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Abstract. The properties of quantum channels with diagonal Kraus operators

are examined. These are exactly the channels which allow full transmission of
classical information.

The condensed matrix is presented. The quantum channel has capacity

zero iff the condensed matrix has full rank, otherwise it can transmit at least
1 qubit per use.

A tight bound on the number of error operators a random quantum channel

may have and still be correctable is given for both real and complex diagonal
channels.

1. Introduction.

1.1. Diagonal Quantum Channels. Quantum channels are mathematical repre-
sentations of operations performed on qubits. Usually, these operations are undesir-
able, and the goal is to correct their effects. For an overview of quantum computing
and quantum error correction, see [1] or [2]. For the purposes of error correction,
a quantum state is represented as a square complex matrix ρ (a density matrix ).
This gives all the information about the current interactions of a given set of qubits.
Specifically, when measuring a quantum state, we extract one basis vector from the
orthonormal basis set {|ϕi〉 |i = 0, 1, ..n}1. Given any density matrix, 〈ϕi| ρ |ϕi〉
gives the probability of the measurement outputting the ith vector of the basis.

A quantum channel is the most general possible type of operation on a set of
qubits (or on a density matrix). Quantum algorithms, for example, can be thought
of as specific quantum channels. Transmission of entangled photons through a
specific fibre-optic cable could also be represented as a quantum channel. It is
obvious, then, that quantum channels can be combined in various ways (e.g., an
algorithm deciding which of two fiber-optic cables to use to send 5 entangled photons
from point A to point B, based on input from a sixth photon, the entire process
could be represented as a single quantum channel, with a 26 x 26 input density
matrix and a 25 x 25 output density matrix).
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Without loss, I will only consider quantum channels have the same dimension
input and output, which can be obtained by adding qubits to one end of the quantum
channel. For example, in the above example, a |0〉 qubit could be added to the
output to make a quantum channel preserving the dimension of ρ.

Definition 1. A general quantum channel is a completely positive, trace preserving
linear map [1]. This means that it is a map Φ : Cn x n → Cm x m, such that
Tr(Φ(A)) = Tr(A), and if A is Hermitian with all positive eigenvalues so is Φ(A).
Without loss, we consider for quantum channels only the case where m = n (as
extra independent qubits can be added to the channel at either end, increasing the
dimension without changing the information transmission properties). By Choi’s
Thereom [3], all maps of this type can be represented as:

E(ρ) =
∑
a

EaρE
†
a (1)

(The Ea are complex matrices). The Ea are called Kraus operators, or error opera-
tors. In the cases where the dimension of ρ is preserved, they will be square. Again
by Choi’s Theorem, the quantum channels (completely positive, trace preserving
maps) are exactly the cases where:∑

a

E†aEa = I (2)

It is convenient to notice that sending qubits through two channels simultane-
ously can be represented by a new, larger channel. For qubits not entangled across
the two channels, this is expressed (using the Kronecker product) as:

E1(ρ1) =
∑
a

Eaρ1E
†
a (3)

E2(ρ2) =
∑
a

Faρ2F
†
a (4)

E3(ρ1 ⊗ ρ2) =
∑
a

∑
b

(Ea ⊗ Fb)(ρ1 ⊗ ρ2)(Ea ⊗ Fb)
† (5)

This can easily be extended to the non-separable density matrices by linearity.
In this paper, I am interested in channels which exactly retain all classical infor-

mation in the standard basis. This corresponds to the channels which are not only
trace preserving, but leave the diagonal of all the positive, trace 1 density matrices
(and by linearity the diagonal of all matrices) unchanged.

Theorem 1. The quantum channels which retain all classical information un-
changed are precisely those with diagonal error operators.

Proof. We see that all permissible quantum channels with diagonal error operators
leave the diagonals of the density matrix unchanged when we consider that for any
diagonal channel and any i,

∑
a |(Ea)ii|2 = 1. Doing the quantum channel operation

for general diagonal matrices with this constraint and general ρ immediately shows
the result.

The other direction is somewhat trickier. Take 〈ϕa| =
∑

i bi,a 〈i| to be the jth

row of Ea. Take ρ1 to be a diagonal n by n matrix, with 1
n−1 being every entry on

the diagonal except the jth entry, which is zero. This satisfies Tr(ρ1) = 1.
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Note that, for the jth element of the diagonal to be preserved, we have to have∑
a

〈ϕa| ρ1 |ϕa〉 = 0 (6)

Expanding and simplifying, we have∑
a

∑
i 6=j

|bi,a|2 = 0 (7)

So i 6= j =⇒ bi,a = 0.

1.2. Correctable Codes. For the purposes of this paper, I am only interested
in whether any information at all can be passed through a quantum channel, not
how much. Therefore, I consider a quantum channel to be correctable if at least 1
general qubit can be passed through it exactly.

Definition 2. For the purposes of this paper, correctable diagonal channels are
those that can transmit at least 1 qubit of quantum information exactly.

Theorem 7 shows that it does not give an uncorrectable diagonal channel extra
power to be used multiple times with entangled input. This is not necessarily true
for general quantum channels.

1.3. Condensed Vector Set and Condensed Matrix.

Definition 3. Each n-error, m-dimensional quantum channel has a condensed vec-
tor set, represented as V , with dimension m and size n. A subscript vector of the
set in this scheme (~vk) represents the column vector associated with the kth error
operator, Ek.

The condensed vector set is useful because it provides a succint way to represent
the channel.

Definition 4. Define a pointwise conjugate product of two vectors, ~u and ~v, to be
~u× ~v = ~w, defined by wj = ūjvj .

Definition 5. Each m-dimensional quantum channel has a condensed matrix, rep-
resented as W . To define it, take ~wi to be the ith column of the matrix. n is the
size of the condensed vector set V . W is then:

~w(i−1)n+j = ~vi × ~vj (8)

This matrix has m2 columns and n rows.

The condensed matrix’s rank is usefull in determining whether a diagonal chan-
nel is correctable, and if so, the matrix itself can be used to determine what the
correction code is.

The condensed matrix also has another interesting property.

Lemma 1. Given two diagonal quantum channels with condensed vector sets V1
and V2, define the condensed vector set of the quantum channel formed by entan-
gling input across the two original channels as V3. Let W1, W2, and W3 be the
corresponding condensed matrices. Given these conditions, W3 is a formed by a
permutation of the columns of W1 ⊗W2.
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Proof. Assume that the vectors in V1 have length m, and that the vectors in V2
have length n. Impose some ordering on V1 and V2. Define ~ai as the row vector

obtained by taking the ith element of each vector in V1 in order. Similarly define ~bj
as the equivalent row vector for jth row of V2.

Note that the [(i−1)m+j−1]th row of V3 (for simplicity, denoted ~c) is ~c = ~ai⊗~bj .
Therefore, the same row of W3 is

~c⊗ ~c = (~ai ⊗~bj)⊗ (~ai ⊗~bj) = ~ai ⊗~bj ⊗ ~ai ⊗~bj (9)

Note that the [(i− 1)m+ j − 1]th row of W1 ⊗W2, denoted ~d for convenience, is

~d = W1i ⊗W2j = (~ai ⊗ ~ai)⊗ (~bj ⊗~bj) (10)

The lemma is now easy to see.

1.4. Conjugate-Closed Vector Sets.

Definition 6. A conjugate-closed vector set V has the property that ~v ∈ V =⇒
~̄v ∈ V , where ~̄v is the vector obtained by taking the complex conjugate of every
entry in ~v.

Theorem 2. The span of any conjugate-closed vector set has a basis of real vectors.

Proof. Take any pair of conjugate vectors in the set. Add them together and divide
by 2 to get the real part. Subtract them and multiply by i

2 to get the imaginary
part. The span of these two real vectors cannot be more than the span of the space
(after all, they are in the space). Their span cannot be less, as the conjugate pair
is in their span. So it is the same space. Repeat for every conjugate pair to find
a real vector set spanning the space. Reduce the resulting real vector set to a real
basis.

By theorem 2, the condensed matrix for any diagonal channel has a real basis
for its column space, and therefore also its left null space.

2. Main Results.

2.1. Diagonal Channel Correction and the Condensed Matrix.

Theorem 3. (Due to Knill and Laflamme [4]). Necessary and sufficient conditions
for recovery of a state are non-zero logical encoded states |0L〉 and |1L〉 such that
for all the error operators Ec,

〈0L|E†cEd |1L〉 = 0 (11)

〈0L|E†cEd |0L〉 = 〈1L|E†cEd |1L〉 (12)

[4] explicitly shows how to correct errors given two states satisfying these condi-
tions.

We can represent these two new basis states as

|0L〉 =
∑
x

ax |x〉 (13)

|1L〉 =
∑
x

bx |x〉 (14)

Theorem 4. Assume an m-dimensional diagonal quantum channel. It is uncor-
rectable if and only if the rank of its condensed matrix is exactly m.



72 SAMUEL D. ARNOLD

Proof. Take the diagonal entries of Ei, (Ei)jj , to be Ei,j for conciseness. The
constraints become:

∑
j

aj(Ec,j)Ed,jbj = 0 (15)

∑
j

aj(Ec,j)Ed,jaj =
∑
j

bj(Ec,j)Ed,jbj (16)

It is easy to show that the trace-preserving property of the Ei makes the above
constrain the |0L〉 and |1L〉 to have equal magnitude and be perpedicular. The above
is trivially satisfied for two vectors of zero magnitude, but a non-zero solution is
required.

Define a vector set Q to be Q = {~q : (∃c, d)(∀j)(qj = (Ec,j)Ed,j)}. It is easy
to see that the vectors in Q are exactly the columns of the condensed matrix for
the channel. It is also easy to see that if we define two vectors, ~x and ~y, such that
xj = ājbj and yj = |aj |2 − |bj |2, the channel is correctable iff these vectors are in
the left null space of the condensed matrix. Therefore, it is necessary that the left
null space contain non-zero vectors, which only occurs if the rank of the condensed
matrix is less than m.

Assume that there exists a non-zero vector ~d in the left null space. Without loss
of generality, assume that it is real, by theorem 2. Also, assume that |0L〉 and |1L〉
are real (because we just need a single solution for them). To solve for values of
|0L〉 and |1L〉 satifying the constraints, expand |0L〉 to a diagonal matrix A, |1L〉
to a diagonal matrix B, and ~d to a diagonal matrix D. By expand, what is meant
is to use the ith vector entry as the ith component of the matrix, diagonally. In
the following equations, c1 and c2 are just arbitrary real scaling coefficients. The
equations above imply:

c1D = AB (17)

c2D = A2 −B2 (18)

For any value of the free parameters c1 and c2, this is satisfied by:

A =

√
c2D +

√
c22D

2 + 4c21D
2

2
(19)

B =

√
−c2D +

√
c22D

2 + 4c21D
2

2
(20)

Above, all square roots are principal.
This satisfies all the original conditions, and so the two vectors must have equal

magnitudes for any choice of c1 and c2. Choose c1 and c2 so that one vector has
unit norm, and the other must.

This theorem has two immediate corollaries.

Corollary 1. Any real diagonal quantum channel where the state space is m-

dimensional and there are n error operators, with m >
(
n
2

)
+
(
n
1

)
= n2+n

2 , is
correctable for at least 1 qubit.

Proof. The condensed matrix for real channels has maximum rank
(
n
2

)
+
(
n
1

)
, because

the pointwise conjugate product is commutative for real vectors.
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Corollary 2. Any (in general, complex) diagonal quantum channel where the state
space is m-dimensional and there are n error operators, with m > n2, is correctable.

Proof. The condensed matrix for all diagonal channels has maximum rank n2.

2.2. Tight Bounds for Number of Error Operators. The bounds given in
corollaries 1 and 2 are tight in the sense that for random channels with any more
than the given number of error operators, diagonal quantum channels are uncor-
rectable with probability 1. In practice, it appears that if these channels are chosen
approximately randomly, when the bounds are exceeded the channel is always un-
correctable.

Lemma 2. For any given non-zero real symmetric A, a vector with real entries
selected uniformly at random ~r ∈ Rm has the property ~rTA~r 6= 0 with probability 1.

This is easily seen by, for any A, working in the basis where it is diagonal.

Lemma 3. For any m, a randomly chosen set of up to m2+m
2 vectors V in Rm has

the property that with probability 1, Q = {~v ⊗ ~v : ~v ∈ V } is linearly independent.

Proof. Note that ~v ⊗ ~v has vim+j = vjm+i, so it has at most m2+m
2 free variables.

Take the m2+m
2 -dimensional vector without the doubled terms, and call it ~r. It is

sufficient to prove that with random ~v, ~r is not perpendicular to any given non-zero
~u. Then, to construct the linearly independent set needed, it is sufficient to pick
a vector from the space orthogonal to the current vector set’s span and note that
the next vector in the set will almost certainly have a non-zero projection onto the
orthogonal space.

Take any m by m set of numbers with uij = uji, and write:

m∑
i=1

m∑
j=i

uijvivj =

m∑
i=1

m∑
j=1

(1 + δij)uij
2

vivj

= ~vTS~v (21)

The question is solved by an appeal to lemma 2.

Theorem 5. A random real diagonal channel with m dimensions, n error operators,

and m ≤ n2+n
2 is non-correctable with probability 1.

Proof. Consider the rows of condensed matrix for the channel, which by lemma 3
are almost certainly linearly independent. The rows are normalized, but since any
~v satisfying ~vTS~v = 0 implies all its multiples do as well, all the probability results
hold when we restrict the result to random unit vectors. The condensed matrix
therefore has rank m and therefore uncorrectable by theorem 4 almost certainly.

A similar result can be shown for complex channels. The proof begins with a
result similar to lemma 2, but this one is less obvious.

Lemma 4. Take any non-zero m by m complex matrix A, and any vector ~v. Call
~v†A~v = 0 property P. Then, any A with random unit ~v has property P with proba-
bility zero.

Proof. Note that the property P is invariant under multiplication of the vector by
a real scalar, and so the lemma is equivalent to the same assertion for all random
(non-unit) vectors ~v. Further note that the lemma is trivially true unless there are
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at least m linearly independent vectors satisfying P. I can assume I am working in
the basis defined by these vectors, and so without loss of generality assume aii = 0.

Assume that there exists an A such that (A,~v) satisfies P for vectors chosen
uniformly at random, with fixed, non-zero probability. For simplicity, assume that
we choose random vectors by picking each of the entries in turn, and picking the
magnitude at random from R and the argument at random from [0, 2π].

Note that the property P is invariant under multiplication of ~v by a complex
number of unit magnitude. Therefore, assume without loss of generality that the
kth entry in ~v, vk, is real (for a fixed k).

Now, we choose vk uniformly at random in R. There must be a probability ε > 0
of choosing vk such that ~v will still satisfy property P with probability at least
δ > 0. Otherwise, choosing a vk such that ~v satisfies P with non-zero probability
has zero probability, contradicting the original assumption that P is satisfied on the
entire vector set with non-zero probability.

This implies that for an infinite number of distinct vk, given the choice vk for the
kth vector entry, ~v still satisfies P with probability at least δ. We can therefore pick
a set Q = {vk,i : 1 ≤ i ≤ d2δ−1e, vk,i = vk,j ⇐⇒ i = j} that has the additional
property that the associated vectors still satisfy P with probability at least δ. Define
Vi to be the vector set satisfying P for each vk,i, but without the kth row of the
vectors. Define p(V ), where V is a vector set, to be the probability that a random
vector satisfies ~v ∈ V . Note that we cannot have p(Vi ∩ Vj) = 0 for all i 6= j, or the
total probability is greater than 1:∑

i

p(Vi) ≥ d2δ−1eδ ≥ 2 > 1 (22)

Therefore, for the original assumption to be true there must be two distinct
values of vk, b and c, such that there is a non-zero probability of the rest of the
vector satisfying the property P for both values of vk simultaneously.

This property is best expressed in the summation expression as:

0 =

∑
i 6=k

∑
j 6=k

v†i aijvj

+
∑
i

bv†i ai,k +
∑
i

bak,ivi

=

∑
i 6=k

∑
j 6=k

v†i aijvj

+
∑
i

cv†i ai,k +
∑
i

cak,ivi (23)

b

(∑
i

v†i ai,k +
∑
i

ak,ivi

)
= c

(∑
i

v†i ai,k +
∑
i

ak,ivi

)
(24)

=⇒
∑
i6=k

v†i ai,k +
∑
i6=k

ak,ivi = 0 (25)

Let ~v′ = ~x+i~y be the vector ~v without the kth row. Let ~u1 = ~d+i ~f be the vector

of ak,i without aii and let ~u2 = ~g + i~h be the vector of ai,k without aii. Splitting
the real and imaginary parts of the equation, we have:

~x~d+ ~x~g − ~y ~f + ~y~h = ~x(~d+ ~g) + ~y(~h− ~f) = 0 (26)

~x~h+ ~x~f − ~y~g + ~y~d = ~x(~h+ ~f) + ~y(~d− ~g) = 0 (27)

Note that ~d,~g,~f , and ~h are fixed and arbitrary. Continuing, we write:
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0 =
[
~xT ~yT

] [ ~d+ ~g
~h− ~f

]
=
[
~xT ~yT

] [~h+ ~f
~d− ~g

]
(28)

By inspection, 28 is satisfied with non-zero probability only when ~d = ~g = ~f =
~h = 0. This is equally valid for every row of the matrix, so only the zero matrix
satisfies the assumed conditions on A.

Lemma 5. For any perfect square m, a randomly chosen set of up to m2 vectors
V in Cm has the property that with probability 1, Q = {~v ⊗ ~v : ~v ∈ V } is linearly
independent.

Proof. Note that Lemma 4 is equivalent to saying there are no fixed non-zero vectors
~u such that there is a nonzero probability that a random vector ~v will have the
property (~v⊗~̄v) ·~u = 0 (consider the entries of ~u as the entries of A). Use induction,
noting that the next vector added Q is almost certainly not perpendicular to any
given vector in the space orthogonal to the span of Q.

Theorem 6. A random diagonal channels with m dimensions, n error operators,
and m ≤ n2 is non-correctable with probability 1.

Proof. Turn the problem sideways, and consider the rows of the condensed matrix as
vectors of the set Q from lemma 5, which are almost certainly linearly independent.
There are m rows, which is less than n2 columns. Therefore, the condensed matrix
almost certainly has rank m, and is almost certainly not correctable.

2.3. Diagonal Channels are Weakly Additive. In this paper, the main concern
for quantum channels is determining whether any quantum information at all can
be transmitted. Up to this point, it has been assumed that only one use of any given
channel is permitted. The following theorem provides a weak additivity condition on
the diagonal channels, which allows us to state that if a diagonal quantum channel
cannot transmit useful quantum information with one use, its total capacity allowing
multiple uses is also zero.

Theorem 7. If a quantum channel is constructed by sending entangled states
through two separate diagonal quantum channels, the resulting (separable) quantum
channel is correctable iff at least one of the separate channels is.

Proof. Obviously, if either of the original channels is correctable the resulting one
will also be correctable. It is not obvious that any two non-correctable diagonal
channels still are non-correctable when used together.

Lemma 1 gives the machinery required to prove theorem 7. Assume that the first
channel is m-dimensional, and the second is n-dimensional. Recall from the previous
sections that for the two initial channels to be non-correctable it is necessary that
Rank(W1) = m and Rank(W2) = n, and for the third channel to be non-correctable
it is sufficient to have Rank(W3) = mn. Remember that permutation of columns of
a matrix does not affect its rank.

To clinch the proof, recall:

Rank(W3) = Rank(W1 ⊗W2) = Rank(W1) Rank(W2) (29)

Therefore, if the two initial channels are non-correctable, Rank(W3) = mn, proving
the theorem.
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Corollary 3. Any diagonal channel that cannot transmit quantum information with
a single use of the channel has total capacity zero, even over multiple uses of the
channel with entangled input.

3. Open Problems.

3.1. It would be interesting to know more about the set of other diagonal quantum
channels (with more than the given number of error operators) that are correctable.
We know that the set has measure zero in the full set of diagonal quantum channels,
but we do not know much else.

3.2. General quantum channels need subchannels with correctable classical infor-
mation before they have a hope of transmitting quantum information. It would be
interesting to try to apply these results generally, by first trying to correct classical
information and then determining whether the resulting diagonal sub-channels are
correctable. Unfortunately, this approach is probably not very useful because most
techniques for correcting classical information would destroy quantum information.
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