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ADJACENCY PROPERTIES OF GRAPHS AND A CONJECTURE OF

ERDŐS

ANTHONY BONATO AND ALEXANDRU COSTEA

Abstract. In 1963, Erdős and Rényi gave a non-explicit, randomized construction of
graphs with an adjacency property. For a positive integer n, a graph is n-existentially
closed (or n-e.c.) if for all disjoint sets of vertices A and B with |A ∪ B| = n, there is

a vertex z not in A ∪ B joined to each vertex of A and no vertex of B. Until recently,
only a few explicit families of n-e.c. graphs were known, such as Paley graphs. Erdős
posed a conjecture on the asymptotic minimum order of n-e.c. graphs which is only now

receiving attention. The exact minimum orders of n-e.c. graphs are only known for n = 1
and n = 2.

Using a computer search, a new example of a 3-e.c. graph of order 30 is presented.
Previously, no known 3-e.c. graph was known to exist of that order. We give a new

randomized construction of vertex-transitive n-e.c. graphs, exploiting Cayley graphs.

1. Introduction. The probabilistic method was discovered by Paul Erdős in the 1950’s
and has since found widespread use in many fields of Mathematics and Computer Science,
and especially so in graph theory. The method shows objects with prescribed properties
occur with positive probability, and therefore such objects exist. Finding explicit examples
of the objects (in our case, graphs with an adjacency property) is often quite challenging.

An adjacency property is a global property of a graph, where given a fixed subset of
vertices S, there exists vertices outside of S joined to vertices of S in a predetermined way.
Adjacency properties stem from a seminal paper on random graphs by Erdős and Rényi
[12] published in 1963. One particular adjacency property that has received much recent
attention is the n-e.c. property. For a positive integer n, a graph is n-existentially closed
(or n-e.c.) if for all disjoint sets of vertices A and B with |A ∪ B| = n (one of A or B can
be empty), there is a vertex z not in A ∪B joined to each vertex of A and no vertex of B.
We say that z is correctly joined (or c.j.) to A and B. See Figure 1. Hence, for all n-subsets
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z

Figure 1. The n-e.c. property.
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S of vertices, there exist 2n-many vertices joined to S in all possible ways. Although the
n-e.c. property is straightforward to define, it is not obvious from the definition that graphs
with the property exist.

Erdős and Rényi gave a non-explicit, randomized construction of such a graph in [12].
Roughly speaking, random graphs arise by choosing edges among pairs of distinct vertices
independently with a given probability. To be more precise, the random graph G(m, p)
consists of the probability space (Gm,F ,P), where Gm is the set of all graphs with vertex set
{1, 2, . . . ,m}, F is the family of all subsets of Gm. Each graph is chosen independently with

probability a fixed p ∈ (0, 1). There are |Gm| = 2(
m
2 ) graphs of order m, so the probability

function is given by

P(G) = p|E(G)|(1− p)(
m
2 )−|E(G)|

This space may be viewed as
(
m
2

)
independent coin flips, one for each pair of vertices where

the probability of drawing an edge is equal to p.
We say that an event holds asymptotically almost surely (a.a.s.) in G(m, p) if it holds

with probability tending to 1 as m → ∞. We will consider asymptotic results on probability
spaces such as G(m, p), so we recall asymptotic notation. Let f and g be functions whose
domain is some fixed subset of R. We write f ∈ O(g) if

lim
x→∞

f(x)

g(x)

exists and is finite. We abuse notation and write f = O(g). We write f = Ω(g) if g = O(f),
and f = Θ(g) if f = O(g) and f = Ω(g). If

lim
x→∞

f(x)

g(x)
= 0,

then f = o(g). So if f = o(1), then f tends to 0. We write f ∼ g if limx→∞
f(x)
g(x) = 1. All

logarithms are in base e, and are written as log x.

Theorem 1. Fix an integer n ∈ N. The following then holds.

1. A.a.s. G(m, 1
2 ) is n-e.c.

2. Let f be a positive real-valued function defined by

f(m,n) =

(
m

n

)
2n

(
1− 1

2n

)m−n

.

If m is an integer chosen so that f(m,n) < 1, then there is an n-e.c. graph of order
m.

Proof. Let G = G(m, 1/2). For item (1), let A,B be two sets of vertices of G such that
A ∩ B = ∅ and |A ∪ B| = n. The probability that no vertex of G is joined correctly to A
and B is (

1− 1

2n

)m−n

. (1)

There are
(
m
n

)
choices of an n-set of vertices X, and 2n many partitions of X into sets A

and B. Hence, by (1) it follows that the probability that G is not n-e.c. is at most(
m

n

)
2n

(
1− 1

2n

)m−n

≤ mn2n
(
1− 1

2n

)m−n

= exp(n logm+n log 2+(m−n) log(1− 1
2n ))

= o(1),



ADJACENCY PROPERTIES OF GRAPHS 39

where the last equality follows since log
(
1− 1

2n

)
is a negative constant.

For the proof of item (2), if m has the given property, then with positive probability,
G(m, 1

2 ) contains a n-e.c. graph with positive probability.
We note that Theorem 1 easily generalizes to G(m, p), where p ∈ (0, 1) is fixed. We now

consider how large m must be for G(m, 1
2 ) to be n-e.c. with positive probability. A plot of n

versus m (where the corresponding m value is found by solving the equation ⌈f(m,n)⌉ = 1)
is shown in Figure 2. Note how quickly the function increases with n.
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Figure 2. Number of vertices m needed for G(m, 1/2) to be n-e.c.

We now turn our attention to the minimum order of an n-e.c. graph. For a positive integer
n, denote the minimum order of an n-e.c. graph by mec(n). By Theorem 1 (2), n-e.c. graphs
exist for all n > 0, and so the function mec(n) is well-defined. It was determined in [8] that
mec(1) = 4 and mec(2) = 9. These are the only two known values of this function! In [8],
it was shown that there are exactly three non-isomorphic 1-e.c. graphs of order four; see
Figure 3.

P C 2K
4 4 2

Figure 3. The 1-e.c. graphs of minimum order.

The unique isomorphism type of minimum order 2-e.c. graphs (as proved in [8]) is shown
in Figure 4.

We note that Theorem 1 (2) supplies an asymptotic upper bound for G(m, 1
2 ) to be n-e.c.,

which we describe in our next theorem. As the proof is part of folklore, but not evident in
the literature, so we give it explicitly here.

Theorem 2. If m = O(n22n) and n is a sufficiently large integer, then with positive prob-
ability G(m, 1

2 ) is n-e.c. In particular,

mec(n) = O(n22n).
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Figure 4. The unique 2-e.c. graph of minimum order.

Proof. We must show that if m = O(n22n), then f(m,n) < 1. Equivalently, we show
that if ϵ > 0 is fixed and m = ⌊(ϵ+ 1)n22n⌋, then

log f(m) < 0. (2)

For simplicity, we drop the floor and work with m = (ϵ+ 1)n22n. Now(
m

n

)
2n

(
1− 1

2n

)m−n

< mn2n
(
1− 1

2n

)m−n

.

Hence, (2) is equivalent to showing that

n logm+ n log 2 + (m− n) log

(
1− 1

2n

)
< 0. (3)

For n sufficiently large we have that log
(
1− 1

2n

)
∼ − 1

2n . By this fact, by computation, and
by the choice of m, (3) is equivalent to

n(log(ϵ+ 1) + 2 logn+ log 2) + n2 log 2 +
n

2n
< (ϵ+ 1)n2,

which is valid for large n as log 2 < 1.
The determination of mec(n), where n ≥ 3 appears to be an extremely difficult open

problem. An asymptotic lower bound was proved in Erdős et al. [10], where it was shown
that

mec(n) = Ω(n2n).

One of the deepest (and one we think deserves to be better known) conjectures on n-e.c.
graphs was posed by Caccetta, Erdős, and Vijayan [10].

Conjecture 1.
mec(n) = Θ(n2n).

Hence, to prove the conjecture, we would need to present a family of n-e.c. graphs with
order O(n2n). Theorem 2 actually gives the best known upper bound tomec(n).We therefore
need to reduce the order O(n22n) by a multiplicative factor of n.

There has been much research done in determining the minimum order of a 3-e.c. graph.
The results of [8] show that

20 ≤ mec(3) ≤ 28.

A new lower bound on the order of mec(3) was found recently using more sophisticated com-
putational methods. Based on 15, 000 hours of CPU time, the authors of [14] demonstrated
that mec(3) ≥ 24. Hence, mec(3) can only be one of

24, 25, 26, 27, 28.
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We do not solve Erdős’ conjecture here, nor determine mec(3). However, we present some
new computational results on 3-e.c. graphs of order 30 in Section 2, and a new construction
of vertex-transitive n-e.c. graphs arising from random Cayley graphs in Section 3. Both
results were first presented in the second author’s Master’s thesis [11].

1.1. Explicit Constructions of n-e.c. Graphs. The first family of explicit graphs that
were discovered to contain n-e.c. graphs for all n were Paley graphs. Fix q a prime power
with q ≡ 1 (mod 4). A Paley graph, written Pq, is a graph constructed on the points of a
finite field of order q such that two vertices are adjacent if and only if their difference is a
non-zero square in the field. As an example, consider the graph P9, which is isomorphic to
the minimum order 2-e.c. graph. Let S be the set of all non-zero squares in the finite field
with 9 elements, written GF (9). We use the following representation of elements of this
field:

GF (9) = {a+ bi : a, b ∈ Z3, i
2 = −1}.

The non-zero squares are therefore {1, 2, i, 2i}. See Figure 5, where vertices are labelled by
the elements of GF (9).

0 i 2i

1 1+i 1+2i

2 2+i 2+2i

Figure 5. The graph P9.

The following result on the n-e.c. properties of Paley graphs was proven independently
in [4, 6]. The proof uses a famous result from number theory: Weil’s proof of the Riemann
hypothesis over finite fields.

Theorem 3. If

q > n222n−2,

then Pq is n-e.c.

For a more detailed discussion of construction of n-e.c. graphs arising from number theory,
designs, geometry, and set theory, the reader is directed to the recent survey [7].

2. Computational results. The difficulty of determining if a graph is n-e.c. increases
dramatically with n. For example, to check that a graph of order m is n-e.c., for each of the(
m
n

)
subsets S of vertices, we would need to find 2n vertices joined to S in all the possible

ways. This becomes difficult, if not impossible, to do by hand for large n. The focus of this
section is on computational results related to orders of small 3-e.c. graphs. We recall from
the introduction that

24 ≤ mec(3) ≤ 28

(the lower bound follows from [14], while the upper bound follows from [8]). We note that
most of the known explicit n-e.c. graphs are strongly regular. For n = 3, in [2] it was shown



42 ANTHONY BONATO AND ALEXANDRU COSTEA

that the Paley graph of order 29 is the minimum order 3-e.c. Paley graph. Few examples of
strongly regular non-Paley n-e.c. graphs are known.

A graph G is vertex-transitive if any two distinct vertices of G, there is an automorphism
mapping one to the other. Hence, in a vertex-transitive graph, any two vertices behave
identically. For example, the graph P9 is vertex-transitive, as is any cycle or clique.

Most of the known explicit n-e.c. graphs are strongly regular. Let k, v > 0, λ, and µ be
non-negative integers. A k-regular graph G with v vertices, so that each pair of joined ver-
tices has exactly λ common neighbours, and each pair of non-joined vertices has exactly µ
common neighbours, is called a strongly regular graph; we say that G is SRG(v, k, λ, µ).
Paley graphs are an important instance of strongly regular graphs; the graph Pq is a

SRG(q, q−1
2 , q−5

4 , q−1
4 ) (for a proof, see [5]). In our computer search for a minimum or-

der 3-e.c. graph, we focused on strongly regular graphs and the class of vertex-transitive
graphs with orders between 24 to 30 (inclusive).

Lists containing all isotypes of small order vertex-transitive and strong-ly regular graphs
are publicly available on-line. The data sets for the class of strongly regular graphs can be
found in [17], while the data for the class of vertex-transitive graphs is available on-line at
[16]. The data set is partitioned into different files based on the order of the graph. Each
file consists of adjacency matrices encoded in the g6 format. (More on this format can be
found at [16].) The search was conducted only on graphs of order 24 to 30 to determine
if a minimum order 3-e.c. graph lies in one of these two classes. We note that the vertex-
transitive graphs of orders 20 to 28 were checked for the 3-e.c. property in [8]. Although we
did not determine the order of minimum order 3-e.c. graph, we found other results which
we now report.

The following table summarizes the results of the computer search for 3-e.c. graphs. The
numbers in the second and third columns represent the number of isomorphism types of
graphs which are 3-e.c. The time required to check all the isotypes is presented along with
number of isotypes checked for each order.

Order Vertex-Transitive SRG Isotypes CPU hrs
24 0 0 15506 8
25 0 0 464 0.29
26 0 0 4236 3.06
27 0 0 1434 1.16
28 2 0 25850 23.52
29 1 1 1182 1.19
30 2 0 46308 52

Before we discuss the results, we mention the numerical location of these graphs within
the data sets. Hence, the numbers in the last two columns correspond to the positive integer
assigned to the graphs.

Order Vertex-Transitive Strongly Regular
28 11440 and 15880 -
29 653 41
30 19022 and 24918 -

As mec(3) ≥ 24, our results show that there are no 3-e.c. strongly regular or vertex-
transitive graphs of order less than 28. The two 3-e.c. graphs of order 28 (first found in [8])
are not isomorphic and one is the complement of the other. The adjacency matrix is shown



ADJACENCY PROPERTIES OF GRAPHS 43

below. 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 0 0 0 1
1 1 0 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 1 0
1 1 0 0 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 0
1 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1
1 0 1 0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 1 1
1 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 1 1
1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0
1 1 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1 0 1 0
1 0 0 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1
0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1
0 1 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1
0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1
0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1
0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0
0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 0 1 1 1 0 0 1 0 1
0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 1
0 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 1 0


It can be shown that the 3-e.c. graph of order 29 found through our search is isomorphic
to P29, the Paley graph of order 29. By deleting nodes of P29 and then adding edges to the
resulting graph, we found several non-isomorphic 3-e.c. graphs of order 28.

In [15] it was mentioned that the existence of 3-e.c. graphs of order 30 is unknown. The
3-e.c. graphs of order 30 found through our search settles this problem. The two 3-e.c.
graphs we found of order 30 are complements of each other. (This can be verified using
Mathematica.) Below we present the adjacency matrix of one of these graphs.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0
1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 0 1 0 1 0
1 1 1 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1
1 1 1 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0
1 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1
1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0
1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0
1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1
1 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 0 0
1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0
1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 1
1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 1
0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1
0 0 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1
0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1
0 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1
0 1 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 0 1
0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0
0 1 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 1
0 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 1 0
0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1
0 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 0
0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 1
0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0


3. Cayley graphs and vertex-transitive n-e.c. graphs. We consider a construction
(albeit a randomized one) of n-e.c. graphs using Cayley graphs. The novel feature of the
graphs we generate is that they are always vertex-transitive, unlike the n-e.c. graphs arising
from G(m, p). We recall the definition of Cayley graphs. Given a group H, let S be a
non-empty subset of H that is closed with respect to taking inverses, and does not contain
the identity element e. The set S is called the connection set. The Cayley graph, denoted by
H(S), has vertices the elements of H, and x, y ∈ E(H(S)) if and only if xy−1 ∈ S. Cayley
graphs are an important class of vertex-transitive graphs (see [13], for example). Hence,
H(S) is a regular graph.

Given a group H, we consider a way of randomly choosing the connection set S. We begin
by defining a set S′ to contain all the pairs (g, g−1) from H, except for the pair (e, e). Fix a
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real number p ∈ (0, 1). For each pair (g, g−1) ∈ S′, elements g, g−1 are added independently
and with probability p to S; with probability (1 − p), g, g−1 is not added to S. We note
that S is a well-defined connection set since it is inverse-closed, and it does not contain the
identity element. We name the corresponding probability space the random Cayley graphs
on the group H of order m with probability p and write Hm(p). Random Cayley graphs have
been studied especially in their connection with expansion properties of graphs; see [1].

While |S| is a random variable in Hm(p), all choices of S give rise to Cayley graphs, and
hence, vertex-transitive graphs. This follows directly from the definition of Cayley graphs.
We prove the following result in the case when p = 1/2. The method of proof is based on a
construction of vertex-transitive n-e.c. tournaments exploiting circulant tournaments in [9].

Theorem 4. For n a positive integer, a.a.s. Hm(1/2) is n-e.c.

Proof. Consider the graph G = Hm(1/2) with order m. Fix

X = {x1, x2, . . . , xn}

an n-set of vertices of G. We need to find a vertex z correctly joined to X (regardless of the
partition of X into two sets, say A and B). For v ∈ G define

σX(v) = {u ∈ S : for some x ∈ X,u = vx−1 or u = xv−1}

We would like to show we can construct a set U , disjoint from X, such that with probability
tending to 1, there is a z ∈ U that is correctly joined to X. Equivalently, we show that with
probability o(1), there is no vertex in U correctly joined to X. We construct U such that
|U | = ⌊ m

4n2 ⌋, and impose the following restrictions on U.

1. For all distinct z and z′ in U , σX(z) ∩ σX(z′) = ∅.
2. |σX(z)| = n.

From the definition of σX , it is straightforward to see that item (1) ensures the event that
z is joined to a vertex xi in X is independent of the event that z′ is joined to xi, and item
(2) ensures that the events that z is joined to any particular xi are mutually independent.

We inductively construct the set Uk whose union will be U. We choose U1 to be a single
vertex z1 not in X with the property that |σX(z1)| = n. We therefore eliminate elements in
X and those z1 such that |σX(z1)| < n. For example, if it happens that z1x

−1
i = xjz

−1
1 for

some i and j, then we must eliminate z1 from consideration. Each distinct pair of vertices
from X eliminates at most one element of G. We may now find a suitable z1 since

m− n−
(
n

2

)
> 0.

(Recall that n is a constant that does not depend on m.)
Suppose that Uk has been constructed for a fixed k < ⌊ m

4n2 ⌋, so that |Uk| = k, and the
set Uk has elements satisfying items (1) and (2). Set Uk = {z1, . . . , zk}. We choose zk+1

as the new element of Uk by eliminating elements from V (G) \ Uk. As in the base step, by
considering all the pairs of vertices from X,

(
n
2

)
vertices are eliminated. Each vertex z ∈ Uk

satisfies |σXz| = n. To ensure that σX(z) ∩ σX(z′) = ∅ for z ∈ Uk and z′ ∈ Uk+1, we must
eliminate another 2kn vertices. For large m, we may find a suitable zk+1 since

m− n− k −
(
n

2

)
− 2kn > m

(
1− 1

4n2
− 1

2n

)
− n− n2

> 0.

Add zk+1 to Uk, to form Uk+1. Define U = U⌊ m
4n2 ⌋, so |U | = ⌊ m

4n2 ⌋ as desired.
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We now estimate the probability that none of the vertices of U are correctly joined to X,
and show this tends to 0 as m tends to ∞. By items (1) and (2), we have that

P(no z in U is c.j. to X) =

(
1− 1

2n

)⌊ m
4n2 ⌋

.

Hence, we have that the probability P of the event that G is not n-e.c. satisfies

P ≤
(
m

n

)
2n

(
1− 1

2n

) m
4n2

≤ mn2n
(
1− 1

2n

) m
4n2

= exp

(
n logm+ n log 2 +

( m

4n2

)
log

(
1− 1

2n

))
= o(1).

We note that the proof of Theorem 4 generalizes to p ∈ (0, 1), and we may allow n to
grow as a function of m. We omit these generalizations, as our more modest goal here is to
provide a new randomized construction of vertex-transitive n-e.c. graphs.

The proof of Theorem 4 gives an asymptotic upper bound for Gm(1/2) to be n-e.c., whose
proof is similar to Theorem 2 and so is omitted.

Theorem 5. If m = O(n32n) and n is a sufficiently large integer, then with positive prob-
ability Gm(1/2) is n-e.c. In particular, there is a vertex-transitive n-e.c. graph of order
O(n32n).

4. Future work. We know little about the minimum order n-e.c. graphs; for example, are
they all vertex-transitive or even regular? The determination of mec(3) will likely use a
mixture of computational and theoretical results on 3-e.c. graphs. By the results in [15] and
those referenced in Section 2, the only orders where we do not know whether a 3-e.c. graph
exists are:

24, 25, 26, 27, 31, 33.

Determining the exact order of mec(n) for n ≥ 4 appears to be a difficult problem. Even
determining the asymptotic order of this function presents a challenge. The conjecture of
Erdős that

mec(n) = O(n2n),

remains as one of the deepest problems in this area of graph theory. Even a seemingly
modest improvement to O(n2−c2n), where c > 0, would represent a breakthrough. It is
possible that random graphs stemming from either combinatorial designs (see [3]) or Cayley
graphs may eventually be adapted to solve the conjecture.
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