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Abstract. A meet semilattice with a partial join operation satisfying some

axioms is a JP-semilattice. In this paper we study the modular and distributive
JP-semilattices. We give several characterizations of modular and distributive

JP-semilattices. We also prove the Separation Theorem and its extension for

minimal prime ideal of distributive JP-semilattices. JP-congruences, have also
been studied.

1. Introduction. A partial lattice is a semilattice with a partial binary operation.
Partial lattices have been studied by many authors. For the background of partial
lattices we refer the reader to [3, 5, 6, 7]. In this paper we study semilattice (meet
semilattice) with a partial operation. We refer the reader to [5, 6, 4] for semilattices
and lattices.

An algebraic structure S = 〈S;∧,∨〉 where 〈S;∧〉 is a meet semilattice and ∨
is a partial binary operation on S is said to be a join partial semilattice (or JP-
semilattice) if for all x, y, z ∈ S,

(i) x ∨ x = x;
(ii) x ∨ y exists implies y ∨ x exists and x ∨ y = y ∨ x;

(iii) x∨y, y∨z and (x∨y)∨z exist imply x∨(y∨z) exists and (x∨y)∨z = x∨(y∨z);
(iv) x ∨ y exists implies x = x ∧ (x ∨ y);
(v) y ∨ z exists implies (x ∧ y) ∨ (x ∧ z) exists.

Clearly as an algebraic structure a JP-semilattice is intermediate between semi-
lattices and lattices. A semilattice is a set with a binary operation ∧ satisfying
certain axioms; a lattice is a set with two binary operations ∧ and ∨, again with
certain axioms, including those of a semilattice for ∧. A JP-semilattice has a semi-
lattice operation ∧, satisfying those axioms of semilattice and a partial binary op-
eration ∨ satisfying (i)–(v) given above. We can represent a JP-semilattice by an
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ordered set and hence can be pictured in a Hasse diagram. Let S = 〈S;∧,∨〉 be a
JP-semilattice. Define a binary relation 6 on S by

x 6 y if and only if x ∧ y = x.

Then 6 is a partial ordering relation. Moreover x∧y = inf{x, y} and if x∨y exists,
then x ∨ y = sup{x, y}. We can construct a picture of a relation 6 on S in the
coordinate plane. For each x ∈ S draw a small circle. The small circle of x represent
that x 6 x. If x is covered by y, then place the circle of x lower than the circle of
y and take a line segment joining the circles. If x ∨ y does not exist but there is
an upper bound u of x and y, then there are line segments from x and y to a lower
point of u but there is no small circle joining the line segments. For example see
Figure 1.
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Figure 1. a non-JP-semilattice

Observe that not every semilattice is a JP-semilattice; for example, the semilat-
tice P given in Figure 1 is not a JP-semilattice. Here b∨c exists, but (a∧b)∨ (a∧c)
does not.

A JP-semilattice S is said to be a modular if for all x, y, z ∈ S such that z 6 x
and y ∨ z exists implies

x ∧ (y ∨ z) = (x ∧ y) ∨ z.
A JP-semilattice S is said to be a distributive if for all x, y, z ∈ S such that z 6 x
and y ∨ z exists implies

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Clearly, the concepts of modularity and distributivity of a JP-semi-lattice S coincide
with the concepts of modularity and distributivity when S is a lattice. The standard
characterizations for modular and distributive lattices are given bellow.

Theorem 1. Let L be a lattice. Then

(a) L is modular if and only if it has no sublattice isomorphic to the pentagonal
lattice N5 (see Figure 2);

(b) L is distributive if and only if it has no sublattice isomorphic to the pentagonal
lattice N5 or the diamond lattice M3 (see Figure 2);
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Figure 2. the pentagon and the diamond

We refer the reader to [4, 5] for the proof of the above theorem. Thus the
pentagonal lattice N5 (see Figure 2) is a non-modular and hence a non-distributive
JP-semilattice, and the diamond lattice M3 (see Figure 2) is a modular but non-
distributive JP-semilattice.

In Section 2 we give a characterization of modular JP-semilattices which is a gen-
eralization of Theorem 1 (a). In Section 3 we study the ideal lattice of modular JP-
semilattices. In Section 4 we study the ideal lattice of distributive JP-semilattices.
Here we give a characterization of distributive JP-semilattices. Stone’s Separation
Theorem plays an important role in Lattice Theory. In Section 5 we generalize the
Separation Theorem for distributive JP-semilattices. In Section 6 we discuss congru-
ences of a JP-semilattice. We give a characterization of distributive JP-semilattices
through a congruence.

2. Characterizations for modular and distributive JP-semilattices. In this
section our aim is to characterize the modular and distributive JP-semilattices.

Two examples. Consider the JP-semilattices N∞ andM∞ given by the following
diagrams (see Figure 3). The JP-semilattice N∞ is said to be the JP-pentagon and

cc
c
?

cJJ
J
JJ

bca

c���c

c@@@ 









0
N∞

cc
c
?

c@@@ bc���a cc

c@@@ �
�
�

0
M∞

Figure 3. the JP-pentagon and the JP-diamond

the JP-semilattice M∞ is said to be the JP-diamond.
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Claim 2. The JP-pentagon N∞ and the JP-diamond M∞ are distributive JP-
semilattices.

Proof. In both cases, if y ∨ z exists, then clearly, either y 6 z or z 6 y. Without
loss of generality, let y 6 z. Then x ∧ y 6 x ∧ z. Hence

x ∧ (y ∨ z) = x ∧ z = (x ∧ y) ∨ (x ∧ z).

First we have the following result.

Proposition 3. Let S be a distributive JP-semilattice. Then for all x, y, z ∈ S the
existence of x ∨ z and y ∨ z implies the existence of (x ∧ y) ∨ z and

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Proof. By axiom (v) of JP-semilattices, x ∨ z and y ∨ z exist implies ((x ∨ z) ∧
y) ∨ ((x ∨ z) ∧ z) exists. That is, ((x ∨ z) ∧ y) ∨ z exists. Now x ∨ z exists implies
(x∧y)∨ (z∧y) exists and (x∧y)∨ (z∧y) = (x∨ z)∧y. Hence ((x∧y)∨ (z∧y))∨ z
exists. That is, (x ∧ y) ∨ z exists. This implies

(x ∨ z) ∧ (y ∨ z) = ((x ∨ z) ∧ y) ∨ ((x ∨ z) ∧ z)
= ((x ∨ z) ∧ y) ∨ z = ((x ∧ y) ∨ (z ∧ y)) ∨ z = (x ∧ y) ∨ z.

Theorem 4. Every distributive JP-semilattice is modular but the converse is not
necessarily true.

Proof. Let S be a distributive JP-semilattice and let a, b, c ∈ S such that c 6 a
and b ∨ c exists. Then a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) = (a ∧ b) ∨ c. Therefore S is
modular. The diamond lattice M3 given in Figure 2 is a modular JP-semilattice
but not distributive.

A JP-semilattice A = 〈A;∧,∨〉 is said to be a subJP-semilattice of a JP-semilattice
S if A ⊆ S and ∧ and ∨ in A are the restrictions of ∧ and ∨ in S.

Theorem 5. Every subJP-semilattice of a modular (distributive) JP-semi-lattice is
modular (distributive).

Proof. Let M be a subJP-semilattice of a modular JP-semilattice L. Let a, b, c ∈M
such that c 6 a. If b ∨ c exists in M, then this hold in L. Hence (a ∧ b) ∨ c exists
in L and a ∧ (b ∨ c) = (a ∧ b) ∨ c. Since a ∧ (b ∨ c) ∈ M , we have (a ∧ b) ∨ c exists
in M and a ∧ (b ∨ c) = (a ∧ b) ∨ c. Hence M is a modular JP-semilattice.

By a similar argument we can easily show that every subJP-semilattice of a
distributive JP-semilattice is distributive.

We have the following characterization of modular JP-semilattices.

Theorem 6. Let S be a JP-semilattice. Then S is non-modular if and only if it
has a sublattice isomorphic to the pentagonal lattice

Proof. Let S be non-modular. Then there exists a, b, c ∈ S such that c 6 a and b∨c
exists, and u = (a∧b)∨c < a∧(b∨c) = v. Now v∧b = (a∧(b∨c))∧b = a∧b. Hence
u ∧ b 6 v ∧ b = a ∧ b 6 u and hence a ∧ b 6 u ∧ b. Therefore, u ∧ b = a ∧ b = v ∧ b.

Consequently, b ∨ c = (b ∨ (a ∧ b)) ∨ c = ((a ∧ b) ∨ c) ∨ b = u ∨ b. First we
claim that v ∨ b exists. If not, then since v, b 6 b ∨ c, there is an infinite chain
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b ∨ c > c1 > c2 > · · · such that v, b 6 ci for each i. Now c, b 6 ci for each i
implies b ∨ c 6 ci for each i, which is a contradiction. Hence v ∨ b exists. Now
v ∨ b > u ∨ b = b ∨ c > v, b implies b ∨ c > v ∨ b. Thus v ∨ b = u ∨ b. Therefore
{a ∧ b, u, v, b, b ∨ c} form a lattice which is isomorphic to the pentagonal lattice.

Conversely, suppose S is modular. Since every subJP-semilattice of a modular
lattice is modular, it does not contain the pentagonal lattice as a subJP-semilattice.

Unfortunately, we could not prove or disprove the ‘standard’ characterization for
distributive JP-semilattices. So we have the following conjecture.

Conjecture 7. Let S be a JP-semilattice. Then S is non-distributive if and only if
it has a sublattice isomorphic to either the pentagonal lattice or the diamond lattice.

3. Ideals of modular JP-semilattices. In this section we study the ideals of
modular JP-semilattices. A non-empty subset I of a JP-semilattice S is said to be
an ideal of S if

(i) x, y ∈ I and x ∨ y exists, implies x ∨ y ∈ I,
(ii) x ∈ I and y 6 x implies y ∈ I.

The set of all ideals of a JP-semilattice S will be denoted by I(S). It is easy to see
that the intersection of two ideals is again an ideal, so that intersection serves as a
meet operation on the set I(S). In order to make this set into a lattice, we need
a join operation. If I and J are ideals, their join I ∨ J should be the least ideal
to contain both the sets I and J . This motivates us to define, for any non-empty
subset K of a JP-semilattice S, the smallest ideal containing K. It is denoted by
(K] and is called the ideal generated by K. For a ∈ S, the ideal (a] is called the
princpal ideal generated by a. A subset Q of a JP-semilattice S satisfying the above
condition (ii) is called a down-set. The following result is trivial.

Lemma 8. Let S be a JP-semilattice and ∅ 6= K ⊆ S. Define K0 = K and for
n > 1,

Kn = {x ∈ S | x 6 y ∨ z for y, z ∈ Kn−1}.

Then for each n > 1, Kn is a down-set and

K0 ⊆ K1 ⊆ K2 ⊆ · · · .

The following results are consequence of the above lemma.

Theorem 9. Let S be a JP-semilattice and ∅ 6= K ⊆ S. Then

(i) (K] =
∞⋃

n=0
Kn where K0 = K and for n > 1,

Kn = {x ∈ S | x 6 y ∨ z for y, z ∈ Kn−1}

(ii) For a ∈ S we have (a] = {x ∈ S | x 6 a}.

Proof. (i) By Lemma 8 trivially,
∞⋃

n=0
Kn is a down-set.
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Let x, y ∈
∞⋃

n=0
Kn such that x ∨ y exists. Then x, y ∈ Kn for some n > 0. Since

x ∨ y 6 x ∨ y for some x, y ∈ Kn, we have x ∨ y ∈ Kn+1. Hence x ∨ y ∈
∞⋃

n=0
Kn.

Therefore,
∞⋃

n=0
Kn is an ideal of S.

Let I be an ideal containing K = K0. We use the mathematical induction to
show that for each n > 0, Kn ⊂ I. Let Kn ⊆ I for some n > 1 and let x ∈ Kn+1.
Then x 6 y ∨ z for some y, z ∈ Kn and hence y ∨ z ∈ I as I is an ideal. Therefore,

x ∈ I. Hence for all n > 0, Kn ⊆ I. If x ∈
∞⋃

n=0
Kn, then x ∈ Kn for some n > 0.

Hence x ∈ I. Thus
∞⋃

n=0
Kn is the smallest ideal containing K. Hence (K] =

∞⋃
n=0

Kn.

(ii) is a particular case of (i).

Now we clearly have the following result which gives us a description of the join
of two ideals of a JP-semilattice.

Theorem 10. Let I and J be two ideals of a JP-semilattice S. Then

I ∨ J =

∞⋃
n=0

An

where A0 = I ∪ J and for n > 1,

An = {x ∈ S | x 6 y ∨ z for y, z ∈ An−1}

It is routine to show that I(S) is an algebraic lattice.

Remark. For any ideals I and J of a JP-semilattice S, the description of I ∨ J is
not as easy as for the joins in semilattices or lattices. Even I ∨J can not be written
simply as {x 6 y ∨ z | y ∈ I, z ∈ J whenever y ∨ z exists}. For example, consider
the JP-semilattice B given in the Figure 4. Suppose I = (a] and J = (b]. Then
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Figure 4. Two JP-semilattices

x ∈ I ∨ J , but x 
 i∨ j for any i ∈ I and j ∈ J . This observation shows that there
are difficulties in studying the lattice I(S).

Now we turn our attention to principal ideals of a JP-semilattice. It is easy
to show that the join of two principal ideals need not be principal. For example,
consider the JP-semilattice M given in the Figure 4. Here (a]∨ (b] = {0, a, b} is not
principal. We have the following useful results.



62 S.N. BEGUM AND A.S.A. NOOR

Lemma 11. Let S be a JP-semilattice. If x ∨ y exists, then (x ∨ y] = (x] ∨ (y].

Proof. We have x, y ∈ (x] ∪ (y]. Hence x ∨ y ∈ (x] ∨ (y]. Thus (x ∨ y] ⊆ (x] ∨ (y].
The reverse inclusion is trivial. Hence (x ∨ y] = (x] ∨ (y].

Proposition 12. Let S be a JP-semilattice. For any x, y ∈ S, we have (x] ∨ (y] is
a principal ideal if and only if x ∨ y exists.

Proof. If x∨y exists, then by the above lemma (x]∨ (y] = (x∨y] and hence (x]∨ (y]
is a principal ideal of S.

Conversely, let (x] ∨ (y] be a principal ideal. Suppose (x] ∨ (y] = (c]. Then
x, y 6 c. We show that c is the least upper bound of x and y. Suppose x, y 6 d.
Then (c] = (x] ∨ (y] ⊆ (d]. Hence c 6 d. Thus x ∨ y exists and x ∨ y = c.

Theorem 13. Let S be a JP-semilattice. If I(S) is modular, then S is modular,
but the converse is not necessarily true.

Proof. Let I(S) be modular and let x, y, z ∈ S with z 6 x. Then (z] ⊆ (x]. If y ∨ z
exists, then (x ∧ y) ∨ z exists and

(x ∧ (y ∨ z)] = (x] ∧ (y ∨ z]
= (x] ∧ ((y] ∨ (z]), by Lemma 11

= ((x] ∧ (y]) ∨ (z], as I(S) is modular

= (x ∧ y] ∨ (z]

= ((x ∧ y) ∨ z]
Thus x ∧ (y ∨ z) = (x ∧ y) ∨ z. Hence S is modular.

To prove the converse is not true, consider the JP-semilattice B in Figure 5.
We call it a “butterfly”. Clearly, B is modular as it has no sublattice isomor-
phic to the pentagonal lattice. Observe that the lattice I(B) contains a sublattice
{(0], (d], (d, c], (a, b], B} (see the bullet elements) which is isomorphic to the pentag-
onal lattice and hence I(S) is a non-modular lattice.
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Figure 5. the butterfly and its lattice of ideals

Here is a characterization of modular JP-semilattices. The proof follows directly
from the Lemma 11.

Theorem 14. Let S be a JP-semilattice. Then S is modular if and only if for any
x, y, z ∈ S such that z 6 x and y∨z exists implies (x]∧ ((y]∨ (z]) = ((x]∧ (y])∨ (z].
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4. Ideals of distributive JP-semilattices. We turn our attention to some char-
acterizations of distributive JP-semilattices. First we have the following useful
lemma.

Lemma 15. Let I and J be two ideals of a distributive JP-semilattice S. Then

I ∨ J =

∞⋃
n=0

An

where A0 = I ∪ J and for n > 1, and

An = {x ∈ S | x = y ∨ z for y, z ∈ An−1}.

Proof. Since S is distributive, this is a consequence of Theorem 10.

The following results give characterizations of distributive JP-semilattices.

Theorem 16. Let I and J be two ideals of a JP-semilattice S. Then the following
are equivalent:

(a) S is distributive;
(b) I ∨ J = {a1 ∨ a2 ∨ · · · ∨ an | ai ∈ I ∪ J for all i = 1, 2, · · · , n};
(c) I(S) is a distributive lattice;
(d) for any x, y, z ∈ S for which y ∨ z exists,

(x] ∧ ((y] ∨ (z]) = ((x] ∧ (y]) ∨ ((x] ∧ (z]).

Proof. (a) ⇒ (b). By using mathematical induction to extend Lemma 15.
(b) ⇒ (c). Let I, J,K ∈ I(S) and x ∈ I ∩ (J ∨ K). Then x ∈ I and x =

a1∨a2∨· · ·∨an where ai ∈ J∪K for all i = 1, 2, · · · , n. Now for each i = 1, 2, · · · , n,
we have ai 6 x and hence ai ∈ I∩J or I∩K. Hence ai ∈ (I∩J)∪(I∩K). Therefore,
x ∈ (I∩J)∨(I∩K). The reverse inclusion is trivial and hence I(S) is a distributive
lattice.

(c) ⇒ (d). Trivial.
(d) ⇒ (a). Let x, y, z ∈ S with y ∨ z exists. Then

(x ∧ (y ∨ z)] = (x] ∩ ((y] ∨ (z])

= ((x ∩ (y]) ∨ ((x] ∩ (z])

= (x ∧ y] ∨ (x ∧ z]
= ((x ∧ y) ∨ (x ∧ z)].

Hence x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Therefore, S is distributive.

Let S be a JP-semilattice. The set of all down-subsets of S is denoted by O(S).
It is evident that O(S) is a bounded complete distributive lattice for any ordered
set S when partially ordered by set inclusion. The meet and join in O(S) are given
by set-theoretic intersection and union respectively.

The following result clearly holds from Theorem 16.

Lemma 17. Let S be a distributive JP-semilattice and K ∈ O(S). Then

(K] = {x1 ∨ x2 ∨ · · · ∨ xn | xi ∈ K for each i = 1, 2, · · · , n}.

The following theorem is a generalization of [2, Theorem 2.3].

Theorem 18. Let S be a JP-semilattice. For any A,B,C ∈ O(S) the following
conditions are equivalent:

(a) S is distributive;
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(b) (A] = {a1 ∨ a2 ∨ · · · ∨ an | a1, a2, · · · , an ∈ A};
(c) A ∩ (B] ⊆ (A ∩B];
(d) (A ∩B] = (A] ∩ (B];
(e) (A ∩ (B ∩ C]] = ((A ∩B] ∩ C];
(f) The map ϕ : O(S)→ I(S) defined by ϕ(A) = (A] is an onto lattice-homomorphism.

Proof. (a) ⇒ (b). By Lemma 17.
(b) ⇒ (c). Let x ∈ A ∩ (B]. Then x ∈ A and by (b), x = b1 ∨ b2 ∨ · · · ∨ bn

where b1, b2, · · · , bn ∈ B. Since A ∈ O(S) and bi 6 x for all i = 1, 2, · · · , n we have
bi ∈ A for all i = 1, 2, · · · , n. Hence bi ∈ A ∩ B for all i = 1, 2, · · · , n. Therefore,
x ∈ (A ∩B].

(c)⇒ (d). By (c), we have (A]∩ (B] ⊆ ((A]∩B] ⊆ (A∩B] for any A,B ∈ O(S).
Since (A ∩B] ⊆ (A] ∩ (B], we have (A ∩B] = (A] ∩ (B]. Thus (d) holds.

(d) ⇒ (e). Suppose (d) holds. Then

(A ∩ (B ∩ C]] = (A] ∩ (B ∩ C] = (A] ∩ ((B] ∩ (C])

= ((A] ∩ (B]) ∩ (C] = (A ∩B] ∩ (C] = ((A ∩B] ∩ C].

Thus (e) holds.
(e) ⇒ (d). This is trivial.
(d) ⇒ (f). For any A,B ∈ O(S), we have

(A] ∨ (B] = {x1 ∨ x2 ∨ · · · ∨ xn | x1, x2, · · · , xn ∈ (A] ∪ (B]}
= {x1 ∨ x2 ∨ · · · ∨ xn | x1, x2, · · · , xn ∈ A ∪B}
= (A ∪B].

Hence by (d), ϕ is a lattice homomorphism. Let I ∈ I(S). Then ϕ(I) = (I] = I.
Thus ϕ is an onto lattice homomorphism. Therefore, (f) holds.

(f) ⇒ (a). Since O(S) is always a distributive lattice, I(S) is a distributive and
hence by Theorem 16, S is distributive.

5. The Separation Theorem. Let S be a JP-semilattice. A non-empty subset
F of S is said to be a filter (or dual ideal) if

(i) for x ∈ F and y ∈ S with x 6 y implies y ∈ F , and
(ii) for a, b ∈ F implies a ∧ b ∈ F .

An ideal P of a JP-semilattice S is said to be prime if a, b ∈ S such that a ∧ b ∈ P
implies either a ∈ P or b ∈ P . A prime ideal P is called minimal if whenever there
is a prime ideal Q such that Q ⊆ P , then P = Q.

Lemma 19. Let S be a JP semilattice. An ideal (filter) P is prime if and only if
S \ P is a prime filter (ideal).

Proof. Let P be a prime ideal. If x, y ∈ S \ P , then x, y /∈ P . Hence x ∧ y /∈ P
which implies x ∧ y ∈ S \ P . Let x ∈ S \ P and x 6 y. Then x /∈ P and hence
y /∈ P . Therefore y ∈ S \ P . This implies S \ P is a filter. Let x, y ∈ S such that
x∨ y exists and x∨ y ∈ S \P . Then x∨ y /∈ P . This implies either x /∈ P or y /∈ P
and consequently, either x ∈ S \ P or y ∈ S \ P . Hence S \ P is a prime filter.

By a reverse argument we have the converse of the statement.

Now we have the following Separation Theorem for distributive JP-semilattice.
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Theorem 20 (The JP-Separation Theorem). Let S be a JP-semilattice. Then the
following are equivalent:

(a) S is distributive;
(b) For any ideal I and any filter F of S such that I ∩F = ∅, there exists a prime

ideal P containing I such that P ∩ F = ∅.

Proof. (a) ⇒ (b). Let I be the set of all ideals containing I, but disjoint from F .
Then I 6= ∅ as I ∈ I. Let C be a chain in I and let M := ∪{X | X ∈ C}. We claim
that M is the maximum element in C.

Let x ∈ M and y 6 x. Then x ∈ X for some X ∈ C. Hence y ∈ X as X is an
ideal. Therefore y ∈M . Let x, y ∈M . Then x ∈ X and y ∈ Y for some X,Y ∈ C.
Since C is a chain, either X ⊆ Y or Y ⊆ X. Suppose X ⊆ Y . So x, y ∈ Y . If x ∨ y
exists, then x ∨ y ∈ Y as Y is an ideal. Hence x ∨ y ∈M . Moreover, M contains I
and F ∩M = ∅. Therefore, M is the maximum element in C.

Thus by Zorn’s Lemma, I has a maximal element, say P . We claim that P is
prime. If P is not prime, there exists a, b ∈ S such that a, b /∈ P but a∧b ∈ P . Then
(P ∨ (a])∩F 6= ∅ and (P ∨ (b])∩F 6= ∅ as P is maximal. Hence there exists x, y ∈ F
such that x ∧ y ∈ (P ∨ (a]) ∩ (P ∨ (b]) = P ∨ ((a] ∧ (b]) as S is a distributive lattice
implies I(S) is a distributive lattice. Thus x ∧ y ∈ F and x ∧ y ∈ P ∨ (a ∧ b] = P
which is a contradiction to P ∩ F = ∅. Hence P is a prime ideal.

(b) ⇒ (a). Let a, b, c ∈ S such that b ∨ c exists. If (a ∧ b) ∨ (a ∧ c) 6= a ∧ (b ∨ c),
then (a∧b)∨(a∧c) < a∧(b∨c). Consider I = ((a∧b)∨(a∧c)] and F = [a∧(b∨c)).
Then I ∩ F = ∅ and hence by (b), there is a prime ideal P such that I ⊆ P and
P ∩ F = ∅. Thus (a ∧ b) ∨ (a ∧ c) ∈ P , this implies a ∧ b ∈ P and a ∧ c ∈ P . So,
either a ∈ P or b∨ c ∈ P . Hence a∧ (b∨ c) ∈ P which is a contradiction. Therefore,
(a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c). Hence S is distributive.

Corollary 21. Let S be a distributive JP-semilattice and let I be an ideal of S. If
a /∈ I, then there exists a prime ideal P containing I such that a /∈ P .

The following useful result is a generalization of a well known result of lattice
theory.

Theorem 22. Let S be a distributive JP-semilattice. Then every ideal of S is the
intersection of all prime ideals containing it.

Proof. Let S be a JP-semilattice and let J be an ideal of S. We shall show that

J =
⋂
{P | P is a prime ideal of S and J ⊆ P}.

Clearly, J ⊆ R.H.S. If J 6= R.H.S., then there is x ∈R.H.S. such that x /∈ J . Hence
by the Separation Theorem, there is a prime ideal Q of S such that J ⊆ Q and
x /∈ Q, which is a contradiction.

The following theorem is a characterization of a minimal prime ideal containing
an ideal. This is also a generalization of [8, Lemma 3.1]

Theorem 23. Let S be a distributive JP-semilattice and let J be an ideal of S.
Then a prime ideal P containing J is a minimal prime ideal containing J if and
only if for each x ∈ P there is y ∈ S \ P such that x ∧ y ∈ J .

Proof. Let P be a prime ideal of S containing J such that the given condition holds.
We shall show that P is a minimal prime ideal containing J . Let K be a prime
ideal containing J such that K ⊆ P . Let x ∈ P . Then there is y ∈ S \ P such
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that x ∧ y ∈ J . Hence x ∧ y ∈ K as K contains J . Since K is prime and y /∈ K
implies x ∈ K. Hence P ⊆ K. Thus K = P . Therefore P is a minimal prime ideal
containing J .

Conversely, let P be a minimal prime ideal containing J . Let x ∈ P . Suppose for
all y ∈ S \P , x∧ y /∈ J . Set D = (S \P )∨ [x). We claim that 0 /∈ D. For if 0 ∈ D,
then 0 = q ∧ x for some q ∈ S \ P . Thus, x ∧ q = 0 ∈ J which is a contradiction.
Therefore, 0 /∈ D. Then by the JP-separation Theorem 20, there is a prime filter Q
such that D ⊆ Q and 0 /∈ Q. Let M = S \ Q. Then by Lemma 19, M is a prime
ideal. We claim that M ∩D = ∅. If a ∈M ∩D, then a ∈M and hence a /∈ Q. Thus
a /∈ D which is a contradiction. Hence M ∩ D = ∅. Therefore, M ∩ (S \ P ) = ∅
and hence M ⊆ P . Also M 6= P , because x ∈ D implies x ∈ Q and hence x /∈ M
but x ∈ P . This shows that P is not minimal which is a contradiction. Hence the
given condition holds.

Theorem 24. Let S be a JP-semilattice with 0 and let P be a prime ideal of S.
Let C be a chain of all prime ideals X of S such that X ⊆ P . Then

Q =
⋂
{X ⊆ P | X ∈ C}

is a prime ideal and hence it is a minimal prime ideal.

Proof. Clearly, C is non-empty as P ∈ C and Q is non-empty as 0 ∈ Q. Obviously,
Q is an ideal. To show that Q is prime, let x∧ y ∈ Q. Suppose x /∈ Q. This implies
x /∈ X for some X ∈ C. Now x ∧ y ∈ Q implies x ∧ y ∈ X. Hence y ∈ X as X is
prime. We claim that y ∈ Q. If not, then y /∈ Y for some Y ∈ C with Y ⊂ X. But
x ∧ y ∈ Q implies x ∧ y ∈ Y . Thus x ∈ Y and so x ∈ X as Y ⊂ X which gives a
contradiction. Therefore y ∈ Q. Hence Q is prime and in fact it is a minimal prime
ideal.

Thus we have the following extension of Stone’s Separation Theorem.

Theorem 25. Let J be an ideal and D be a filter of a distributive JP-semilattice S
such that J ∩D = ∅. Then there exists a minimal prime ideal Q containing J such
that Q ∩D = ∅.

Proof. Let J be an ideal and D be a filter of a distributive JP-semilattice S such
that J ∩D = ∅. Then by the JP-version of Stone’s Separation Theorem 20, there
exists a prime ideal P containing J such that P ∩ D = ∅. Choose any chain C of
prime ideals X containing J such that X ⊆ P . Let Q = ∩{X ∈ C}. Then by
Theorem 24, Q is a minimal prime ideal containing J and Q ∩D = ∅.

Let S be a JP-semilattice with 0 and let Q be a prime ideal of S. Define

O(Q) := {x ∈ S | x ∧ y = 0 for some y ∈ S \Q}.

The following theorem is a generalization of [1, Proposition 2.2]

Theorem 26. Let S be a distributive JP-semilattice with 0 and let Q be a prime
ideal of S. Then

O(Q) =
⋂
{P | P is a minimal prime ideal of S such that P ⊆ Q}.

Proof. Suppose

X =
⋂
{P | P is a minimal prime ideal of S such that P ⊆ Q}.
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Let x ∈ O(Q). Then x ∧ y = 0 for some y /∈ Q. Let P be a minimal prime ideal
contained in Q. Clearly, y /∈ P . Since x∧y = 0 ∈ P and P is prime, we have x ∈ P .
Hence x ∈ X.

Conversely let x ∈ X. If x /∈ O(Q). Then x ∧ y 6= 0 for any y ∈ S \ Q. Let
D = [x) ∨ (S \ Q). Then 0 /∈ D. For if 0 ∈ D, then x ∧ q = 0 for some q ∈ S \ Q
which is a contradiction. Therefore, 0 /∈ D. Consequently, there is a minimal prime
ideal M such that M ∩D = ∅. Therefore, M ∩ (S \ Q) = ∅. Hence M ⊆ Q. Also
M 6= Q because x ∈ Q. But x ∈ D implies x /∈ M . This shows that there is a
minimal prime ideal M ⊂ Q such that x /∈M which is a contradiction to fact that
x ∈ X. Hence x ∈ O(Q).

6. JP-Congruences. Let S be a JP-semilattice. A semilattice congruence θ on S
is said to be a JP-congruence if a ≡ b(θ) and c ≡ d(θ) implies that a ∨ c ≡ b ∨ d(θ)
whenever a ∨ c and b ∨ d exist. If a relation θ satisfies the condition, then we say
that θ is compatible with existing ∨

Let S be a distributive JP-semilattice and I be an ideal of S. Then by [3], the
relation Θ(I) on S defined by

x ≡ y(Θ(I))⇔ (x] ∨ I = (y] ∨ I
is a JP-congruence having I as a class. Moreover if each JP-congruence is compatible
with any finite existing ∨, then Θ(I) is the the smallest JP-congruence having I as
a class. We will use Θx for Θ((x]).

As in Cornish and Hickman [3], the following technicality will be used frequently
without explicit reference.

Let S be a JP-semilattice, θ be a JP-congruence and E be an equivalence relation
on S. Then to show that θ ⊆ E it is enough to show that (a, b) ∈ E for every pair
(a, b) such that a 6 b and a ≡ b(θ)

Now we have the following result.

Theorem 27. Let S be a distributive JP-semilattice and let I be an ideal of S.
Then R(I) defined by

x ≡ y(R(I))⇔ x ∧ a ∈ I equivalent to y ∧ a ∈ I for every a ∈ S,
is the largest JP-congruence having I as a class.

Proof. Clearly, R(I) is a semilattice congruence having I as a class. Suppose x ≡
y(R(I)) and s ≡ t(R(I)). If x ∨ s and y ∨ t exist, then for any a ∈ S we have

(x ∨ s) ∧ a ∈ I ⇔ (x ∧ a) ∨ (s ∧ a) ∈ I, as S is distributive

⇔ x ∧ a, s ∧ a ∈ I
⇔ y ∧ a, t ∧ a ∈ I
⇔ (y ∧ a) ∨ (t ∧ a) ∈ I
⇔ (y ∨ t) ∧ a ∈ I, as S is distributive.

Hence x∨s ≡ y∨t(R(I)). Thus R(I) is a JP-congruence. Let Γ be a JP-congruence
having I as a class and x ≡ y(Γ). Then for any a ∈ S, we have x∧a ∈ I ⇔ y∧a ∈ I,
since x ∧ a ≡ y ∧ a(Γ). Hence x ≡ y(R(I)).

The congruence relation Θ(a, b) is the smallest congruence containing {a, b} as a
class. We have a description of Θ(a, b).
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Theorem 28. Let S be a distributive JP-semilattice and a, b, x, y ∈ S such that
a 6 b. Then

x ≡ y(Θ(a, b))⇔ x ∧ a = y ∧ a and (x] ∨ (b] = (y] ∨ (b].

Proof. Let ψ denote the binary relation on S such that

x ≡ y(ψ)⇔ x ∧ a = y ∧ a and (x] ∨ (b] = (y] ∨ (b].

Then clearly ψ is an equivalence relation. Now let x ≡ y(ψ) and s ≡ t(ψ). Then
x ∧ a = y ∧ a, (x] ∨ (b] = (y] ∨ (b], s ∧ a = t ∧ a and (s] ∨ (b] = (t] ∨ (b]. Hence
(x ∧ s) ∧ a = (y ∧ t) ∧ a and since S is distributive implies I(S) is distributive, so

(x ∧ s] ∨ (b] = ((x] ∧ (s]) ∨ (b] = ((x] ∨ (b]) ∧ ((s] ∨ (b])

= ((y] ∨ (b]) ∧ ((t] ∨ (b]) = ((y] ∧ (t]) ∨ (b] = (y ∧ t] ∨ (b].

Thus x ∧ s ≡ y ∧ t(ψ). Also if x ∨ s and y ∨ t exists, then since S is distributive,

(x ∨ s) ∧ a = (x ∧ a) ∨ (s ∧ a) = (y ∧ a) ∨ (t ∧ a) = (y ∨ t) ∧ a
and

(x ∨ s] ∨ (b] = ((x] ∨ (s]) ∨ (b] = ((x] ∨ (b]) ∨ ((s] ∨ (b])

= ((y] ∨ (b]) ∨ ((t] ∨ (b]) = ((y] ∨ (t]) ∨ (b] = (y ∨ t] ∨ (b].

Thus x∨ s ≡ y∨ t(ψ). Therefore, ψ is a JP-congruence. Clearly a ≡ b(ψ). Let Γ be
a congruence on S such that a ≡ b(Γ). Let x ≡ y(ψ) with x 6 y. Then x∧a = y∧a
and (x] ∨ (b] = (y] ∨ (b]. Since a ≡ b(Γ) so, x ∧ a ≡ x ∧ b(Γ) and y ∧ a ≡ y ∧ b(Γ).
Thus x ∧ b ≡ x ∧ a(Γ) = y ∧ a ≡ y ∧ b(Γ). Now we have

(y] = (y] ∧ ((y] ∨ (b]) = (y] ∧ ((x] ∨ (b]) = ((y] ∧ (x]) ∨ ((y] ∧ (b]) = (x] ∨ (y ∧ b].
This shows that (x] ∨ (y ∧ b] is a principal ideal and hence by Theorem 12 we have
y = x ∨ (y ∧ b) ≡ x ∨ (x ∧ b)(Γ) = x. Hence ψ is the smallest congruence.

Therefore, ψ = Θ(a, b).

Let S and P be two JP-semilattices. A semilattice homomorphism ϕ : S→ P is
said to be a JP-homomorphism if for all x, y ∈ S such that x∨ y exists in S implies
ϕ(x) ∨ ϕ(y) exists in P and

ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y).

Let ϕ : S→ P be a JP-homomorphism. The kernel of ϕ is denoted by kerϕ and
defined by

kerϕ = {(x, y) ∈ S2 | ϕ(x) = ϕ(y)}.

Lemma 29. Let ϕ : S→ P be a JP-homomorphism. Then kerϕ is a JP-congruence
on S.

Proof. Clearly kerϕ is an equivalence relation on S. Let x1 ≡ y1(kerϕ) and x2 ≡
y2(kerϕ). Then ϕ(x1) = ϕ(y1) and ϕ(x2) = ϕ(y2). Now ϕ(x1 ∧ x2) = ϕ(x1) ∧
ϕ(x2) = ϕ(y1) ∧ ϕ(y2) = ϕ(y1 ∧ y2). Therefore, x1 ∧ x2 ≡ y1 ∧ y2(kerϕ). To prove
kerϕ is conditional compatible with ∨, let x1 ∨ x2 and y1 ∨ y2 exist. Then by
the definition of a JP-homomorphism, ϕ(x1) ∨ ϕ(x2) and ϕ(y1) ∨ ϕ(y2) exist and
ϕ(x1 ∨ x2) = ϕ(x1) ∨ ϕ(x2) and ϕ(y1 ∨ y2) = ϕ(y1) ∨ ϕ(y2). Hence ϕ(x1 ∨ x2) =
ϕ(x1) ∨ ϕ(x2) = ϕ(y1) ∨ ϕ(y2) = ϕ(y1 ∨ y2). Thus x1 ∨ x2 ≡ y1 ∨ y2(kerϕ).

Therefore kerϕ is a JP-congruence.

We have the following important result for distributive JP-semilattices.
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Theorem 30. Let S be a JP-semilattice. The following conditions are equivalent:

(a) S is distributive;
(b) for a ∈ S, the map ϕ : S 7→ (a] given by

ϕ(x) = a ∧ x
is a JP-homomorphism of S onto (a];

(c) for a ∈ S, the binary relation Θa on S defined by

x ≡ y(Θa)⇐⇒ x ∧ a = y ∧ a
is a congruence relation.

Proof. (a) ⇒ (b). Let S be a distributive JP-semilattice. Then for any x, y ∈ S we
have

ϕ(x ∧ y) = a ∧ (x ∧ y) = (a ∧ x) ∧ (a ∧ y) = ϕ(x) ∧ ϕ(y).

Also if x ∨ y exists, then

ϕ(x ∨ y) = a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y) = ϕ(x) ∨ ϕ(y).

Thus ϕ is a JP-homomorphism. If x ∈ (a], then x 6 a and hence x = a∧ x = ϕ(x).
Therefore, (b) holds.

(b) ⇒ (c). Define a relation Θa on S given by x ≡ y(Θa) ⇐⇒ a ∧ x = a ∧ y. If
ϕ : x 7→ a ∧ x is a map from S to (a], then we have x ≡ y(Θa) ⇐⇒ ϕ(x) = ϕ(y).
Thus Θa = kerϕ. Since by (b), ϕ is a JP-homomorphism, so by Lemma 29, kerϕ
is a congruence. Hence Θa is a congruence. Thus (c) holds.

(c) ⇒ (a). Let x, y ∈ S with x ∨ y exists. Then for any a ∈ S, we have
(a ∧ x) ∨ (a ∧ y) exists. Since a ∧ x = a ∧ (a ∧ x), so x ≡ a ∧ x(Θa). Similarly,
y ≡ a ∧ y(Θa). Thus x ∨ y ≡ (a ∧ x) ∨ (a ∧ y)(Θa). Hence

a ∧ (x ∨ y) = a ∧ (a ∧ x) ∨ (a ∧ y) = (a ∧ x) ∨ (a ∧ y).

Thus (a) holds.
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