SOME CHARACTERIZATIONS OF MODULAR AND DISTRIBUTIVE JP-SEMILATTICES

S.N. Begum

Department of Mathematics ShahJalal University of Science and Technology Sylhet 3114, Bangladesh

A.S.A. NOOR

Department of Mathematics and Physics East West University 43 Mohakhali, Dhaka 1212, Bangladesh

ABSTRACT. A meet semilattice with a partial join operation satisfying some axioms is a JP-semilattice. In this paper we study the modular and distributive JP-semilattices. We give several characterizations of modular and distributive JP-semilattices. We also prove the Separation Theorem and its extension for minimal prime ideal of distributive JP-semilattices. JP-congruences, have also been studied.

1. Introduction. A *partial lattice* is a semilattice with a partial binary operation. Partial lattices have been studied by many authors. For the background of partial lattices we refer the reader to [3, 5, 6, 7]. In this paper we study semilattice (meet semilattice) with a partial operation. We refer the reader to [5, 6, 4] for semilattices and lattices.

An algebraic structure $\mathbf{S} = \langle S; \wedge, \vee \rangle$ where $\langle S; \wedge \rangle$ is a meet semilattice and \vee is a partial binary operation on S is said to be a *join partial semilattice* (or *JP-semilattice*) if for all $x, y, z \in S$,

- (i) $x \lor x = x$;
- (ii) $x \lor y$ exists implies $y \lor x$ exists and $x \lor y = y \lor x$;
- (iii) $x \lor y, y \lor z$ and $(x \lor y) \lor z$ exist imply $x \lor (y \lor z)$ exists and $(x \lor y) \lor z = x \lor (y \lor z)$;
- (iv) $x \lor y$ exists implies $x = x \land (x \lor y)$;
- (v) $y \lor z$ exists implies $(x \land y) \lor (x \land z)$ exists.

Clearly as an algebraic structure a JP-semilattice is intermediate between semilattices and lattices. A semilattice is a set with a binary operation \land satisfying certain axioms; a lattice is a set with two binary operations \land and \lor , again with certain axioms, including those of a semilattice for \land . A JP-semilattice has a semilattice operation \land , satisfying those axioms of semilattice and a partial binary operation \lor satisfying (i)–(v) given above. We can represent a JP-semilattice by an

²⁰⁰⁰ Mathematics Subject Classification. 06A12, 06B10, 06B99, 06B99.

ordered set and hence can be pictured in a Hasse diagram. Let $\mathbf{S} = \langle S; \wedge, \vee \rangle$ be a JP-semilattice. Define a binary relation \leq on S by

$$x \leq y$$
 if and only if $x \wedge y = x$.

Then \leq is a partial ordering relation. Moreover $x \wedge y = \inf\{x, y\}$ and if $x \vee y$ exists, then $x \vee y = \sup\{x, y\}$. We can construct a picture of a relation \leq on S in the coordinate plane. For each $x \in S$ draw a small circle. The small circle of x represent that $x \leq x$. If x is covered by y, then place the circle of x lower than the circle of y and take a line segment joining the circles. If $x \vee y$ does not exist but there is an upper bound u of x and y, then there are line segments from x and y to a lower point of u but there is no small circle joining the line segments. For example see Figure 1.

FIGURE 1. a non-JP-semilattice

Observe that not every semilattice is a JP-semilattice; for example, the semilattice **P** given in Figure 1 is not a JP-semilattice. Here $b \lor c$ exists, but $(a \land b) \lor (a \land c)$ does not.

A JP-semilattice **S** is said to be a *modular* if for all $x, y, z \in S$ such that $z \leq x$ and $y \lor z$ exists implies

$$x \land (y \lor z) = (x \land y) \lor z.$$

A JP-semilattice **S** is said to be a *distributive* if for all $x, y, z \in S$ such that $z \leq x$ and $y \lor z$ exists implies

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

Clearly, the concepts of modularity and distributivity of a JP-semi-lattice \mathbf{S} coincide with the concepts of modularity and distributivity when \mathbf{S} is a lattice. The standard characterizations for modular and distributive lattices are given below.

Theorem 1. Let L be a lattice. Then

- (a) L is modular if and only if it has no sublattice isomorphic to the pentagonal lattice N₅ (see Figure 2);
- (b) L is distributive if and only if it has no sublattice isomorphic to the pentagonal lattice N₅ or the diamond lattice M₃ (see Figure 2);

FIGURE 2. the pentagon and the diamond

We refer the reader to [4, 5] for the proof of the above theorem. Thus the pentagonal lattice \mathcal{N}_5 (see Figure 2) is a non-modular and hence a non-distributive JP-semilattice, and the diamond lattice \mathcal{M}_3 (see Figure 2) is a modular but non-distributive JP-semilattice.

In Section 2 we give a characterization of modular JP-semilattices which is a generalization of Theorem 1 (a). In Section 3 we study the ideal lattice of modular JPsemilattices. In Section 4 we study the ideal lattice of distributive JP-semilattices. Here we give a characterization of distributive JP-semilattices. Stone's Separation Theorem plays an important role in Lattice Theory. In Section 5 we generalize the Separation Theorem for distributive JP-semilattices. In Section 6 we discuss congruences of a JP-semilattice. We give a characterization of distributive JP-semilattices through a congruence.

2. Characterizations for modular and distributive JP-semilattices. In this section our aim is to characterize the modular and distributive JP-semilattices.

Two examples. Consider the JP-semilattices \mathcal{N}_{∞} and \mathcal{M}_{∞} given by the following diagrams (see Figure 3). The JP-semilattice \mathcal{N}_{∞} is said to be the *JP-pentagon* and

FIGURE 3. the JP-pentagon and the JP-diamond

the JP-semilattice \mathcal{M}_{∞} is said to be the *JP-diamond*.

Claim 2. The JP-pentagon \mathcal{N}_{∞} and the JP-diamond \mathcal{M}_{∞} are distributive JP-semilattices.

Proof. In both cases, if $y \lor z$ exists, then clearly, either $y \leq z$ or $z \leq y$. Without loss of generality, let $y \leq z$. Then $x \land y \leq x \land z$. Hence

$$x \wedge (y \lor z) = x \wedge z = (x \wedge y) \lor (x \wedge z).$$

First we have the following result.

Proposition 3. Let **S** be a distributive JP-semilattice. Then for all $x, y, z \in S$ the existence of $x \lor z$ and $y \lor z$ implies the existence of $(x \land y) \lor z$ and

$$(x \land y) \lor z = (x \lor z) \land (y \lor z).$$

Proof. By axiom (v) of JP-semilattices, $x \vee z$ and $y \vee z$ exist implies $((x \vee z) \land y) \lor ((x \vee z) \land z)$ exists. That is, $((x \vee z) \land y) \lor z$ exists. Now $x \lor z$ exists implies $(x \land y) \lor (z \land y)$ exists and $(x \land y) \lor (z \land y) = (x \lor z) \land y$. Hence $((x \land y) \lor (z \land y)) \lor z$ exists. That is, $(x \land y) \lor z$ exists. This implies

$$(x \lor z) \land (y \lor z) = ((x \lor z) \land y) \lor ((x \lor z) \land z)$$
$$= ((x \lor z) \land y) \lor z = ((x \land y) \lor (z \land y)) \lor z = (x \land y) \lor z.$$

Theorem 4. Every distributive JP-semilattice is modular but the converse is not necessarily true.

Proof. Let **S** be a distributive JP-semilattice and let $a, b, c \in S$ such that $c \leq a$ and $b \vee c$ exists. Then $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) = (a \wedge b) \vee c$. Therefore **S** is modular. The diamond lattice \mathcal{M}_3 given in Figure 2 is a modular JP-semilattice but not distributive.

A JP-semilattice $\mathbf{A} = \langle A; \wedge, \vee \rangle$ is said to be a *subJP-semilattice* of a JP-semilattice **S** if $A \subseteq S$ and \wedge and \vee in **A** are the restrictions of \wedge and \vee in **S**.

Theorem 5. Every subJP-semilattice of a modular (distributive) JP-semi-lattice is modular (distributive).

Proof. Let **M** be a subJP-semilattice of a modular JP-semilattice **L**. Let $a, b, c \in M$ such that $c \leq a$. If $b \lor c$ exists in **M**, then this hold in *L*. Hence $(a \land b) \lor c$ exists in *L* and $a \land (b \lor c) = (a \land b) \lor c$. Since $a \land (b \lor c) \in M$, we have $(a \land b) \lor c$ exists in *M* and $a \land (b \lor c) = (a \land b) \lor c$. Hence *M* is a modular JP-semilattice.

By a similar argument we can easily show that every subJP-semilattice of a distributive JP-semilattice is distributive. $\hfill \Box$

We have the following characterization of modular JP-semilattices.

Theorem 6. Let S be a JP-semilattice. Then S is non-modular if and only if it has a sublattice isomorphic to the pentagonal lattice

Proof. Let **S** be non-modular. Then there exists $a, b, c \in S$ such that $c \leq a$ and $b \lor c$ exists, and $u = (a \land b) \lor c < a \land (b \lor c) = v$. Now $v \land b = (a \land (b \lor c)) \land b = a \land b$. Hence $u \land b \leq v \land b = a \land b \leq u$ and hence $a \land b \leq u \land b$. Therefore, $u \land b = a \land b = v \land b$.

Consequently, $b \lor c = (b \lor (a \land b)) \lor c = ((a \land b) \lor c) \lor b = u \lor b$. First we claim that $v \lor b$ exists. If not, then since $v, b \leq b \lor c$, there is an infinite chain

 $b \lor c > c_1 > c_2 > \cdots$ such that $v, b \leqslant c_i$ for each *i*. Now $c, b \leqslant c_i$ for each *i* implies $b \lor c \leqslant c_i$ for each *i*, which is a contradiction. Hence $v \lor b$ exists. Now $v \lor b \geqslant u \lor b = b \lor c \geqslant v, b$ implies $b \lor c \geqslant v \lor b$. Thus $v \lor b = u \lor b$. Therefore $\{a \land b, u, v, b, b \lor c\}$ form a lattice which is isomorphic to the pentagonal lattice.

Conversely, suppose S is modular. Since every subJP-semilattice of a modular lattice is modular, it does not contain the pentagonal lattice as a subJP-semilattice. \Box

Unfortunately, we could not prove or disprove the 'standard' characterization for distributive JP-semilattices. So we have the following conjecture.

Conjecture 7. Let S be a JP-semilattice. Then S is non-distributive if and only if it has a sublattice isomorphic to either the pentagonal lattice or the diamond lattice.

3. Ideals of modular JP-semilattices. In this section we study the ideals of modular JP-semilattices. A non-empty subset I of a JP-semilattice S is said to be an *ideal* of S if

- (i) $x, y \in I$ and $x \lor y$ exists, implies $x \lor y \in I$,
- (ii) $x \in I$ and $y \leq x$ implies $y \in I$.

The set of all ideals of a JP-semilattice **S** will be denoted by $\mathcal{I}(S)$. It is easy to see that the intersection of two ideals is again an ideal, so that intersection serves as a meet operation on the set $\mathcal{I}(S)$. In order to make this set into a lattice, we need a join operation. If I and J are ideals, their join $I \vee J$ should be the least ideal to contain both the sets I and J. This motivates us to define, for any non-empty subset K of a JP-semilattice S, the smallest ideal containing K. It is denoted by (K] and is called the *ideal generated by* K. For $a \in S$, the ideal (a] is called the *princpal ideal* generated by a. A subset Q of a JP-semilattice S satisfying the above condition (ii) is called a down-set. The following result is trivial.

Lemma 8. Let **S** be a JP-semilattice and $\emptyset \neq K \subseteq S$. Define $K_0 = K$ and for $n \ge 1$,

$$K_n = \{ x \in S \mid x \leq y \lor z \text{ for } y, z \in K_{n-1} \}.$$

Then for each $n \ge 1$, K_n is a down-set and

$$K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots$$
.

The following results are consequence of the above lemma.

Theorem 9. Let **S** be a JP-semilattice and $\emptyset \neq K \subseteq S$. Then

- (i) $(K] = \bigcup_{n=0}^{\infty} K_n$ where $K_0 = K$ and for $n \ge 1$, $K_n = \{x \in S \mid x \le y \lor z \text{ for } y, z \in K_{n-1}\}$
- (ii) For $a \in S$ we have $(a] = \{x \in S \mid x \leq a\}$.

Proof. (i) By Lemma 8 trivially, $\bigcup_{n=0}^{\infty} K_n$ is a down-set.

Let $x, y \in \bigcup_{n=0}^{\infty} K_n$ such that $x \vee y$ exists. Then $x, y \in K_n$ for some $n \ge 0$. Since $x \vee y \le x \vee y$ for some $x, y \in K_n$, we have $x \vee y \in K_{n+1}$. Hence $x \vee y \in \bigcup_{n=0}^{\infty} K_n$.

Therefore, $\bigcup_{n=0}^{\infty} K_n$ is an ideal of S.

Let I be an ideal containing $K = K_0$. We use the mathematical induction to show that for each $n \ge 0$, $K_n \subset I$. Let $K_n \subseteq I$ for some $n \ge 1$ and let $x \in K_{n+1}$. Then $x \leq y \lor z$ for some $y, z \in K_n$ and hence $y \lor z \in I$ as I is an ideal. Therefore, Then $x \leq y \lor z$ for some $y, z \in K_n$ and hence $y \lor z \in I$ as z = 1. $x \in I$. Hence for all $n \geq 0$, $K_n \subseteq I$. If $x \in \bigcup_{n=0}^{\infty} K_n$, then $x \in K_n$ for some $n \geq 0$. Hence $x \in I$. Thus $\bigcup_{n=0}^{\infty} K_n$ is the smallest ideal containing K. Hence $(K] = \bigcup_{n=0}^{\infty} K_n$. (``) is a particular case of (i) (ii) is a particular case of (i).

Now we clearly have the following result which gives us a description of the join of two ideals of a JP-semilattice.

Theorem 10. Let I and J be two ideals of a JP-semilattice S. Then

$$I \lor J = \bigcup_{n=0}^{\infty} A_n$$

where $A_0 = I \cup J$ and for $n \ge 1$,

$$A_n = \{ x \in S \mid x \leqslant y \lor z \text{ for } y, z \in A_{n-1} \}$$

It is routine to show that $\mathcal{I}(\mathbf{S})$ is an algebraic lattice.

Remark. For any ideals I and J of a JP-semilattice **S**, the description of $I \vee J$ is not as easy as for the joins in semilattices or lattices. Even $I \vee J$ can not be written simply as $\{x \leq y \lor z \mid y \in I, z \in J \text{ whenever } y \lor z \text{ exists}\}$. For example, consider the JP-semilattice **B** given in the Figure 4. Suppose I = (a] and J = (b]. Then

FIGURE 4. Two JP-semilattices

 $x \in I \lor J$, but $x \leq i \lor j$ for any $i \in I$ and $j \in J$. This observation shows that there are difficulties in studying the lattice $\mathcal{I}(S)$.

Now we turn our attention to principal ideals of a JP-semilattice. It is easy to show that the join of two principal ideals need not be principal. For example, consider the JP-semilattice **M** given in the Figure 4. Here $(a] \lor (b] = \{0, a, b\}$ is not principal. We have the following useful results.

Lemma 11. Let **S** be a JP-semilattice. If $x \lor y$ exists, then $(x \lor y] = (x] \lor (y]$.

Proof. We have $x, y \in (x] \cup (y]$. Hence $x \lor y \in (x] \lor (y]$. Thus $(x \lor y] \subseteq (x] \lor (y]$. The reverse inclusion is trivial. Hence $(x \lor y] = (x] \lor (y]$.

Proposition 12. Let **S** be a JP-semilattice. For any $x, y \in S$, we have $(x] \lor (y]$ is a principal ideal if and only if $x \lor y$ exists.

Proof. If $x \lor y$ exists, then by the above lemma $(x] \lor (y] = (x \lor y]$ and hence $(x] \lor (y]$ is a principal ideal of S.

Conversely, let $(x] \lor (y]$ be a principal ideal. Suppose $(x] \lor (y] = (c]$. Then $x, y \leq c$. We show that c is the least upper bound of x and y. Suppose $x, y \leq d$. Then $(c] = (x] \lor (y] \subseteq (d]$. Hence $c \leq d$. Thus $x \lor y$ exists and $x \lor y = c$. \Box

Theorem 13. Let **S** be a JP-semilattice. If $\mathcal{I}(S)$ is modular, then **S** is modular, but the converse is not necessarily true.

Proof. Let $\mathcal{I}(S)$ be modular and let $x, y, z \in S$ with $z \leq x$. Then $(z] \subseteq (x]$. If $y \lor z$ exists, then $(x \land y) \lor z$ exists and

$$\begin{aligned} (x \land (y \lor z)] &= (x] \land (y \lor z] \\ &= (x] \land ((y] \lor (z]), \quad \text{by Lemma 11} \\ &= ((x] \land (y]) \lor (z], \quad \text{as } \mathcal{I}(\mathbf{S}) \text{ is modular} \\ &= (x \land y] \lor (z] \\ &= ((x \land y) \lor z] \end{aligned}$$

Thus $x \wedge (y \vee z) = (x \wedge y) \vee z$. Hence **S** is modular.

To prove the converse is not true, consider the JP-semilattice **B** in Figure 5. We call it a "butterfly". Clearly, **B** is modular as it has no sublattice isomorphic to the pentagonal lattice. Observe that the lattice $\mathcal{I}(\mathbf{B})$ contains a sublattice $\{(0], (d], (d, c], (a, b], B\}$ (see the bullet elements) which is isomorphic to the pentagonal lattice and hence $\mathcal{I}(\mathbf{S})$ is a non-modular lattice.

FIGURE 5. the butterfly and its lattice of ideals

Here is a characterization of modular JP-semilattices. The proof follows directly from the Lemma 11.

Theorem 14. Let **S** be a JP-semilattice. Then **S** is modular if and only if for any $x, y, z \in S$ such that $z \leq x$ and $y \lor z$ exists implies $(x] \land ((y] \lor (z]) = ((x] \land (y]) \lor (z]$.

4. **Ideals of distributive JP-semilattices.** We turn our attention to some characterizations of distributive JP-semilattices. First we have the following useful lemma.

Lemma 15. Let I and J be two ideals of a distributive JP-semilattice S. Then

$$I \lor J = \bigcup_{n=0}^{\infty} A_n$$

where $A_0 = I \cup J$ and for $n \ge 1$, and

$$A_n = \{ x \in S \mid x = y \lor z \text{ for } y, z \in A_{n-1} \}.$$

Proof. Since \mathbf{S} is distributive, this is a consequence of Theorem 10.

The following results give characterizations of distributive JP-semilattices.

Theorem 16. Let I and J be two ideals of a JP-semilattice **S**. Then the following are equivalent:

- (a) **S** is distributive;
- (b) $I \lor J = \{a_1 \lor a_2 \lor \cdots \lor a_n \mid a_i \in I \cup J \text{ for all } i = 1, 2, \cdots, n\};$
- (c) $\mathcal{I}(S)$ is a distributive lattice;
- (d) for any $x, y, z \in S$ for which $y \lor z$ exists,

$$(x] \land ((y] \lor (z]) = ((x] \land (y]) \lor ((x] \land (z]).$$

Proof. (a) \Rightarrow (b). By using mathematical induction to extend Lemma 15.

(b) \Rightarrow (c). Let $I, J, K \in \mathcal{I}(S)$ and $x \in I \cap (J \vee K)$. Then $x \in I$ and $x = a_1 \vee a_2 \vee \cdots \vee a_n$ where $a_i \in J \cup K$ for all $i = 1, 2, \cdots, n$. Now for each $i = 1, 2, \cdots, n$, we have $a_i \leq x$ and hence $a_i \in I \cap J$ or $I \cap K$. Hence $a_i \in (I \cap J) \cup (I \cap K)$. Therefore, $x \in (I \cap J) \vee (I \cap K)$. The reverse inclusion is trivial and hence $\mathcal{I}(S)$ is a distributive lattice.

(c) \Rightarrow (d). Trivial.

(d) \Rightarrow (a). Let $x, y, z \in S$ with $y \lor z$ exists. Then

$$\begin{aligned} (x \land (y \lor z)] &= (x] \cap ((y] \lor (z]) \\ &= ((x \cap (y]) \lor ((x] \cap (z])) \\ &= (x \land y] \lor (x \land z] \\ &= ((x \land y) \lor (x \land z)]. \end{aligned}$$

Hence $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$. Therefore, **S** is distributive.

Let **S** be a JP-semilattice. The set of all down-subsets of S is denoted by $\mathcal{O}(S)$. It is evident that $\mathcal{O}(S)$ is a bounded complete distributive lattice for any ordered set **S** when partially ordered by set inclusion. The meet and join in $\mathcal{O}(S)$ are given by set-theoretic intersection and union respectively.

The following result clearly holds from Theorem 16.

Lemma 17. Let **S** be a distributive JP-semilattice and $K \in \mathcal{O}(\mathbf{S})$. Then

$$(K] = \{x_1 \lor x_2 \lor \cdots \lor x_n \mid x_i \in K \text{ for each } i = 1, 2, \cdots, n\}.$$

The following theorem is a generalization of [2, Theorem 2.3].

Theorem 18. Let **S** be a JP-semilattice. For any $A, B, C \in \mathcal{O}(\mathbf{S})$ the following conditions are equivalent:

(a) **S** is distributive;

(b) $(A] = \{a_1 \lor a_2 \lor \cdots \lor a_n \mid a_1, a_2, \cdots, a_n \in A\};$

- (c) $A \cap (B] \subseteq (A \cap B];$
- (d) $(A \cap B] = (A] \cap (B];$
- (e) $(A \cap (B \cap C]] = ((A \cap B] \cap C];$

(f) The map $\varphi : \mathcal{O}(S) \to I(S)$ defined by $\varphi(A) = (A]$ is an onto lattice-homomorphism.

Proof. (a) \Rightarrow (b). By Lemma 17.

(b) \Rightarrow (c). Let $x \in A \cap (B]$. Then $x \in A$ and by (b), $x = b_1 \lor b_2 \lor \cdots \lor b_n$ where $b_1, b_2, \cdots, b_n \in B$. Since $A \in \mathcal{O}(S)$ and $b_i \leq x$ for all $i = 1, 2, \cdots, n$ we have $b_i \in A$ for all $i = 1, 2, \cdots, n$. Hence $b_i \in A \cap B$ for all $i = 1, 2, \cdots, n$. Therefore, $x \in (A \cap B]$.

(c) \Rightarrow (d). By (c), we have $(A] \cap (B] \subseteq ((A] \cap B] \subseteq (A \cap B]$ for any $A, B \in \mathcal{O}(S)$. Since $(A \cap B] \subseteq (A] \cap (B]$, we have $(A \cap B] = (A] \cap (B]$. Thus (d) holds. (d) \Rightarrow (e). Suppose (d) holds. Then

$$(A \cap (B \cap C]] = (A] \cap (B \cap C] = (A] \cap ((B] \cap (C]))$$
$$= ((A] \cap (B]) \cap (C] = (A \cap B] \cap (C] = ((A \cap B] \cap C].$$

Thus (e) holds.

(e) \Rightarrow (d). This is trivial.

(d) \Rightarrow (f). For any $A, B \in \mathcal{O}(S)$, we have

$$(A] \lor (B] = \{x_1 \lor x_2 \lor \dots \lor x_n \mid x_1, x_2, \dots, x_n \in (A] \cup (B]\}$$
$$= \{x_1 \lor x_2 \lor \dots \lor x_n \mid x_1, x_2, \dots, x_n \in A \cup B\}$$
$$= (A \cup B].$$

Hence by (d), φ is a lattice homomorphism. Let $I \in \mathcal{I}(S)$. Then $\varphi(I) = (I] = I$. Thus φ is an onto lattice homomorphism. Therefore, (f) holds.

(f) \Rightarrow (a). Since $\mathcal{O}(S)$ is always a distributive lattice, I(S) is a distributive and hence by Theorem 16, S is distributive.

5. The Separation Theorem. Let S be a JP-semilattice. A non-empty subset F of S is said to be a *filter* (or *dual ideal*) if

- (i) for $x \in F$ and $y \in S$ with $x \leq y$ implies $y \in F$, and
- (ii) for $a, b \in F$ implies $a \wedge b \in F$.

An ideal P of a JP-semilattice **S** is said to be *prime* if $a, b \in S$ such that $a \wedge b \in P$ implies either $a \in P$ or $b \in P$. A prime ideal P is called *minimal* if whenever there is a prime ideal Q such that $Q \subseteq P$, then P = Q.

Lemma 19. Let **S** be a JP semilattice. An ideal (filter) P is prime if and only if $S \setminus P$ is a prime filter (ideal).

Proof. Let P be a prime ideal. If $x, y \in S \setminus P$, then $x, y \notin P$. Hence $x \wedge y \notin P$ which implies $x \wedge y \in S \setminus P$. Let $x \in S \setminus P$ and $x \leq y$. Then $x \notin P$ and hence $y \notin P$. Therefore $y \in S \setminus P$. This implies $S \setminus P$ is a filter. Let $x, y \in S$ such that $x \vee y$ exists and $x \vee y \in S \setminus P$. Then $x \vee y \notin P$. This implies either $x \notin P$ or $y \notin P$ and consequently, either $x \in S \setminus P$ or $y \in S \setminus P$. Hence $S \setminus P$ is a prime filter. By a reverse argument we have the converse of the statement.

by a reverse argument we have the converse of the statement.

Now we have the following Separation Theorem for distributive JP-semilattice.

Theorem 20 (The JP-Separation Theorem). Let S be a JP-semilattice. Then the following are equivalent:

- (a) **S** is distributive;
- (b) For any ideal I and any filter F of **S** such that $I \cap F = \emptyset$, there exists a prime ideal P containing I such that $P \cap F = \emptyset$.

Proof. (a) \Rightarrow (b). Let \mathcal{I} be the set of all ideals containing I, but disjoint from F. Then $\mathcal{I} \neq \emptyset$ as $I \in \mathcal{I}$. Let \mathcal{C} be a chain in \mathcal{I} and let $M := \bigcup \{X \mid X \in \mathcal{C}\}$. We claim that M is the maximum element in \mathcal{C} .

Let $x \in M$ and $y \leq x$. Then $x \in X$ for some $X \in C$. Hence $y \in X$ as X is an ideal. Therefore $y \in M$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. So $x, y \in Y$. If $x \lor y$ exists, then $x \lor y \in Y$ as Y is an ideal. Hence $x \lor y \in M$. Moreover, M contains I and $F \cap M = \emptyset$. Therefore, M is the maximum element in C.

Thus by Zorn's Lemma, \mathcal{I} has a maximal element, say P. We claim that P is prime. If P is not prime, there exists $a, b \in S$ such that $a, b \notin P$ but $a \wedge b \in P$. Then $(P \vee (a]) \cap F \neq \emptyset$ and $(P \vee (b]) \cap F \neq \emptyset$ as P is maximal. Hence there exists $x, y \in F$ such that $x \wedge y \in (P \vee (a]) \cap (P \vee (b]) = P \vee ((a] \wedge (b])$ as \mathbf{S} is a distributive lattice implies $\mathcal{I}(S)$ is a distributive lattice. Thus $x \wedge y \in F$ and $x \wedge y \in P \vee (a \wedge b] = P$ which is a contradiction to $P \cap F = \emptyset$. Hence P is a prime ideal.

(b) \Rightarrow (a). Let $a, b, c \in S$ such that $b \lor c$ exists. If $(a \land b) \lor (a \land c) \neq a \land (b \lor c)$, then $(a \land b) \lor (a \land c) < a \land (b \lor c)$. Consider $I = ((a \land b) \lor (a \land c)]$ and $F = [a \land (b \lor c))$. Then $I \cap F = \emptyset$ and hence by (b), there is a prime ideal P such that $I \subseteq P$ and $P \cap F = \emptyset$. Thus $(a \land b) \lor (a \land c) \in P$, this implies $a \land b \in P$ and $a \land c \in P$. So, either $a \in P$ or $b \lor c \in P$. Hence $a \land (b \lor c) \in P$ which is a contradiction. Therefore, $(a \land b) \lor (a \land c) = a \land (b \lor c)$. Hence S is distributive. \Box

Corollary 21. Let **S** be a distributive JP-semilattice and let I be an ideal of S. If $a \notin I$, then there exists a prime ideal P containing I such that $a \notin P$.

The following useful result is a generalization of a well known result of lattice theory.

Theorem 22. Let S be a distributive JP-semilattice. Then every ideal of S is the intersection of all prime ideals containing it.

Proof. Let \mathbf{S} be a JP-semilattice and let J be an ideal of \mathbf{S} . We shall show that

 $J = \bigcap \{P \mid P \text{ is a prime ideal of } S \text{ and } J \subseteq P \}.$

Clearly, $J \subseteq \text{R.H.S.}$ If $J \neq \text{R.H.S.}$, then there is $x \in \text{R.H.S.}$ such that $x \notin J$. Hence by the Separation Theorem, there is a prime ideal Q of S such that $J \subseteq Q$ and $x \notin Q$, which is a contradiction.

The following theorem is a characterization of a minimal prime ideal containing an ideal. This is also a generalization of [8, Lemma 3.1]

Theorem 23. Let **S** be a distributive JP-semilattice and let J be an ideal of S. Then a prime ideal P containing J is a minimal prime ideal containing J if and only if for each $x \in P$ there is $y \in S \setminus P$ such that $x \wedge y \in J$.

Proof. Let P be a prime ideal of S containing J such that the given condition holds. We shall show that P is a minimal prime ideal containing J. Let K be a prime ideal containing J such that $K \subseteq P$. Let $x \in P$. Then there is $y \in S \setminus P$ such that $x \wedge y \in J$. Hence $x \wedge y \in K$ as K contains J. Since K is prime and $y \notin K$ implies $x \in K$. Hence $P \subseteq K$. Thus K = P. Therefore P is a minimal prime ideal containing J.

Conversely, let P be a minimal prime ideal containing J. Let $x \in P$. Suppose for all $y \in S \setminus P$, $x \wedge y \notin J$. Set $D = (S \setminus P) \vee [x)$. We claim that $0 \notin D$. For if $0 \in D$, then $0 = q \wedge x$ for some $q \in S \setminus P$. Thus, $x \wedge q = 0 \in J$ which is a contradiction. Therefore, $0 \notin D$. Then by the JP-separation Theorem 20, there is a prime filter Qsuch that $D \subseteq Q$ and $0 \notin Q$. Let $M = S \setminus Q$. Then by Lemma 19, M is a prime ideal. We claim that $M \cap D = \emptyset$. If $a \in M \cap D$, then $a \in M$ and hence $a \notin Q$. Thus $a \notin D$ which is a contradiction. Hence $M \cap D = \emptyset$. Therefore, $M \cap (S \setminus P) = \emptyset$ and hence $M \subseteq P$. Also $M \neq P$, because $x \in D$ implies $x \in Q$ and hence $x \notin M$ but $x \in P$. This shows that P is not minimal which is a contradiction. Hence the given condition holds.

Theorem 24. Let **S** be a JP-semilattice with 0 and let P be a prime ideal of S. Let C be a chain of all prime ideals X of S such that $X \subseteq P$. Then

$$Q = \bigcap \{ X \subseteq P \mid X \in \mathcal{C} \}$$

is a prime ideal and hence it is a minimal prime ideal.

Proof. Clearly, C is non-empty as $P \in C$ and Q is non-empty as $0 \in Q$. Obviously, Q is an ideal. To show that Q is prime, let $x \wedge y \in Q$. Suppose $x \notin Q$. This implies $x \notin X$ for some $X \in C$. Now $x \wedge y \in Q$ implies $x \wedge y \in X$. Hence $y \in X$ as X is prime. We claim that $y \in Q$. If not, then $y \notin Y$ for some $Y \in C$ with $Y \subset X$. But $x \wedge y \in Q$ implies $x \wedge y \in Y$. Thus $x \in Y$ and so $x \in X$ as $Y \subset X$ which gives a contradiction. Therefore $y \in Q$. Hence Q is prime and in fact it is a minimal prime ideal.

Thus we have the following extension of Stone's Separation Theorem.

Theorem 25. Let J be an ideal and D be a filter of a distributive JP-semilattice **S** such that $J \cap D = \emptyset$. Then there exists a minimal prime ideal Q containing J such that $Q \cap D = \emptyset$.

Proof. Let J be an ideal and D be a filter of a distributive JP-semilattice **S** such that $J \cap D = \emptyset$. Then by the JP-version of Stone's Separation Theorem 20, there exists a prime ideal P containing J such that $P \cap D = \emptyset$. Choose any chain \mathcal{C} of prime ideals X containing J such that $X \subseteq P$. Let $Q = \bigcap \{X \in \mathcal{C}\}$. Then by Theorem 24, Q is a minimal prime ideal containing J and $Q \cap D = \emptyset$.

Let \mathbf{S} be a JP-semilattice with 0 and let Q be a prime ideal of S. Define

$$O(Q) := \{ x \in S \mid x \land y = 0 \text{ for some } y \in S \setminus Q \}.$$

The following theorem is a generalization of [1, Proposition 2.2]

Theorem 26. Let **S** be a distributive JP-semilattice with 0 and let Q be a prime ideal of S. Then

$$O(Q) = \bigcap \{P \mid P \text{ is a minimal prime ideal of } S \text{ such that } P \subseteq Q\}.$$

Proof. Suppose

 $X = \bigcap \{ P \mid P \text{ is a minimal prime ideal of } S \text{ such that } P \subseteq Q \}.$

Let $x \in O(Q)$. Then $x \wedge y = 0$ for some $y \notin Q$. Let P be a minimal prime ideal contained in Q. Clearly, $y \notin P$. Since $x \wedge y = 0 \in P$ and P is prime, we have $x \in P$. Hence $x \in X$.

Conversely let $x \in X$. If $x \notin O(Q)$. Then $x \wedge y \neq 0$ for any $y \in S \setminus Q$. Let $D = [x) \lor (S \setminus Q)$. Then $0 \notin D$. For if $0 \in D$, then $x \wedge q = 0$ for some $q \in S \setminus Q$ which is a contradiction. Therefore, $0 \notin D$. Consequently, there is a minimal prime ideal M such that $M \cap D = \emptyset$. Therefore, $M \cap (S \setminus Q) = \emptyset$. Hence $M \subseteq Q$. Also $M \neq Q$ because $x \in Q$. But $x \in D$ implies $x \notin M$. This shows that there is a minimal prime ideal $M \subset Q$ such that $x \notin M$ which is a contradiction to fact that $x \in X$. Hence $x \in O(Q)$.

6. **JP-Congruences.** Let **S** be a JP-semilattice. A semilattice congruence θ on S is said to be a *JP-congruence* if $a \equiv b(\theta)$ and $c \equiv d(\theta)$ implies that $a \lor c \equiv b \lor d(\theta)$ whenever $a \lor c$ and $b \lor d$ exist. If a relation θ satisfies the condition, then we say that θ is *compatible* with existing \lor

Let **S** be a distributive JP-semilattice and *I* be an ideal of **S**. Then by [3], the relation $\Theta(I)$ on *S* defined by

$$x \equiv y(\Theta(I)) \Leftrightarrow (x] \lor I = (y] \lor I$$

is a JP-congruence having I as a class. Moreover if each JP-congruence is compatible with any finite existing \lor , then $\Theta(I)$ is the the smallest JP-congruence having I as a class. We will use Θ_x for $\Theta((x))$.

As in Cornish and Hickman [3], the following technicality will be used frequently without explicit reference.

Let **S** be a JP-semilattice, θ be a JP-congruence and E be an equivalence relation on S. Then to show that $\theta \subseteq E$ it is enough to show that $(a,b) \in E$ for every pair (a,b) such that $a \leq b$ and $a \equiv b(\theta)$

Now we have the following result.

Theorem 27. Let **S** be a distributive JP-semilattice and let I be an ideal of S. Then R(I) defined by

$$x \equiv y(R(I)) \Leftrightarrow x \land a \in I \text{ equivalent to } y \land a \in I \text{ for every } a \in S,$$

is the largest JP-congruence having I as a class.

Proof. Clearly, R(I) is a semilattice congruence having I as a class. Suppose $x \equiv y(R(I))$ and $s \equiv t(R(I))$. If $x \lor s$ and $y \lor t$ exist, then for any $a \in S$ we have

$$\begin{aligned} (x \lor s) \land a \in I \Leftrightarrow (x \land a) \lor (s \land a) \in I, \text{ as } \mathbf{S} \text{ is distributive} \\ \Leftrightarrow x \land a, s \land a \in I \\ \Leftrightarrow y \land a, t \land a \in I \\ \Leftrightarrow (y \land a) \lor (t \land a) \in I \\ \Leftrightarrow (y \lor t) \land a \in I, \text{ as } \mathbf{S} \text{ is distributive.} \end{aligned}$$

Hence $x \lor s \equiv y \lor t(R(I))$. Thus R(I) is a JP-congruence. Let Γ be a JP-congruence having I as a class and $x \equiv y(\Gamma)$. Then for any $a \in S$, we have $x \land a \in I \Leftrightarrow y \land a \in I$, since $x \land a \equiv y \land a(\Gamma)$. Hence $x \equiv y(R(I))$.

The congruence relation $\Theta(a, b)$ is the smallest congruence containing $\{a, b\}$ as a class. We have a description of $\Theta(a, b)$.

Theorem 28. Let **S** be a distributive JP-semilattice and $a, b, x, y \in S$ such that $a \leq b$. Then

$$x \equiv y(\Theta(a, b)) \Leftrightarrow x \land a = y \land a \text{ and } (x] \lor (b] = (y] \lor (b].$$

Proof. Let ψ denote the binary relation on S such that

 $x \equiv y(\psi) \Leftrightarrow x \land a = y \land a \text{ and } (x] \lor (b] = (y] \lor (b].$

Then clearly ψ is an equivalence relation. Now let $x \equiv y(\psi)$ and $s \equiv t(\psi)$. Then $x \wedge a = y \wedge a$, $(x] \vee (b] = (y] \vee (b]$, $s \wedge a = t \wedge a$ and $(s] \vee (b] = (t] \vee (b]$. Hence $(x \wedge s) \wedge a = (y \wedge t) \wedge a$ and since **S** is distributive implies $\mathcal{I}(S)$ is distributive, so

$$\begin{aligned} (x \land s] \lor (b] &= ((x] \land (s]) \lor (b] = ((x] \lor (b]) \land ((s] \lor (b]) \\ &= ((y] \lor (b]) \land ((t] \lor (b]) = ((y] \land (t]) \lor (b] = (y \land t] \lor (b]. \end{aligned}$$

Thus $x \wedge s \equiv y \wedge t(\psi)$. Also if $x \vee s$ and $y \vee t$ exists, then since **S** is distributive,

$$(x \lor s) \land a = (x \land a) \lor (s \land a) = (y \land a) \lor (t \land a) = (y \lor t) \land a$$

and

$$\begin{aligned} (x \lor s] \lor (b] &= ((x] \lor (s]) \lor (b] = ((x] \lor (b]) \lor ((s] \lor (b]) \\ &= ((y] \lor (b]) \lor ((t] \lor (b]) = ((y] \lor (t]) \lor (b] = (y \lor t] \lor (b]. \end{aligned}$$

Thus $x \lor s \equiv y \lor t(\psi)$. Therefore, ψ is a JP-congruence. Clearly $a \equiv b(\psi)$. Let Γ be a congruence on S such that $a \equiv b(\Gamma)$. Let $x \equiv y(\psi)$ with $x \leq y$. Then $x \land a = y \land a$ and $(x] \lor (b] = (y] \lor (b]$. Since $a \equiv b(\Gamma)$ so, $x \land a \equiv x \land b(\Gamma)$ and $y \land a \equiv y \land b(\Gamma)$. Thus $x \land b \equiv x \land a(\Gamma) = y \land a \equiv y \land b(\Gamma)$. Now we have

$$(y] = (y] \land ((y] \lor (b]) = (y] \land ((x] \lor (b]) = ((y] \land (x]) \lor ((y] \land (b]) = (x] \lor (y \land b].$$

This shows that $(x] \lor (y \land b]$ is a principal ideal and hence by Theorem 12 we have $y = x \lor (y \land b) \equiv x \lor (x \land b)(\Gamma) = x$. Hence ψ is the smallest congruence. Therefore, $\psi = \Theta(a, b)$.

Let **S** and **P** be two JP-semilattices. A semilattice homomorphism $\varphi : \mathbf{S} \to \mathbf{P}$ is said to be a *JP-homomorphism* if for all $x, y \in S$ such that $x \lor y$ exists in S implies $\varphi(x) \lor \varphi(y)$ exists in P and

$$\varphi(x \lor y) = \varphi(x) \lor \varphi(y).$$

Let $\varphi : \mathbf{S} \to \mathbf{P}$ be a JP-homomorphism. The *kernel* of φ is denoted by ker φ and defined by

$$\ker \varphi = \{ (x, y) \in S^2 \mid \varphi(x) = \varphi(y) \}.$$

Lemma 29. Let $\varphi : \mathbf{S} \to \mathbf{P}$ be a JP-homomorphism. Then ker φ is a JP-congruence on S.

Proof. Clearly ker φ is an equivalence relation on S. Let $x_1 \equiv y_1(\ker \varphi)$ and $x_2 \equiv y_2(\ker \varphi)$. Then $\varphi(x_1) = \varphi(y_1)$ and $\varphi(x_2) = \varphi(y_2)$. Now $\varphi(x_1 \wedge x_2) = \varphi(x_1) \wedge \varphi(x_2) = \varphi(y_1) \wedge \varphi(y_2) = \varphi(y_1 \wedge y_2)$. Therefore, $x_1 \wedge x_2 \equiv y_1 \wedge y_2(\ker \varphi)$. To prove ker φ is conditional compatible with \vee , let $x_1 \vee x_2$ and $y_1 \vee y_2$ exist. Then by the definition of a JP-homomorphism, $\varphi(x_1) \vee \varphi(x_2) = \varphi(y_1) \vee \varphi(y_2)$ exist and $\varphi(x_1 \vee x_2) = \varphi(x_1) \vee \varphi(x_2)$ and $\varphi(y_1 \vee y_2) = \varphi(y_1) \vee \varphi(y_2)$. Hence $\varphi(x_1 \vee x_2) = \varphi(x_1) \vee \varphi(x_2) = \varphi(y_1 \vee y_2)$. Thus $x_1 \vee x_2 \equiv y_1 \vee y_2(\ker \varphi)$. Therefore ker φ is a JP-congruence.

We have the following important result for distributive JP-semilattices.

Theorem 30. Let **S** be a JP-semilattice. The following conditions are equivalent:

- (a) **S** is distributive;
- (b) for $a \in S$, the map $\varphi : S \mapsto (a]$ given by

 $\varphi(x) = a \wedge x$

is a JP-homomorphism of \mathbf{S} onto (a];

(c) for $a \in S$, the binary relation Θ_a on S defined by

$$x \equiv y(\Theta_a) \iff x \wedge a = y \wedge a$$

is a congruence relation.

Proof. (a) \Rightarrow (b). Let **S** be a distributive JP-semilattice. Then for any $x, y \in S$ we have

$$\varphi(x \wedge y) = a \wedge (x \wedge y) = (a \wedge x) \wedge (a \wedge y) = \varphi(x) \wedge \varphi(y).$$

Also if $x \lor y$ exists, then

$$\varphi(x \lor y) = a \land (x \lor y) = (a \land x) \lor (a \land y) = \varphi(x) \lor \varphi(y).$$

Thus φ is a JP-homomorphism. If $x \in (a]$, then $x \leq a$ and hence $x = a \wedge x = \varphi(x)$. Therefore, (b) holds.

(b) \Rightarrow (c). Define a relation Θ_a on S given by $x \equiv y(\Theta_a) \iff a \land x = a \land y$. If $\varphi : x \mapsto a \land x$ is a map from **S** to (a], then we have $x \equiv y(\Theta_a) \iff \varphi(x) = \varphi(y)$. Thus $\Theta_a = \ker \varphi$. Since by (b), φ is a JP-homomorphism, so by Lemma 29, $\ker \varphi$ is a congruence. Hence Θ_a is a congruence. Thus (c) holds.

(c) \Rightarrow (a). Let $x, y \in S$ with $x \lor y$ exists. Then for any $a \in S$, we have $(a \land x) \lor (a \land y)$ exists. Since $a \land x = a \land (a \land x)$, so $x \equiv a \land x(\Theta_a)$. Similarly, $y \equiv a \land y(\Theta_a)$. Thus $x \lor y \equiv (a \land x) \lor (a \land y)(\Theta_a)$. Hence

$$a \wedge (x \vee y) = a \wedge (a \wedge x) \vee (a \wedge y) = (a \wedge x) \vee (a \wedge y).$$

Thus (a) holds.

Acknowledgement: We would like to thank the respected referee for valuable suggestions of improving the paper.

REFERENCES

- [1] W.H. Cornish, Normal lattices, J. Austral. Math. Soc., 14 (1972), 200–215.
- [2] W.H. Cornish, Characterization distributive and modular semilattices, Math. Japonica, 22 (1977), 159–174.
- [3] W.H. Cornish and R.C. Hickman, Weakly distributive semilattices, Acta Math. Acad. Sci. Hungar., 32 (1978), 5–16.
- B.A. Davey and H.A. Priestley, *Introduction to Lattices and Order*, Second edition, Cambridge University Press, Cambridge, (2002).
- [5] G. Grätzer Lattice Theory: First Concepts and Distributive Lattices, Freeman and Company, 1971.
- [6] G. Grätzer General Lattice Theory, Birkhäuser, 1978.
- [7] R.C. Hickman, *Distributivity in Semilattices*, Ph.D. Thesis, The Flinders University of South Australia, 1978.
- [8] J. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc., 13 no. 3 (1963), 31–50.

E-mail address: noor@ewubd.edu