d(x, S); and as
S is locally compact, this distance (which we shall call dmin) is achieved. It remains to be
shown that it is achieved exactly once. Let B be the horizontal axis bounding U ; and let
SB be S ∩B.

For x ∈ U , by hypothesis dmin is attained exactly once in S. Suppose ||s − x|| = dmin

for some s ∈ SB . Then (Figure 12a) there exists x′ ∈ U that has s as its unique nearest
neighbour in S; but then d(x′, S) is not attained, a contradiction. We conclude that for
such points the distance dmin is attained exactly once in S.

Figure 12. Čebyšev sets in the open upper half plane U

Consider now x = (x1, 0) ∈ B. Suppose that two points s, s′ ∈ S are at distance dmin

from x. Then |s1 − x1| + s2 = |s′1 − x1| + s′2 = dmin; and they are also equidistant from
x′ := (x1,min{s2, s′s}) Figure 12b). But as x′ ∈ U , this contradicts our hypothesis that S
is Čebyšev in U .

Suppose ||s − x|| = dmin for s ∈ SB ; without loss of generality, s = (s1, 0) where s1 =
x1 − dmin. Then s is approached by points si ∈ S with |(si)1 − s1| ≤ (si)2. If not, for some
ϵ > 0 there exists an ϵ neighbourhod of s which is free of such points (Figure 13a). Thus,
if we let x′ := (s1 + ϵ/2, ϵ/2), we have d(x′, S) = d(x′, S) = d(x′, s) = ϵ and no other point
of S achieves this. But this distance is not achieved by any point of S, again contradicting
our hypothesis that S is Čebyšev.

Consider the point a := (x1, dmin). It is not in S, which is closed; thus for any small
enough ϵ > 0 there exists an ϵ-ball about a disjoint from S (Figure 13b). For the same
ϵ, choose some si from the sequence exhibited above, with ||si − s|| < ϵ/2. For t ∈ R, let
y(t) := (x1 − t, ϵ/2). Then

Bd−ϵ/2(y(0)) ⊂ Bd(x)
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Figure 13. Čebyšev sets in the open upper half plane U

and
Bd−ϵ/2(y(ϵ/2)) ∩ S ̸= ∅ .

Let t0 < ϵ/2 be the least t for which

Bd−ϵ/2(y(t)) ∩ S ̸= ∅ .
This intersection (by hypothesis, a singleton) does not come within ϵ of a, hence does
not include the apex a′ := (x1 − t0, d) of Bd−ϵ/2(y(t)). Proceeding as in Lemma 1, we can
construct a continuous nested family of balls with radius d−ϵ/2+t and center (x1−t0+t, ϵ/2)
(Figure 14a). Note that their union cannot contain any other points of S, for otherwise the
center of the smallest ball to do so would have two nearest neighbours in S. But this union
covers every point of Bd(x) \Bϵ(s); as we can choose ϵ to be arbitrarily small, we conclude
that Bd(x) ∩ S = {s}.

Figure 14. Čebyšev sets in the upper half plane U

Finally, we show that St ⊂ U . Let x ∈ St∩B, and let x′ > x. Then d(x′, S) = d(x′, S) =
x′
2; but the only point of S at which this distance is achieved, x, is not in S. (Figure 14b).

�

Corollary 4. Any closed strongly nested arc of K1
0 is Čebyšev , while an antinested arc of

K1
0 is Čebyšev if and only if it is closed in K1.

Example 4. The arcs A := {[−t, 3t] : t ≥ 0} and A′ := {[12 t,
3
2 t] : t ≥ 0} are both

Čebyšev in K1 (Figure 15.) The arc A is strongly nested, and ξA([p, q]) is the element
[−1

4 (q − p), 3
4 (q − p)] of A with the same width (cf Theorem 2.5 of [7]). The arc A′ is

antinested, and ξA′([p, q]) is the element [ 14 (p+ q), 3
4 (p+ q)] of A′ sharing the same center if

there is one such, and otherwise {0}(cf Theorem 1 of [4].) Deleting the singletons removes,
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along with the element {0} of A, all other elements of the same width; so ξA is well-defined
on K1

0, and the restriction of A to K1
0 is Čebyšev . However, K1

0 contains nondegenerate
intervals (such as the interval I = [−1, 0] shown) that are mapped to {0} by ξA; so the
restriction of A′ to K1

0 is not Čebyšev.

Figure 15. Čebyšev and non-Čebyšev arcs in K1
0

Observation 2. Another important class of arcs in a metric space is the class of geodesics:
an arc is a geodesic if it is a (not necessarily “the”) shortest path between any two points
on it. One might wonder whether Čebyšev arcs in K1 are the same thing as geodesics; it is
easy to show that they are not.

For instance, the polygonal arc joining the points (−1, 0), (0,−1
2 ), and (1, 0) is Čebyšev ,

but is not the shortest path between its endpoints. Conversely, a segment with a 45◦ slope
is a geodesic but not Čebyšev . In fact, it may be shown (we won’t) that the set of geodesic
arcs in R2

3 is the closure of the set of Čebyšev arcs in R2
2 and vice versa.

3. Directions for further research.
This paper was motivated by the more difficult problems in higher dimensional spaces;

the natural next step is to attempt to extend the results obtained here to those spaces.
One could try to generalize its results in at least four different ways. In general, for n > 1,
Kn and On are nonisomorphic, and neither is isomorphic to any finite-dimensional space;
moreover, for n > 2, the “taxicab n-space” Rn

3 and the “ℓ∞ n-space” Rn
2 are different. (For

instance, the unit ball of R3
3 is an octahedron, that of R3

2 is a cube. The isomorphism
between “square and diamond Shreddies” does not extend to higher dimensions!) Other
Minkowski spaces with polyhedral balls may also be worth examining.

Interesting questions include:

Complete classification of Čebyšev sets:: For higher-dimensional hyperspaces, this
has been the topic of various papers by the first author and others, and is probably
quite difficult. The problem for Minkowski spaces is probably easier, and may have
applications in computational geometry.

Treelike or fractal Čebyšev sets:: It is not hard to show (using Theorem 1) that no
set homeomorphic to the union of three line segments with a common endpoint can
be Čebyšev in R2

3, and thus that any Čebyšev tree is an arc. Is this true in all
Minkowski spaces? And do there exist Čebyšev fractals (by any interesting definition)
in Minkowski spaces?
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Čebyšev sets with variant dimension:: We have seen (eg, Figure 10c) that a Čebyšev
set in R2

3 may be two-dimensional in some neighborhoods and one-dimensional in oth-
ers. (A convex set in a linear space cannot do this!) It seems fairly clear that this can
happen in Rn

3 for n > 2; can it also happen in Kn, n > 2?
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[8] V. Klee, Convexity of Čebyšev sets, Math. Ann. 142 (1961), 292-304.
[9] E. F. Krause, Taxicab Geometry: An Adventure in Non-Euclidean Geometry, Dover, New York (1975)
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