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Abstract. Thresholds and phase transitions have been well studied for several

properties of random undirected graphs. In this article we adapt a result

of Palásti to the context of directed graphs, thereby allowing thresholds for
the uniform random directed graph model D(n, M) to be used in determining

thresholds for the binomial random directed graph model D(n, p). We then

determine the threshold for strong connectivity in D(n, p).

1. Introduction. The study of random graphs harkens back to the 1940s when
Paul Erdős introduced a model whereby for each of the

(
n
2

)
possible edges in an

undirected graph on n labelled vertices one tosses a fair coin to determine whether
the edge is present or absent [4]. In this initial model, the likelihood of selecting a
particular graph G is 2−(n

2).
In a subsequent model Erdős and Rényi included a probability value p, which

need not be 1
2 , to be used for each edge [5]. As one would intuitively expect, when

the value of p is small (that is, near zero) there are too few edges for a randomly
constructed graph to be likely to possess certain properties, yet when p is large
(that is, near one) there are so many edges that the property is nearly certain to be
present. Somewhere in between these two extremes, such properties have often been
found to cross a threshold from being almost certainly absent to almost certainly
present.

The seminal work on the topic of such phase transitions is also due to Erdős
and Rényi [6]. The topic has since been widely studied and developed; an excellent
overview can be found in Chapter 5 of [7], which carefully presents several aspects
of the phase transition in the size of the largest connected component in random
undirected graphs.

In the present paper, we focus our attention on the setting of random directed
graphs, for which we consider the nature of the threshold for the property of being
strongly connected. As our main result, we determine the threshold for strong
connectivity in the binomial random directed graph model D(n, p).
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2. Definitions and Notation. For a detailed review of random graphs the reader
is referred to [7], some of which we now draw upon to introduce four different random
graph models. The first model, the one that readers are most likely to be familiar
with, is the Binomial Random Graph Model, G(n, p). In this model, a graph on the
vertex set {1, 2, . . . , n} is constructed by relying on

(
n
2

)
independent random events,

each with probability p, to determine one at a time which of the
(
n
2

)
possible edges

are to be included in the graph. If p = 1
2 , then this becomes the model introduced

by Erdős in 1947 [4].
A second model for undirected graphs is the Uniform Random Graph Model,

denoted by G(n, M) in which a graph on n labelled vertices and M edges is selected

uniformly at random from among the
((n

2

)
M

)
graphs on n vertices and M edges.

These two models for undirected graphs have natural counterparts for directed
graphs. In the Binomial Random Directed Graph Model, D(n, p), each of the n2

possible arcs (including possible loops) in a directed graph on n labelled vertices is
selected on the basis of a random event with probability p. In the Uniform Random
Directed Graph Model, D(n, M), a directed graph on n vertices and M arcs is
selected uniformly at random from the

(
n2

M

)
directed graphs on n vertices and M

arcs.
For a property P we will write G ∈ P to indicate that G is a member of the family

of graphs that possess property P. Both P and its corresponding family of graphs
are said to be increasing if G ∈ P whenever there exists a spanning subgraph H of
G such that H ∈ P. So for example, containing a 3-cycle is an increasing property,
whereas being bipartite is not.

For an increasing property P, a sequence p̂ = p̂(n) is called a threshold for the
binomial random graph model if

lim
n→∞

P
(
G(n, p) ∈ P

)
=

{
0 if p� p̂,

1 if p� p̂,

where p � p̂ if and only if lim
n→∞

p

p̂
= 0. It was shown in 1987 by Bollobás and

Thomason that every increasing property has a threshold [3]. As an example, the
threshold for G(n, p) to have a 3-cycle is p̂ = 1

n ; this follows from a result of
Bollobás [1].

In the setting of the uniform random graph model, thresholds also exist and are
based on the number of edges (rather than on a probability parameter as in the
binomial model). To continue with the example of the property of containing a
3-cycle, the threshold for this property in G(n, M) is M̂ = n.

3. Main Results. Consider now the property C of an undirected graph being
connected. The following theorem of Erdős and Rényi, stated in the form that is
presented in [2, pages 150–151], is useful to us.

Theorem 1 (Erdős and Rényi [5]). Let c ∈ R be fixed and let M = n
2

⌊
ln n + c +

o(1)
⌋
∈ N and p = 1

n

(
ln n + c + o(1)

)
. Then, as n→∞, P

(
G(n, M) ∈ C

)
→ e−e−c

and P
(
G(n, p) ∈ C

)
→ e−e−c

.

Theorem 1 establishes the thresholds for C in both the uniform and binomial
random graph models to be M̂ = n

2

⌊
ln n + c + o(1)

⌋
and p̂ = 1

n

(
ln n + c + o(1)

)
,

respectively. That these are in fact thresholds follows from the fact that thresholds
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are known to exist (by Bollobás and Thomason [3]) and so if M̂ and p̂ were not
thresholds then P

(
G(n, M) ∈ C

)
and P

(
G(n, p) ∈ C

)
would be elements of the set

{0, 1}. But e−e−c 6∈ {0, 1}.
We now turn our interest to directed graphs. A directed graph D is said to be

strongly connected if, for each pair of vertices u and v of D, there exists a directed
path from u to v (and hence there also exists a directed path from v to u). If we
let S denote the property of a directed graph being strongly connected, then the
following result of Palásti establishes a threshold for S in the context of the uniform
random directed graph model.

Theorem 2 (Palásti [9]). Let c ∈ R be a fixed real number. If M = bn ln n + cnc,
then lim

n→∞
P
(
D(n, M) ∈ S

)
= e−2e−c

.

Our goal is to now determine the threshold for S in D(n, p). In order to do so,
we shall first prove an analogue of the following theorem of  Luczak which converts
thresholds for the uniform random graph model to thresholds for the binomial
random graph model.

Theorem 3 ( Luczak [8]). Let P be an arbitrary property of subsets of the family
of all graphs on n vertices, p = p(n) ∈ [0, 1], 0 6 a 6 1, and N =

(
n
2

)
. If for

every sequence M = M(n) such that M = Np + O
(√

Np(1− p)
)

it holds that
P
(
G(n, M) ∈ P

)
→ a as n→∞, then also P

(
G(n, p) ∈ P

)
→ a as n→∞.

By adapting the proof of Theorem 3 to directed graphs, we establish the following
theorem.

Theorem 4. Let P be an arbitrary property of subsets of the family of all directed
graphs on n vertices, p = p(n) ∈ [0, 1], 0 6 a 6 1, and N = n2. If for every sequence
M = M(n) such that M = Np+O

(√
Np(1− p)

)
it holds that P

(
D(n, M) ∈ P

)
→ a

as n→∞, then also P
(
D(n, p) ∈ P

)
→ a as n→∞.

Proof. Let C ∈ R, C > 0, and for each n define

M(C) =
{

M : |M −Np| 6 C
√

Np(1− p)
}

.

Let Minf ∈ M(C) be such that P
(
D(n, Minf) ∈ P

)
6 P

(
D(n, M) ∈ P

)
for each

M ∈ M(C). Now, if Ep =
∣∣E(D(n, p)

)∣∣, then by the law of total probability,

P
(
D(n, p) ∈ P

)
=

N∑
M=0

P
(
D(n, p) ∈ P : Ep = M

)
· P
(
Ep = M

)
.

Now consider a fixed directed graph D with n vertices and M arcs. The prob-
ability of selecting D when using the binomial model D(n, p) is pM (1 − p)n2−M ,
which we note is dependent only on n and M . Hence each directed graph on n
vertices and M arcs is equally likely to be selected, implying that P

(
D(n, p) ∈ P :

Ep = M
)

= P
(
D(n, M) ∈ P

)
for any property P. It now follows that
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P
(
D(n, p) ∈ P

)
=

N∑
M=0

P
(
D(n, p) ∈ P : Ep = M

)
· P
(
Ep = M

)
=

N∑
M=0

P
(
D(n, M) ∈ P

)
· P
(
Ep = M

)
>

∑
M∈M(C)

P
(
D(n, Minf) ∈ P

)
· P
(
Ep = M

)
= P

(
D(n, Minf) ∈ P

)
· P
(
Ep ∈M(C)

)
.

Since D(n, p) obeys a binomial distribution, we have E(Ep) = Np and Var(Ep) =
Np(1 − p). Therefore, using Chebyshev’s Inequality and the assumption that
P
(
D(n, Minf) ∈ P

)
→ a, we have that for t = C

√
Np(1− p),

P
(
|Ep − E(Ep)| > t

)
6

Var(Ep)
t2

and thus

P
(
Ep /∈M(C)

)
6

Var(Ep)(
C
√

Np(1− p)
)2 =

1
C2

.

Hence,

lim inf
n→∞

P
(
D(n, p) ∈ P

)
> a lim inf

n→∞
P
(
Ep ∈M(C)

)
> a

(
1− 1

C2

)
.

Similarly, if Msup maximizes P
(
D(n, M) ∈ P

)
for M ∈M(C), we have

P
(
D(n, p) ∈ P

)
6 P

(
D(n, Msup) ∈ P

)
· P
(
Ep ∈M(C)

)
+ P

(
D(n, Msup) ∈ P

)
· P
(
Ep /∈M(C)

)
which implies that

lim sup
n→∞

P
(
D(n, p) ∈ P

)
6 a

(
1− 1

C2

)
+

a

C2
.

The result follows when we let C →∞.

We now incorporate Palásti’s result for strong connectivity in the uniform random
directed graph model into the binomial random directed graph model.

Theorem 5. Let c be an arbitrary, fixed real number. If p = p(n) = ln n+c
n , then

lim
n→∞

P
(
D(n, p) ∈ S

)
= e−2e−c

.

Proof. We apply Theorem 4 to Theorem 2. For this to work, we need M = Np +
O
(√

Np(1− p)
)

to hold, which is the case if we let p = p(n) be such that

M = bn ln n + cnc = Np = n2p.

Moreover, we can relax the equation so that n ln n + cn = n2p, or equivalently

p =
ln n + c

n
,

thereby completing the proof.

Determining the threshold for S in D(n, p) now follows as an easy corollary.
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Corollary 1. For any fixed c ∈ R, if p = p(n) is a function of n, then p̂ = ln n+c
n

is a threshold for S.

Proof. Either p̂ = ln n+c
n is a threshold for S or it is not. If it is not, then either

P
(
D(n, p̂) ∈ S

)
→ 1 asymptotically almost surely as n→∞, or P

(
D(n, p̂) ∈ S

)
→ 0

asymptotically almost surely as n→∞.
However, from Theorem 5, we know that P

(
D(n, p̂) ∈ S

)
→ e−2e−c

as n → ∞,
and for each c ∈ R, it is true that 0 < e−2e−c

< 1. Since e−2e−c

is neither 0 nor 1,
p̂ = ln n+c

n must be a threshold for S.
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