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Abstract. In the present paper, we consider the paper “Sharp well-posedness

and ill-posedness results for a quadratic non-linear Schrödinger equation,” J.
Funct. Anal. 233 (2006), 228–259. The argument in it is very clever, but

there seem to be a few errors in the proof. The purpose of this paper is to give

a corrected proof.

1. Introduction. In [2] Bejenaru and Tao treated the initial value problem (IVP)
of a quadratic Schrödinger equation{

iut + uxx = u2 , u : R× R→ C ,
u(0, x) = u0(x) ,

(1)

and they improved the previous result for the local well-posedness of the IVP (1)
established by Kenig, Ponce and Vega [9]. Since their argument seems to have wide
application, the paper is worth reading for those studying well-posedness theory of
nonlinear evolution equations. In this article we shall complete their proof, fixing a
few correctable errors.

The nonlinear Schrödinger equation{
iut + ∆u = F (u) , u : R× Rn → C ,
u(0, x) = u0(x)

(2)

appears in various regions of mathematical physics, so it has been extensively stud-
ied in all aspects. In particular, (2) with a power-type nonlinearity F has various
good properties (e.g. scaling invariance (4)) and many results are known. We re-
strict our attention to the local well-posedness of the IVP. Local (resp. global)
well-posedness of the IVP in a data space D, which is one of fundamental problems
for an evolution equation, basically requires existence of a solution in a time interval
[0, T ), T > 0 (resp. [0,∞)) for all data in D, uniqueness of the solution in a suitable
function space and continuous dependence of solutions on the data. The data space
D is usually set to the Sobolev space Hs(Rn), the Banach space of distributions
that the norm

‖ϕ‖Hsx := ‖〈ξ〉sϕ̂‖L2
ξ
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is finite. Here 〈·〉 := (1 + | · |2)1/2 and ·̂ denotes the Fourier transform

ϕ̂(ξ) :=

∫
Rn
eix·ξϕ(x) dx .

Fourier analysis plays an important role in the well-posedness theory.
The linear Schrödinger equation iut + ∆u = 0 generates the unitary group

{eit∆}t∈R on Hs. Then, as a perturbation problem, the IVP (2) is replaced with
the equation of integral form by Duhamel’s principle,

u(t) = eit∆u0 − i
∫ t

0

ei(t−t
′)∆F (u(t′)) dt′ . (3)

( =: Φ(u)(t) )

The most general way to solve (3) is the iteration method, i.e. to show that Φ is
a contraction on a suitable function space S. When s is sufficiently large, we can
obtain well-posedness with S = Ct([0, T ], Hs

x(Rn)) for small T > 0, but for small s
the map Φ fails to be a contraction on this space and we need to restrict the domain
S effectually. Our interest is then to obtain the lowest Sobolev regularity s for local
well-posedness.

Let us consider the standard power-type nonlinearity

F (u) = ±|u|p−1u , p > 1 .

Then the IVP (2) is locally well-posed in Hs(Rn) for s ≥ max{0, sc} (e.g. [4])1,
where

sc :=
n

2
− 2

p− 1
.

The proof is based on the Strichartz estimates ([14]). Furthermore, the map from
data to solutions is known not to be uniformly continuous from Hs to Ct([0, T ], Hs

x)
for any s < max{0, sc}, even for small T and on a small ball including the origin (e.g.
[10], [5])2. This negative result is natural when we consider two kinds of invariance
of the equation, that is, the invariance under the scaling

u(t, x) 7→ λ−2/(p−1)u(λ−2t, λ−1x) , λ > 0 (4)

which conserves the Ḣsc(Rn) norm, and that under the Galilean transform

u(t, x) 7→ eiv·x−i|v|
2tu(t, x− 2vt) , v ∈ Rn

which conserves the L2(Rn) norm.
This invariance argument suggests that it would be possible to show the well-

posedness under some negative Sobolev regularities if we choose the nonlinearity
such that the equation is not Galilean invariant, and that the critical scaling regu-
larity sc is negative. For instance, when the nonlinearity is u2 or ū2 or uū, the local
well-posedness regularity threshold can be negative in spatial dimension n = 1, 2, 3.
In the 1D case, Kenig, Ponce and Vega [9] actually obtained the local well-posedness
for these nonlinearities under negative regularity; s > −3/4 for F (u) = c1u

2 + c2ū
2

and s > −1/4 for F (u) = cuū (c1, c2, c ∈ C). Similar results are established by

1We need an additional regularity assumption if p is not an odd integer.
2The iteration method usually provides the uniform continuity of the data-to-solution map,

so it seems that we cannot apply this method directly to establish the well-posedness for these
regularities. But the lack of uniform continuity does not necessarily imply ill-posedness. In fact,
there are the cases where the map is continuous but not uniformly continuous (e.g. [17] for the

modified Korteweg-de Vries equation).
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Colliander, Delort, Kenig and Staffilani [6] for 2D, and by Tao [16] for 3D. It is in-
teresting that the regularity threshold depends on the nonlinearity itself, while the
result from the Strichartz estimates depends only on the degree of the nonlinearity.
Their proofs are based on the Fourier restriction norm for space-time functions
introduced by Bourgain [3] and defined for Schrödinger equations as

‖u‖Xs,bt,x := ‖〈ξ〉s〈τ − |ξ|2〉bũ‖L2
τ,ξ(R1+n) ,

where ·̃ denotes the space-time Fourier transform. The function space S is then
set to Xs,b with some b > 1/2, which is a Banach space of distributions with the
above norm and continuously embedded into Ct(H

s
x). The Fourier restriction norm

method has been applied to various nonlinear evolution equations (e.g. [7], [8], [15],
[17], [18]).

For the iterative argument on Xs,b, the following bilinear estimate associated
with the nonlinearity is the most important and difficult to establish3;

‖B(u, v)‖Xs,b−1 . ‖u‖Xs,b‖v‖Xs,b , (5)

where B(u, v) is the bilinear operator corresponding to the nonlinearity,

B(u, v) :=


uv if F (u) = u2,

ūv̄ if F (u) = ū2,

uv̄ if F (u) = uū.

The estimate (5), however, fails when s ≤ −3/4 for u2, ū2 and s ≤ −1/4 for uū
([9], [13]). Here we should remark that the failure of the bilinear estimate in Xs,b

does not imply the ill-posedness at these regularities, because there remains the
possibility that we can restore it using different space-time spaces of functions. We
need a further modification on the function space S to treat lower regularities.

For 1D and the nonlinearity u2, Bejenaru and Tao [2] subtly modified the space
Xs,b and established the local well-posedness4 in Hs(R), s ≥ −1. In this situation,
the crucial bilinear estimate is rewritten in the Fourier space as

‖〈τ − ξ2〉−1f ∗ g‖Ŝs . ‖f‖Ŝs‖g‖Ŝs , (6)

where ∗ means the space-time convolution

(f ∗ g)(τ, ξ) :=

∫
R

∫
R
f(τ − τ ′, ξ − ξ′)g(τ ′, ξ′) dτ ′dξ′ ,

and Ŝs should be a refinement of X̂s,b, spaces of the Fourier transform of functions
in Xs,b equipped with the norm

‖f‖X̂s,bτ,ξ := ‖〈ξ〉s〈τ − ξ2〉bf‖L2
τ,ξ(R2) .

Their modification is based on the special property of the nonlinearity u2, so their
function space does not work for other nonlinearities ū2, uū. However, their idea
for modifying the space was applied to 2D and another nonlinearity ū2 ([1], [11],
[12]), and it is strongly expected that there are a number of applications to other
nonlinearities or other nonlinear dispersive equations.

3We use the notation x . y if there exists a constant C > 0 independent of any variable

appearing in the estimate, such that x ≤ Cy, and also x ∼ y if x . y and y . x. We write x � y
if the estimate x ≤ C−1y holds for some large positive constant C.

4They obtained the local well-posedness in a weak form; there exists a continuous data-to-
solution map which agrees with the standard unique solutions on smooth data.
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The rest of this paper is planned as follows. In Section 2 we recall the argu-
ments in [2] and point out two errors in the proof of (6). They are independent of
each other, and other proofs of corresponding parts will be given in Section 3 and
Section 4.

2. Ideas for the bilinear estimate. In the following, LpLq always denotes the
mixed Lebesgue space of variable (τ, ξ);

LpLq := LpξL
q
τ (R2) , ‖f‖LpLq :=

∥∥‖f(·, ξ)‖Lqτ (R)

∥∥
Lpξ(R)

,

and we also use the restricted norm; for Ω ⊂ R2,

‖f‖LpLq(Ω) := ‖f · 1Ω‖LpLq ,

where 1Ω denotes the characteristic function of Ω. A new function space for solu-
tions was then constructed in [2] in the following way.

Step 1. We call a function f : R× R → C reasonable when f ∈ L∞t,x(R2) and

supp f is compact. For s, b ∈ R, we define X̂−1,1/2,1 to be the Besov endpoint of
X̂s,b whose norm is defined by

‖f‖X̂−1,1/2,1 :=

(∑
j≥0

2−2j

(∑
d≥0

2d/2‖f‖L2L2(Aj∩Bd)

)2 )1/2

,

where {Aj} and {Bd} are two dyadic decompositions of R2; for non-negative integers
j, d,

Aj :=
{

(τ, ξ) : 2j ≤ 〈ξ〉 < 2j+1
}
,

Bd :=
{

(τ, ξ) : 2d ≤ 〈τ − ξ2〉 < 2d+1
}
.

We note that

‖f‖X̂−1,1/2 ∼

(∑
j≥0

2−2j
∑
d≥0

2d‖f‖2L2L2(Aj∩Bd)

)1/2

.

Step 2. We use an L1
τ -based space Y defined by the norm

‖f‖Y := ‖〈ξ〉−1f‖L2L1 + ‖f‖L2L2 ,

and define the sum space Z := X̂−1,1/2,1 + Y with the norm

‖f‖Z := inf
{
‖f1‖X̂−1,1/2,1 + ‖f2‖Y : f = f1 + f2, f1 ∈ X̂−1,1/2,1, f2 ∈ Y

}
.

Step 3. We introduce a weighted space W defined by

‖f‖W := ‖wf‖Z ,

w(τ, ξ) = w(τ) := [min{−1, τ}] 10
,

and define the final space S by Ŝ := W .

The bilinear estimate (6) is then equivalent to∥∥∥∥ w

〈τ − ξ2〉

(
f

w
∗ g
w

)∥∥∥∥
Z

. ‖f‖Z‖g‖Z (7)

for all test functions f , g.
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We use the following notations for simplicity;

A<j1 :=
⋃
j<j1

Aj , B[d1,d2) :=
⋃

d∈[d1,d2)

Bd , . . . etc.,

and the first (or the second) subscript of a function means the restriction to {Aj}
(or {Bd}); for example,

fj1 := f · 1Aj1 , g≥j2,(d1,d2] := g · 1A≥j2∩B(d1,d2]
, . . . etc.

Also, we always use variables (τ1, ξ1) for f , (τ2, ξ2) for g and (τ, ξ) for f ∗ g under
the convention

(τ, ξ) = (τ1, ξ1) + (τ2, ξ2). (8)

If (8) holds, then one of the following cases must occur:

• |ξ| ∼ |ξ1| & |ξ2| “High-low interaction”,
• |ξ| ∼ |ξ2| & |ξ1| “Low-high interaction”, and
• |ξ| � |ξ1| ∼ |ξ2| “High-high interaction”.

We now decompose f , g and f ∗ g with respect to ξ variable,∥∥∥∥ w

〈τ − ξ2〉

(
f

w
∗ g
w

)∥∥∥∥
Z

=

∥∥∥∥∥ ∑
j,j1,j2≥0

1Aj
w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥∥
Z

,

then in order for the inner summand to be non-zero one of the following must hold:

• |j1 − j| ≤ 10 and j2 ≤ j1 + 11 (High-low interaction),
• |j2 − j| ≤ 10 and j1 ≤ j2 + 11 (Low-high interaction), and
• |j1 − j2| ≤ 1 and j < j1 − 10, j2 − 10 (High-high interaction).

The former two cases are symmetric, so in order to prove (7) it suffices to verify

•

∥∥∥∥∥∥∥∥
∑

j,j1,j2≥0
|j1−j|≤10, j2≤j1+11

1Aj
w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥∥∥∥∥
Z

. ‖f‖Z‖g‖Z , and

•

∥∥∥∥∥∥∥∥
∑

j,j1,j2≥0
|j1−j2|≤1, j<j1−10

1Aj
w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥∥∥∥∥
Z

. ‖f‖Z‖g‖Z .

From Schur’s lemma, the bilinear estimate (7) is finally reduced to the following.

• If non-negative integers j, j1, j2 satisfy |j1 − j| ≤ 10 and j2 ≤ j1 + 11 , then∥∥1Aj 〈τ − ξ2〉−1fj1 ∗ gj2
∥∥
Z
.
(

2−δj2 + 2−δ(j−j2)
)
‖fj1‖Z ‖gj2‖Z (9)

holds for some δ > 0. (High-low interaction estimate)
• If non-negative integers j1, j2 satisfy |j1 − j2| ≤ 1 , then∥∥∥∥1A<j1−10

w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
Z

. ‖fj1‖Z ‖gj2‖Z (10)

holds. (High-high interaction estimate)

Note that the weight w satisfies w(τ, ξ) . w(τ1, ξ1)w(τ2, ξ2) whenever (8) holds, so
we have the estimate∥∥∥∥ w

〈τ − ξ2〉

(
f

w
∗ g
w

)∥∥∥∥
Z

.
∥∥〈τ − ξ2〉−1f ∗ g

∥∥
Z
. (11)
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We have already used (11) in deriving (9).
The following lemmas and propositions were used in [2] to prove (9) and (10)5.

Lemma 1. Assume supp f ⊂ B≥d for some d ≥ 0. Then for b > 1/2 we have

‖f‖X̂−1,1/2,1 . 2−d(b−1/2)‖f‖X̂−1,b .

Proposition 4. Assume supp f ⊂ Aj ∩B≥d for some j, d ≥ 0. Then we have

‖f‖L2L1 . 2j‖f‖Z , (12)

‖f‖L2L2 . (1 + 2j2−d/2)‖f‖Z , ‖f‖L2L2 . ‖f‖Y , (13)

‖f‖L1L1 . 23j/2‖f‖Z , (14)

‖f‖L1L2 . 2j/2(1 + 2j2−d/2)‖f‖Z , ‖f‖L1L2 . 2j/2‖f‖Y . (15)

Lemma 2. Assume supp f ⊂
⋃
j(Aj ∩B≤2j+100). Then we have

‖f‖X̂−1,1/2,1 ∼ ‖f‖Z .
Lemma 3. For any test functions f and g, we have∥∥∥∥ w

〈τ − ξ2〉

(
f

w
∗ g
w

)∥∥∥∥
Z

. ‖f‖Y ‖g‖Y .

Proposition 5. Suppose that supp f ⊂ Aj1 , supp g ⊂ Aj2 for some j1, j2 ≥ 0,
and that there is D ≥ 0 such that |ξ1 − ξ2| ≥ D whenever (τ1, ξ1) ∈ supp f and
(τ2, ξ2) ∈ supp g. Then

‖f ∗ g‖L2L2 . 2j1+j2〈D〉−1/2‖f‖X̂−1,1/2,1‖g‖X̂−1,1/2,1 .

Corollary 1. Suppose that supp f ⊂ Aj1 , Ω ⊂ Aj for some j1, j ≥ 0, and that
there is D ≥ 0 such that |ξ1 + ξ| ≥ D whenever (τ1, ξ1) ∈ supp f and (τ, ξ) ∈ Ω.
Then, for any d ≥ 0 and any test function g, we have

2−d/2‖f ∗ g‖L2L2(Ω∩Bd) . 2j1(2d/2 +D)−1/2‖f‖X̂−1,1/2,1‖g‖L2L2 .

However, it seems that their proofs for Lemma 3 and Corollary 1 are incomplete.
The error in Lemma 3 is somewhat serious6. On the other hand, the error in
Corollary 1 seems a rather minor one, and the correction is straightforward (but
needs some more efforts). We shall consider fixing these errors and give a proof of
(9) and (10) without these two lemmas.

3. Proof for the first part. We now consider Lemma 3. The proof of this lemma
in [2] was very simple:

(11), Young’s inequality and (13) imply the estimate∥∥∥∥ w

〈τ − ξ2〉

(
f

w
∗ g
w

)∥∥∥∥
Z

.
∥∥〈τ − ξ2〉−1f ∗ g

∥∥
X̂−1,1/2,1

≤ sup
(τ,ξ)

∣∣(f ∗ g)(τ, ξ)
∣∣ · ∥∥〈τ − ξ2〉−1

∥∥
X̂−1,1/2,1

≤ ‖f‖Y ‖g‖Y
∥∥〈τ − ξ2〉−1

∥∥
X̂−1,1/2,1 ,

and it is easily verified that
∥∥〈τ − ξ2〉−1

∥∥
X̂−1,1/2,1 ≤ C. �

5We use the same numbers of lemmas as those in [2], while new ones are indicated by “Ex.”
6Later, Bejenaru and Tao gave a complete proof of Lemma 3; see the revised version of their

paper arXiv:0508210v4. Our approach is different from theirs, because it is based on the bound-
edness of the Hilbert transform.
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But, in fact, we have

∥∥〈τ − ξ2〉−1
∥∥
X̂−1,1/2,1 =

{∑
j≥0

2−2j

(∑
d≥0

2d/2
∥∥〈τ − ξ2〉−1

∥∥
L2L2(Aj∩Bd)

)2}1/2

∼

{∑
j≥0

2−2j

(∑
d≥0

2d/2 · 2−d · (2j+d)1/2

)2}1/2

∼

{∑
j≥0

2−j

(∑
d≥0

1

)2}1/2

= +∞.

Therefore Lemma 3 has not been proved. This lemma was used only to prove one
restricted case of (10):

Suppose |j1 − j2| ≤ 1, supp fj1 ⊂ Aj1 ∩ B≥2j1−100 and supp gj2 ⊂ Aj2 ∩
B≥2j2−100. Then,∥∥∥∥1A<j1−10∩B<2j1−10

w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
Z

. ‖fj1‖Z ‖gj2‖Z . (16)

Now, we try to prove (16) without using Lemma 3. In this case, from (13) we
may measure fj1 and gj2 in L2L2 instead of in Z. First, we divide the L.H.S. of
(16) and use (11) to have∥∥∥∥1A<j1−10∩B<2j1−10

w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
Z

.
∥∥1D1

〈τ − ξ2〉−1fj1 ∗ gj2
∥∥
X̂−1,1/2,1 +

∥∥∥∥1D2

w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
Y

,

where

D1 :=
⋃

j<j1−10

(Aj ∩B<2j+5) , D2 :=
⋃

j<j1−10

(
Aj ∩B[2j+5,2j1−10)

)
.

To estimate the first term, we can follow the argument in the proof of Lemma 3,
because ∥∥1D1〈τ − ξ2〉−1

∥∥
X̂−1,1/2,1 ∼

{∑
j

2−j

( ∑
d<2j+5

1

)2}1/2

< +∞.

The second term is the sum of two norms,∥∥∥∥1D2

w

〈ξ〉〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
L2L1

+

∥∥∥∥1D2

w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
L2L2

.

Note that the relation 〈τ − ξ2〉 ∼ 〈τ〉 ≥ 〈ξ2〉 holds in D2, then the L2L2-norm is
easily estimated by using (11),∥∥∥∥1D2

w

〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
L2L2

.
∥∥1D2

〈τ − ξ2〉−1fj1 ∗ gj2
∥∥
L2L2

.
∥∥∥〈τ〉−2/3〈ξ2〉−1/3

∥∥∥
L2L2

‖fj1 ∗ gj2‖L∞L∞

. ‖fj1‖L2L2 ‖gj2‖L2L2 .
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Estimate of the L2L1-norm is obtained from the following one-variable lemma.

Lemma Ex. For all ϕ,ψ ∈ L2(R), we have∥∥∥∥ w〈 · 〉
(
ϕ

w
∗ ψ
w

)∥∥∥∥
L1(R)

. ‖ϕ‖L2(R)‖ψ‖L2(R),

where w(τ) := [min{−1, τ}]10.

Using Hölder’s inequality, Fubini’s theorem and this lemma, we can actually
evaluate the L2L1-norm:∥∥∥∥1D2

w

〈ξ〉〈τ − ξ2〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
L2L1

∼
∥∥∥∥1D2

w

〈ξ〉〈τ〉

(
fj1
w
∗ gj2
w

)∥∥∥∥
L2L1

.

∥∥∥∥ w〈τ〉
(
fj1
w
∗ gj2
w

)∥∥∥∥
L∞L1

=

∥∥∥∥∥
∫
R

∥∥∥∥ w〈 · 〉
(
fj1(·, ξ1)

w
∗τ

gj2(·, ξ − ξ1)

w

)∥∥∥∥
L1
τ

dξ1

∥∥∥∥∥
L∞ξ

.
∥∥∥‖fj1(·, ξ)‖L2

τ
∗ξ ‖gj2(·, ξ)‖L2

τ

∥∥∥
L∞ξ

≤ ‖fj1‖L2L2 ‖gj2‖L2L2 .

This concludes the proof of (16).
The proof of Lemma Ex becomes very simple if we make use of the boundedness

of the Hilbert transform. The Hilbert transform H is a singular integral operator
defined by

(Hf)(x) :=
1

π
p.v.

∫
R

f(x− y)

y
dy,

which is known as a bounded linear transform on Lp(R), 1 < p <∞.

Proof of Lemma Ex. We may suppose both ϕ and ψ to be non-negative. Then,∥∥∥∥ w〈 · 〉
(
ϕ

w
∗ ψ
w

)∥∥∥∥
L1(R)

=

∫
R

∫
R

w(τ)ϕ(τ1)ψ(τ2)

〈τ〉w(τ1)w(τ2)
dτ1 dτ (τ1 + τ2 = τ)

=: I.

We may also assume that ϕ, ψ are restricted either to [0,∞) or to (−∞, 0], and
then it suffices to consider the following two cases:

(i) supp ϕ, supp ψ ⊂ [0,∞),
(ii) supp ϕ ⊂ [0,∞) and supp ψ ⊂ (−∞, 0],

since the other cases follow from a similar argument.
Case (i). We discard w’s and use Fubini’s theorem to have

I .
∫ ∞

0

ϕ(τ1)

∫ ∞
τ1

ψ(τ − τ1)

〈τ〉
dτ dτ1

≤
∫ ∞

0

ϕ(τ1)

∫ ∞
τ1

ψ−(τ1 − τ)

τ
dτ dτ1

= π

∫ ∞
0

ϕ(τ1) · (Hψ−) (τ1)dτ1,

where ψ−(τ) := ψ(−τ). Then Schwarz’s inequality and L2-boundedness of H imply
the desired bound.
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Case (ii). In this case, a simple calculation shows that

w(τ)

〈τ〉w(τ1)w(τ2)
.

1

τ1 − τ2
, τ1 − τ2 ≥ 0

whenever τ1 ∈ supp ϕ, τ2 ∈ supp ψ and τ = τ1 + τ2. Using Fubini’s theorem again
and changing the variable we have

I .
∫ ∞

0

ϕ(τ1)

∫ 0

−∞

ψ(τ2)

τ1 − τ2
dτ2 dτ1

= π

∫ ∞
0

ϕ(τ1) · (Hψ) (τ1)dτ1,

and obtain the same bound as in (i).

4. Proof for the second part. Next, we consider Corollary 1.
In the proof of Corollary 1 in [2], the following estimate, which was proved in

Proposition 5, was essentially used:

Assume that supp fj1 ⊂ Aj1 ∩ Bd1 , supp gj2 ⊂ Aj2 ∩ Bd2 , and that there
exists D ≥ 0 such that |ξ1 − ξ2| ≥ D whenever (τ1, ξ1) ∈ supp fj1 and
(τ2, ξ2) ∈ supp gj2 . Then,

‖f ∗ g‖L2L2 . 2(d1+d2)/2
(

2d1/2 + 2d2/2 +D
)−1/2

‖f‖L2L2‖g‖L2L2 . (17)

The proof of Corollary 1 was then as follows:

From duality, Fubini’s theorem and Schwarz’s inequality, we have

‖f ∗ g‖L2L2(Ω∩Bd) = sup
h

∣∣∣∣∫
R2

h · (f ∗ g) dτ dξ

∣∣∣∣
( supremum over h ∈ L2L2 s.t. supp h ⊂ Ω ∩Bd, ‖h‖L2L2 ≤ 1 )

= sup
h

∣∣∣∣∫
R2

g · (f− ∗ h) dτ dξ

∣∣∣∣
≤ ‖g‖L2L2 · sup

h
‖f− ∗ h‖L2L2 ,

where f−(τ, ξ) := f(−τ,−ξ). On the other hand, by decomposing f =∑
d1
fd1 (in this proof fd1 := f · 1Bd1 ) and using (17),

‖f− ∗ h‖L2L2 .
∑
d1≥0

2(d1+d)/2
(

2d1/2 + 2d/2 +D
)−1/2

‖fd1‖L2L2‖h‖L2L2 (18)

≤ 2d/2
(

2d/2 +D
)−1/2

‖h‖L2L2

∑
d1≥0

2d1/2‖fd1‖L2L2

= 2d/2
(

2d/2 +D
)−1/2

‖h‖L2L2 · 2j1‖f‖X̂−1,1/2,1 ,

and the claim follows. �

However, the estimate (18) is not clear; if we decompose f− like
∑

(f−)d1 , then
‖(f−)d1‖L2L2 6= ‖fd1‖L2L2 because Bd1 is not symmetric with respect to the origin,
and if we decompose f− =

∑
(fd1)−, then we cannot apply (17) because (fd1)− is

no longer supported on Bd1 .
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In fact, there is an easy counterexample to Corollary 1. For j ≥ 0, define P as
the parallelogram with vertices

(τ, ξ) =
(
22j , 2j

)
,
(
22j + 1, 2j

)
,(

(2j + 1)2, 2j + 1
)
,
(
(2j + 1)2 − 1, 2j + 1

)
,

and P0 as the parallelogram with the same shape and direction which is centered
at the origin. Let f := 1P and g := 1P0 . Then,

• supp f, supp f ∗ g ⊂ Aj ,
• P ⊂ Aj ∩B0, f ∗ g ≥ 1

41P ,

• |ξ + ξ1| ∼ 2j if (τ, ξ) ∈ supp f ∗ g and (τ1, ξ1) ∈ supp f ,
• ‖f‖X̂−1,1/2,1 ∼ 2−j , ‖g‖L2L2 ∼ 1 and ‖f ∗ g‖L2L2(Aj∩B0) ∼ 1.

So Corollary 1 with d = 0, Ω = Aj and D = 2j implies 1 . 2−j/2, which is a
contradiction for large j’s.

It is possible that Corollary 1 holds without the term of D, but this term is
important for the proof of the bilinear estimate.

We now prove a new proposition instead of Corollary 1.

Proposition Ex. Suppose that supp f ⊂ Aj1 , supp g ⊂ Aj2 for some j1 ≥ 0 and
j2 > 0. Then,

2−d/2‖f ∗ g‖L2L2(Bd) . 2j12−j2/2‖f‖X̂−1,1/2,1‖g‖L2L2

for any d ≥ 0.

Proof. We may assume f and g to be non-negative without loss of generality. By
the argument in the proof of Corollary 1, it suffices to show that

‖(fd1)− ∗ h‖L2L2(Aj2 ) . 2(d1+d)/22−j2/2‖fd1‖L2L2‖h‖L2L2

for d1 ≥ 0 and any non-negative test function h ∈ L2L2 restricted to Bd. We use
Schwarz’s inequality and Fubini’s theorem to have

‖(fd1)− ∗ h‖L2L2(Aj2 )

=

∥∥∥∥∫
R2

fd1(τ1, ξ1)h(τ1 + τ2, ξ1 + ξ2) dτ1dξ1

∥∥∥∥
L2
ξ2
L2
τ2

(Aj2 )

≤
∥∥∥∥md1(τ2, ξ2)1/2

(∫
R2

fd1(τ1, ξ1)2h(τ1 + τ2, ξ1 + ξ2)2 dτ1dξ1

)1/2 ∥∥∥∥
L2
ξ2
L2
τ2

(Aj2 )

≤

[
sup

(τ2,ξ2)∈Aj2
md1(τ2, ξ2)

]1/2

‖fd1‖L2L2‖h‖L2L2 ,

where md1(τ2, ξ2) is the measure of the set

{(τ1, ξ1) ∈ Aj1 ∩Bd1 : (τ1 + τ2, ξ1 + ξ2) ∈ Bd} .
Thus it suffices to show

md1(τ2, ξ2) . 2d1+d−j2 (19)

for (τ2, ξ2) ∈ Aj2 .
Assume (τ1, ξ1) ∈ Aj1 ∩Bd1 , (τ2, ξ2) ∈ Aj2 and (τ1 + τ2, ξ1 + ξ2) ∈ Bd. We have∣∣∣∣ξ1 +

1

2

(
ξ2 −

τ2
ξ2

)∣∣∣∣ =
1

2|ξ2|
∣∣(τ1 − ξ2

1)−
{
τ1 + τ2 − (ξ1 + ξ2)2

}∣∣
. 2−j2

(
2d1 + 2d

)
,
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which means that the variation of ξ1 is estimated by 2−j2
(
2d1 + 2d

)
for fixed (ξ2, τ2).

(We have assumed j2 to be nonzero, so |ξ2| ≥ 1 and 1
|ξ2| ∼ 2−j2 .)

If we also fix ξ1, then the estimates

|τ1 − ξ2
1 | . 2d1 , |τ1 + τ2 − (ξ1 + ξ2)2| . 2d

imply that the variation of τ1 is bounded by min
{

2d1 , 2d
}

. We therefore obtain
(19).

In [2], Corollary 1 was used only in the proof of (9). More precisely, the L.H.S.
of (9) was divided into three pieces,∥∥1Aj 〈τ − ξ2〉−1fj1 ∗ gj2

∥∥
Z
≤
∥∥1Aj 〈τ − ξ2〉−1fj1,≥j+j2−20 ∗ gj2

∥∥
X̂−1,1/2,1

+
∥∥1Aj 〈τ − ξ2〉−1fj1,<j+j2−20 ∗ gj2,≥j+j2−20

∥∥
X̂−1,1/2,1

+
∥∥1Aj 〈τ − ξ2〉−1fj1,<j+j2−20 ∗ gj2,<j+j2−20

∥∥
X̂−1,1/2,1 ,

and Corollary 1 was used to estimate the first and the second terms.
If we try to prove (9) by using Proposition Ex, another (finer) division will be

needed. Recall that |j1 − j| ≤ 10 and j2 ≤ j1 + 11. (9) is easy to verify in the case
j1 = 0 or j2 = 0, so we assume j1 > 0 and j2 > 0. Then the assumption |j1−j| ≤ 10
and the identity

(τ − ξ2)− (τ1 − ξ2
1)− (τ2 − ξ2

2) = −2ξ1ξ2

with the convention (8) imply the resonance estimate

max
{
〈τ − ξ2〉, 〈τ1 − ξ2

1〉, 〈τ2 − ξ2
2〉
}
& 2j+j2 ,

(say ≥ 2j+j2−20.)
(20)

We first consider the case j2 ≥ εj1, 0 < ε � 1. Noting the estimate (20), we
divide the L.H.S. of (9) into four,∥∥1Aj 〈τ − ξ2〉−1fj1 ∗ gj2

∥∥
Z

≤
∥∥∥1Aj∩B≥j+j2−20

〈τ − ξ2〉−1fj1,≥j+j2−20 ∗ gj2
∥∥∥
Y

+
∥∥∥1Aj∩B≥j+j2−20

〈τ − ξ2〉−1fj1,<j+j2−20 ∗ gj2
∥∥∥
X̂−1,1/2,1

+
∥∥1Aj∩B<j+j2−20〈τ − ξ2〉−1fj1,≥j+j2−20 ∗ gj2

∥∥
X̂−1,1/2,1

+
∥∥1Aj∩B<j+j2−20〈τ − ξ2〉−1fj1,<j+j2−20 ∗ gj2,≥j+j2−20

∥∥
X̂−1,1/2,1

=: I + II + III + IV.

Estimate of I. From the definition of Y we have

I . 2−j−j2
(
2−j ‖fj1,≥j+j2−20 ∗ gj2‖L2L1 + ‖fj1,≥j+j2−20 ∗ gj2‖L2L2

)
.

We use Young’s inequality, (12) and (14) to obtain

‖fj1 ∗ gj2‖L2L1 ≤ ‖fj1‖L2L1 ‖gj2‖L1L1

. 2j123j2/2 ‖fj1‖Z ‖gj2‖Z ,
and also use (13) to obtain

‖fj1,≥j+j2−20 ∗ gj2‖L2L2 ≤ ‖fj1,≥j+j2−20‖L2L2 ‖gj2‖L1L1

. 2j1− (j+j2)/223j2/2 ‖fj1‖Z ‖gj2‖Z .
Therefore,

I . 2−j2/2 ‖fj1‖Z ‖gj2‖Z .
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Estimate of II. From Lemma 1,

II . 2−(j+j2)/2
∥∥1Aj 〈τ − ξ2〉−1fj1 ∗ gj2

∥∥
X̂−1,1

∼ 2−(j+j2)/22−j ‖fj1 ∗ gj2‖L2L2 .

By Lemma 2, we may measure fj1 in X̂−1,1/2,1 instead of in Z. If we use X̂−1,1/2,1

to estimate gj2 , by Proposition 5 with D = 0 we have

‖fj1 ∗ gj2‖L2L2 . 2j1+j2 ‖fj1‖X̂−1,1/2,1 ‖gj2‖X̂−1,1/2,1 .

If we use Y , then Young’s inequality, (12) and (15) imply that

‖fj1 ∗ gj2‖L2L2 . ‖fj1‖L2L1 ‖gj2‖L1L2

. 2j12j2/2 ‖fj1‖X̂−1,1/2,1 ‖gj2‖Y .

Thus,

II . 2−(j−j2)/2 ‖fj1‖Z ‖gj2‖Z .

Estimate of III. From the definition of the X̂−1,1/2,1-norm,

III ∼ 2−j
∑

d<j+j2−20

2−d/2 ‖fj1,≥j+j2−20 ∗ gj2‖L2L2(Aj∩Bd) .

We use Proposition Ex and (13) to obtain

2−d/2 ‖fj1,≥j+j2−20 ∗ gj2‖L2L2(Aj∩Bd)

. 2j22−j1/2 ‖fj1,≥j+j2−20‖L2L2 ‖gj2‖X̂−1,1/2,1

. 2j22−j1/22j1− (j+j2)/2 ‖fj1‖Z ‖gj2‖X̂−1,1/2,1 ,

then

III . 2−j2j2/2

( ∑
d<j+j2−20

1

)
‖fj1‖Z ‖gj2‖X̂−1,1/2,1

. 2−(j−j2)/2 ‖fj1‖Z ‖gj2‖X̂−1,1/2,1 .

On the other hand, we use Lemma 1, Hölder’s inequality and Young’s inequality to
have

III .
∥∥1Aj 〈τ − ξ2〉−1fj1,≥j+j2−20 ∗ gj2

∥∥
X̂−1,1/2 +δ (0 < δ � 1)

∼ 2−j
∥∥∥〈τ − ξ2〉−1/2 +δfj1,≥j+j2−20 ∗ gj2

∥∥∥
L2L2

. 2−j
∥∥∥〈τ − ξ2〉−1/2 +δ

∥∥∥
L∞L3

‖fj1,≥j+j2−20 ∗ gj2‖L2L6

. 2−j ‖fj1,≥j+j2−20‖L2L2 ‖gj2‖L1L3/2 ,

and using (13)–(15) we obtain

III . 2−j ‖fj1,≥j+j2−20‖L2L2 ‖gj2‖
1/3
L1L1 ‖gj2‖

2/3
L1L2

. 2−j2j1− (j+j2)/22j2/22j2/3 ‖fj1‖Z ‖gj2‖Y

. 2−(j−j2)/3 ‖fj1‖Z ‖gj2‖Y .

Therefore we obtain

III . 2−(j−j2)/3 ‖fj1‖Z ‖gj2‖Z .
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Estimate of IV. We use Proposition Ex, Lemma 2 and (13) to have

IV ∼ 2−j
∑

d<j+j2−20

2−d/2 ‖fj1,<j+j2−20 ∗ gj2,≥j+j2−20‖L2L2(Aj∩Bd)

. 2−j

( ∑
d<j+j2−20

1

)
2j12−j2/2 ‖fj1‖X̂−1,1/2,1 ‖gj2,≥j+j2−20‖L2L2

. j 2−j2/2 ‖fj1‖Z ‖gj2‖Z .

We finally use the assumption j2 ≥ εj1 to obtain

IV . 2−j2/4 ‖fj1‖Z ‖gj2‖Z .

Next, we consider the case where j2 < εj1. In this case, we divide the L.H.S. of
(9) in a different way, based on the estimate (20),∥∥1Aj 〈τ − ξ2〉−1fj1 ∗ gj2

∥∥
Z

≤
∥∥∥1Aj∩B≥2j2−40

〈τ − ξ2〉−1fj1,≥2j ∗ gj2
∥∥∥
Y

+
∥∥∥1Aj∩B≥2j2−40

〈τ − ξ2〉−1fj1,<2j ∗ gj2
∥∥∥
X̂−1,1/2,1

+
∥∥1Aj∩B<2j2−40〈τ − ξ2〉−1fj1,≥2j ∗ gj2

∥∥
X̂−1,1/2,1

+
∥∥1Aj∩B<2j2−40〈τ − ξ2〉−1fj1,<2j ∗ gj2,≥j+j2−20

∥∥
X̂−1,1/2,1

+
∥∥1Aj∩B<2j2−40〈τ − ξ2〉−1fj1,[j+j2−20,2j) ∗ gj2,<j+j2−20

∥∥
X̂−1,1/2,1

=: I′ + II′ + III′ + IV′ + V′.

I′–IV′ can be estimated in a similar way to the estimate of I–IV. Note that the
assumption j2 < εj1 allows us to use Proposition 5 with D ∼ 2j1 in estimating II′.

Estimate of V′. We use Lemma 1, Young’s inequality and (13), (14) to have

V′ .
∥∥1Aj 〈τ − ξ2〉−1fj1,[j+j2−20,2j) ∗ gj2

∥∥
X̂−1,1

. 2−j
∥∥fj1,[j+j2−20,2j)

∥∥
L2L2 ‖gj2‖L1L1

. 2−j2j1− (j+j2)/223j2/2 ‖fj1‖Z ‖gj2‖Z
= 2−j/22j2 ‖fj1‖Z ‖gj2‖Z ,

and using j2 < εj1 we obtain

V′ . 2−j2 ‖fj1‖Z ‖gj2‖Z .

This concludes the proof of (9).
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