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Abstract. We have determined that the different plastral scutes (rigid sec-
tional plates found on the plastron, the flat shell structure of a turtle’s ”belly”)
of Blanding’s turtle grow at different rates, while scute pairs grow homoge-
neously. Scute width was used as a new growth measurement to model the
growth curve of Blanding’s turtle by fitting exponential and polynomial mod-
els. We discovered that the Nova Scotia population of Blanding’s turtles follows
the Von Bertalanffy model of growth for plastral scutes. In order to determine
how population locations and temperature affect the growth of Blanding’s tur-
tle, several statistical modeling techniques are discussed, including linear and
non-linear mixed effect models.

1. Introduction. Blanding’s turtle has an annual record of growth similar to trees,
in that growth rings are forged as a growth record. They differ from trees, which
have only one set of tree rings, in that they have twelve sets of growth records rep-
resented by twelve plastral scutes, each of which grows an additional ring annually.
These growth rings are forged until Blanding’s turtle reaches sexual maturity (age
twenty to twenty-five for the Nova Scotia population). The data studied in this re-
search was collected by Monik Richard, a M.Sc. student under the joint supervision
of Dr. Tom Herman and Dr. Soren Bondrup-Nielsen of the Department of Biology,
Acadia University. After deleting the “headstart” turtles which lived under optimal
light, heat and feeding condition as well as turtles with missing values from the
original data set, the data contained 108 turtles. Among these turtles, there are
53 from Kejimkujik National Park (KNP), 16 from McGowan Lake (ML), and 39
from Pleasant River (PR). The variables of this data set include POP, TUR, SCU,
AGE, RWIDTH, and YEAR. The variable POP identifies these three locations.
The variable TUR refers to the individual unique identification number assigned to
each turtle in this study. Growth ring observations were not available on all twelve
scutes, but only for the four left and the four right scutes. The top and bottom
two scutes were excluded since the wear on the plastron makes ring identification
difficult for these locations. These eight remaining scutes were denoted as L2, L3,
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POP TUR SCU AGE RWIDTH YEAR
ML 2,3-1,3 L2 0 181.97 1981
ML 2,3-1,3 L2 1 69.03 1982
ML 2,3-1,3 L2 2 23.77 1983

Table 1. A Sample of the Dataset of the Nova Scotia Blanding’s Turtle

L4, L5 (left from the back to the front) and R2, R3, R4, R5 (right from the back
to the front), and the variable SCU refers to this identification. The variable AGE
refers to the ring identification or running age of the turtle when forged. Each
turtle may have different numbers of growth rings ordered from the 1st ring to the
nth ring. The 1st ring (AGE 0), also called the baseline, is the size of a turtle at
hatching. Ring widths in each scute of individual turtles, denoted by RWIDTH,
were measured in pixels by the diagonal distance between two growth rings using
ImageTool [1], an image analysis shareware software program. More information
about the ring width growth measurement can be found in Richard [2]. Finally, the
variable YEAR refers to the year the growth ring was forged. Table 1 shows sample
records selected from TUR 2,3-1,3 in ML.

Figure 1 displays the boxplots of RWIDTH of all 108 turtles by SCU. The distri-
butions of such ring widths appear strongly right skewed for each scute, with many
relatively large values, which are either baseline values or the results of more rapid
growth in the turtle’s early years. It appears that ring widths are not homogeneous
with regard to scute growth, with the boxplots for scutes R5 and L5 being quite
different from the rest. In order to test the validity of this observation, a Friedman
test on scute-block effects was conducted for each of the 108 turtles. The Fried-
man test arises in a situation in which responses across t treatments are measured
within n blocks, and these responses are then ranked from 1 to t within each block,
according to their magnitude. The null hypothesis to be tested is that within each
block these vectors of rankings are randomly selected from a set of possible t! val-
ues, indicating that there is no pattern of rankings in the blocks, so that there is
no difference between the treatments. For this test we take the SCU categories to
define the treatments. For each turtle we consider the blocks to be the values of
AGE as defined by the location of the rings within each scute, and the responses are
the values of RWIDTH for that AGE across SCU. Rejection of the null hypothesis
would indicate that for the specified turtle, there is a significant difference in the
relative RWIDTH values across the scutes. Overall, for 81 out of 108 turtles there is
sufficient evidence at a significance level of 0.001 to conclude that ring widths differ
by scute. However, Figure 1 also shows that scute pairs might be homogeneous with
regard to ring width distribution. A Sign test was conducted to determine pairwise
differences for the four pairs of scutes (L2 and R2, L3 and R3, L4 and R4, L5 and
R5). The results of the tests indicate that there is indeed pairwise homogeneity of
ring width distributions in the scutes. The detailed results from the Friedman and
Sign tests are found in “Analysis of the Blandings Turtle and Climate Change”, a
consulting report prepared at Acadia University in 2006 by Y. C. Huang and H.
Ingo. This report is available from the corresponding author.

The objective of this research is to model the growth curve of Blanding’s turtle,
and to implement such models in order to examine how climate factors such as
temperature affect the growth of Blanding’s turtle.
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Figure 1. Boxplot of the ring widths for the scute comparison.

2. Growth Curve Model.

2.1. Scute Growth Measurement. The most commonly used growth measure-
ments in the literatures are carapace length ([3], [4]), which is the length of the top
part of the shell, and plastron length, which is the length of the middle line of the
flat shell structure on the underside of the turtle ([5], [6]).

Another growth measurement is the ring width which in our case is measured
by RWIDTH. For demonstration purposes, Figure 2 plots RWIDTH values by four
left scutes of 15 year old TUR 2,3-3,9 from KNP. Although these values exhibit an
overall decreasing pattern as the turtle ages, there is present a large variation from
year to year.

We note the large ring width values in its baseline (AGE 0), as well as AGE 1
and AGE 2.

In this paper, for an individual turtle’s plastral scute, the scute width is defined
as

SWt =
t∑

i=0

RWi,

where RWi is the ith RWIDTH. Considering the ring width as annual growth, the
scute width SWt measures an accumulative growth up to the tth ring or up to the
tth running age (t = 0, 1, ..., n). This new measure has the advantage of smoothing
the growth curve, as can be observed in Figures 3 and 4.

2.2. Exponential Growth Model. The non-homogeneity of growth across scutes
with regard to the ring width indicates that the individual plastral scutes of each
turtle should be considered as the unit for modeling growth. The left-right pairwise
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Figure 2. Plot of the ring widths by four left scutes of TUR 2,3-
3,9 from KNP.

homogeneity indicates that only one-side scutes need to be considered, and in the
rest of the paper, only the second left plastral scute (L2) will be used. Figure 3
visualizes scute widths SWt located in L2 of all 108 turtles, where the sample
average values of SWt at each age are linked by the solid line.

This average SWt function is fairly smooth, with a shape that may be modelled
by an exponential or second order polynomial function. A good candidate for accu-
mulative growth curves is the Von Bertalanffy equation [7]. This equation has been
used to model growth of various organisms, particularly in marine science. It has
also been used to model plastron length at age t as

PLt = a(1− bert) (1)

where PLt is the plastron length at age t, a is the mean asymptotic size in the
population, b is a variable related to size at hatching, and r is an intrinsic growth
rate ([5], [6], [8]).

Therefore, the scute width SWt, hereafter referred as VB, the Von Bertalanffy
equation, may be written as

SWt = a(1− bert) + et, (2)

where {et} is a random normal error process with zero mean and a constant vari-
ance. If r < 0, a is the mean asymptotic scute size at maturity since in this case
limE(SWt) = a. The parameter b is related to the mean size of the scute at hatch-
ing, since when t = 0, E(SW0) = a(1 − b). Therefore the baseline ring width may
be estimated by a(1 − b). Finally, r is an intrinsic growth rate of that scute. Be-
cause the younger turtles’ growth curves may be too short to be estimated, the Von
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Figure 3. Plot of the L2 scute widths versus AGE of all 108 turtles

Bertalanffy model was fitted for the second left scute L2 of twenty-two individual
turtles older than 14 from all three populations using the R [9] function “nls” [10].

There were four turtles from population KNP, eight turtles from population ML,
and ten turtles from population PR. A residual diagnostic check was conducted
for each fit. Overall the residuals are fairly normally distributed with constant
variances. The autocorrelation plots indicate some autocorrelation dependency at
lag one or two in the residual processes, which is quite common in the case of
growth measurements or repeated measurements. In order to test for any trend
remaining [11], the regular two-sided Kendall’s Rank Correlation Coefficient Test
on residuals was run in StatXact [12] for individual turtles. Appendix 5.1 shows
that the smallest p-value from the tests is 0.3734, indicating that for all 22 turtles
there is no trend remaining when modelling by the VB model. Wilder [13] shows
that the actual p-values from an improved Kendall’s test with autocorrelated errors
would be bigger than those in Appendix 5.1 obtained from the regular Kendall’s
test which assumes independent errors. Therefore it appears safe to believe that the
Von Bertalanffy model is adequate for fitting the scute width growth curve. The
parameter estimates from the VB fit show that for example, the mature L2 size of
Turtle 2,3-3,9 from KNP is â = 757.540 (se. 9.262), with an estimated baseline scute
width of 757.540(1 − 0.8193) = 136.888 (b̂ = 0.8193, se. 0.013), which compares
well with the observed baseline value of 137.93. The growth after hatching has an
intrinsic rate of about −0.128 (se. 0.004). Similarly, the Von Bertalanffy model
provides very good fits for other scutes.

2.3. Polynomial Growth Model. The polynomial model is commonly used for
modelling growth curves, and Figure 3 indicates that such a second order polynomial
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would provide another option for scute growth. The polynomial equation for scute
width SWt may be written as

SWt = b0 + b1t + b2t
2 + et (3)

where et is same as in eqn. (2), while b0, b1, and b2 are coefficients, and t is the
ring age.

The second order polynomial model was fitted to the scute width curves for all 22
turtles. The large adjusted R-squared values, a measure of goodness-of-fit, indicate
very good fit, with all adjusted R-squared values greater than 0.9. Results from
residual diagnostic checks are similar to those for the VB models.

Figure 4 plots the scute widths of L2, and its polynomial and VB fitted curves,
for an individual turtle. It is very clear that the VB model provides a more accurate
fit than the polynomial model in this case. Most parts of the original growth curve
are precisely fitted by the VB model. In fact, this is the case for most of the other
individual turtle plots as well, showing that the VB model is the better choice for
this data.
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Figure 4. Fits of the scute width growth of L2 for TUR 9-1, 8
from KNP. The dashed lines represent the polynomial and VB fits
while the cross points represent the raw SWt values.

The residual standard errors of both models were compared for each turtle with
AGE greater than or equal to fifteen (see Appendix 5.2.). Overall the VB model
fits have smaller residual standard errors than polynomial models with only a few
exceptions, so that one can conclude that the turtle scutes appear to grow expo-
nentially.
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3. Applications and Results. With the VB model being the appropriate model
for the individual turtle scute width curve, it is natural to use a non-linear mixed
effect model for all 108 turtles to examine the population impact on growth consid-
ering individual turtle random effect. Non-linear mixed effect modeling is a method
for repeated measures developed in the early 1990s. A method that combines least
square estimates for non-linear fixed effects models and maximum likelihood or
restricted maximum likelihood estimates for linear mixed effect models was pro-
posed by Lindstrom and Bates [14]. The flexible covariance structure allows for
non-constant correlation among the observations and unbalanced data. Individual
responses all follow a similar functional form with parameters that vary among
individuals. The basic assumption of this model is that error terms are normally
distributed. Following eqn. (2), the model for the SWij , the scute width up to the
age of the jth ring on the ith turtle may be written as

SWij = Ai −Bie
rij + eij , (4)

where Ai = ai, Bi = aibi and eij is a normally distributed noise term with a
variance σ2. The term eij may be updated to an AR(1) process to capture the
autocorrelation. We have tested various combinations of the growth parameters, A,
B and r, in terms of population location effects being fixed, and random individual
turtle effects. It turns out that the model with A as a fixed population effect, and B
and r as fixed population and random individual effects, provides better estimation
results for capturing the trend of the scute width growth of all 108 turtles, and
yields a relatively larger likelihood function value and smaller values of Bayesian and
Akaike information criteria. Since Ai is the mean asymptotic size in the population,
this parameter may be mainly affected by population locations. The parameters Bi

and ri are related to the size at hatching and the intrinsic growth rate respectively,
which may be affected by both population locations and individuals. That is,

Ai =
[
1 Xi1 Xi2

]×



A0

A1

A2


 (5)

Bi =
[
1 Xi1 Xi2

]×



B0

B1

B2


 + µi1, (6)

ri =
[
1 Xi1 Xi2

]×



r0

r1

r2


 + µi2, (7)

where Xi1 and Xi2 are two indicators for population locations, and µi = (µi1, µi2)T

is a vector of random effects associated with an individual turtle, µi ∼ N(0, σ2D),
and σ2D is a covariance matrix of µi.

This model was implemented under the R package “nlme” using the covariance
notation detailed in [14] and given above. Let the subscript 0 denote growth pa-
rameters for KNP, and subscripts 1 and 2 denote differences of these parameters
between ML and KNP, and PR and KNP respectively. With initial values for
fixed parameters: A0, A1, A2; B0, B1, B2; r0, r1, r2 as 700, 0, 0; 700, 0, 0; −0.1, 0, 0,
the final estimates are Â0 = 995.570 (s.e. 35.825), Â1 = −127.246 (s.e. 40.873),
Â2 = −40.406 (s.e. 41.710); B̂0 = 865.558 (s.e. 35.406), B̂1 = −136.844 (s.e.
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40.290), B̂2 = −34.117 (s.e. 41.090); r̂0 = −0.063 (s.e. 0.004), r̂1 = −0.011 (s.e.
0.006), r̂2 = 0.001 (s.e. 0.005). The p-values for testing A1 = 0, B1 = 0 and r1 = 0
are 0.0019, 0.0007 and 0.0472 respectively, providing significant evidence of pop-
ulation location effects between ML and KNP. There was no significant difference
between PR and KNP.

The cumulative growth measurement can be easily converted into annual growth
by taking differences. The nonlinear exponential growth model also can be easily
transformed into a linear model by taking log transformation, such as,

SW (t) = a(1− bert),

dSW (t)
dt

= −abertr,

log(
dSW (t)

dt
) = log(−abr) + rt.

Since the difference of scute width is the ring width at AGE t, dSW (t)
dt ≈ RWt, this

leads to the linear model for the log of ring width

log(RWt) = log(−abr) + rt + εt. (8)

If the error terms εt are assumed to be normally distributed, then RWt will have
a lognormal distribution. The lognormal as well as the gamma have been used to
model biological growth ([15]).

Eqn. (8) provides a linear form for modeling the annual ring growth, an approach
used by Van Deusen [16] to analyze tree ring data. Note that the error terms εt may
be additively affected by other covariates, so that they may be further modeled by
a multiple regression.

Since we have both the population location information and the annual temper-
atures available in the data set, one such linear model may be written as

log(RWt) = β0 + β1Age + β2Temperature + β3Pop location + ut, (9)

assuming ut is a random error process. To take account of individual effects on
the parameter estimation, a linear mixed effect model was conducted for all 108
turtles with an individual turtle random effect. The results show significant age
and temperature effects (both p-values are 0.000). The detailed results from this
linear approach can be found in Huang [17].

4. Concluding Remarks. Given data available on eight different scutes, it is pos-
sible to determine that scutes grow at different rates, a fact not previously known.
Homogeneity of scute left-right pairs is also shown from the preliminary analysis.
For modeling the turtle’s growth curve, a new growth measurement, scute width,
is introduced. Two growth curve models are fitted, the exponential (VB) model,
and the second-order polynomial model. From curve-fitting results and residual
diagnostic checks, both appear to be very good candidates for the turtle’s scute
growth curve model. After comparing these two models through visualizations and
residual standard error, the exponential model appears to be the better growth
model. Using this selected exponential growth model, some applications are con-
ducted to determine population and temperature effects on turtle growth. The
applications include a non-linear mixed model, and a linear mixed effect model
with auto-correlation update. As a result, there are some suggested population and
temperature effects.
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The methods detailed here for the analysis of this data set can be generalized to
studies of other types of turtles. However, the findings for the data set in Section 3
may be limited by several factors. First of all, the sample is not randomly selected.
Any inference will of course be limited to those Blanding’s turtles found in the
three populations in Nova Scotia. The sizes of the populations are unbalanced,
and the number of mature turtles in the sample is small. The available covariate
information that is associated with turtle growth provides fairly limited information
on the underlying natural process.

Since temperature data is long-term in nature, it is difficult to draw conclusions
about a turtle’s relationship with temperature for young turtles. Both histograms
of the residuals from the nonlinear mixed model and linear mixed model show some
evidences of non-normality, which needs further investigation. Finally, the residuals
of both models appear to be autocorrelated with lags other than 1, so that updating
the models by higher order auto-correlation error terms may improve the accuracy
of the results [18]. The model that incorporates the scute effect may be implemented
similarly in the non-linear or linear mixed effect model to include more data.



GROWTH OF THE NOVA SCOTIA BLANDING’S TURTLE 27

5. Appendix.

5.1. Kendall’s Rank Correlation Coefficient Test Results.

TUR POP AGE p-Value (Res)
TUR 2,3-3,9 KNP 15 0.6901
TUR 9-1,8 KNP 15 1.0000
TUR 9-1,2 KNP 16 0.8393

TUR 10-1,10 KNP 17 0.9405
TUR 2,10-1,3 ML 15 0.8944
TUR 2,3-1,8 ML 15 0.8944
TUR 2,3-1,9 ML 15 0.3734
TUR 2,3-8,9 ML 15 0.8944
TUR 2,3-9,10 ML 18 0.7872
TUR 2,3-8,11 ML 19 0.8202
TUR 2,3-2,9 ML 21 0.9088
TUR 2,3-1,3 ML 23 0.7133

TUR 2,11-1,11 PR 15 0.6259
TUR 3,11-1,8 PR 15 0.9647
TUR 8,11-9,10 PR 15 0.5643

TUR 1,2-2 PR 16 0.6553
TUR 2,9-2,8 PR 17 1.0000
TUR 3,11-1,9 PR 17 0.8228
TUR 3,11-1,10 PR 19 1.0000
TUR 3,11-2,9 PR 19 0.8244
TUR 8,11-1,1 PR 18 1.0000
TUR 2,10-1,2 PR 25 0.5735
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5.2. Comparison of Residual Standard Errors between the Polynomial
Model and the VB Model.

Turtle Population Age RSE (Poly) RSE (VB))
TUR 2,3-3,9 KNP 15 13.25 10.63
TUR 9-1,8 KNP 15 11.43 5.195
TUR 9-1,2 KNP 16 12.01 12.52

TUR 10-1,10 KNP 17 8.173 8.507
TUR 2,10-1,3 ML 15 11.9 11.85
TUR 2,3-1,8 ML 15 13.37 11.29
TUR 2,3-1,9 ML 15 13.87 11.48
TUR 2,3-8,9 ML 15 9.566 8
TUR 2,3-9,10 ML 18 10 10.3
TUR 2,3-8,11 ML 19 7.194 8.027
TUR 2,3-2,9 ML 21 13.49 11.8
TUR 2,3-1,3 ML 23 12.97 11.42

TUR 2,11-1,11 PR 15 13.28 13.39
TUR 3,11-1,8 PR 15 7.621 7.624
TUR 8,11-9,10 PR 15 8.734 7.624

TUR 1,2-2 PR 16 6.507 8.196
TUR 2,9-2,8 PR 17 6.529 6.509
TUR 3,11-1,9 PR 17 9.007 7.148
TUR 3,11-1,10 PR 19 10.33 11.15
TUR 3,11-2,9 PR 19 12.39 8.579
TUR 8,11-1,1 PR 18 10.08 8.88
TUR 2,10-1,2 PR 25 10.62 7.724

Acknowledgements. The work of Y. Zhang and P. Cabilio on this project was
supported by Natural Science and Engineering Research Council of Canada Dis-
covery Grants. We wish to thank the referee for insightful comments which have
helped improve this work.

REFERENCES

[1] UTHSCSA ImageTool, Version 3.0 http://ddsdx.uthscsa.edu/dig/itdesc.html.
[2] M. Richard, T. B. Herman, S. Bondrup-Nielsen and C. P. Laroque, Lord of the Growth Rings:

A fellowship between Blanding’s turtles and old trees in southwestern Nova Scotia, Annual
Meeting, Canadian Association of Geographers, London, Ontario, May 31-June 4, 2005.

[3] Jr C. W. Caillouet, C. T. Fontaine, S. A. Manzella-Tirpak and T. D. Williams, Growth of
Head-Started Kemp’s Ridley Sea Turtles (Lepidochelys kempii) Following Release, Chelonian
Conservation and Biology, 1(3) (1995), 231–234.

[4] D. C. Seburn, Population Structure Growth, and Age Estimation of Spootted Turtles, Clem-
mys guttata, Near their Northern Limit: an 18-Year Follow-up, Canadian Field-Naturalist,
117 (2003), 436–439.

[5] R. St.Clair, P. T. Gregory and J. M. Macartney, How do sexual differences in growth and
maturation interact to determine size in northern and southern painted turtles?, Can. J. Zool,
72 (1994), 1436–1443.

[6] P. V. Lindeman, Growth Curves for Graptemys, with a Comparison to other Emydid Turtles,
American Midland Naturalist, 142 (1999), 141–151.

[7] L. von Bertalanffy, A quantitative theory of organic growth (Inquiries on growth laws. II),
Human Biol, 10 (1938), 181-213.

[8] P. V. Lindeman, Contributions toward improvement of model fit in nonlinear regression mod-
eling of turtle growth, Herpetologica, 53 (1997), 179–191.



GROWTH OF THE NOVA SCOTIA BLANDING’S TURTLE 29

[9] R Development Core Team, R: A Language and Environment for Statistical Computing,
Foundation for Statistical Computing, Vienna, Austria, 2008.

[10] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applications, Wiley,
1988.

[11] S. Keller-McNulty and M. McNulty, The Independent Pairs Assumption in Hypothesis Tests
Based on Rank Correlation Coefficients, The American Statistician, 41 (1987), 40–41.

[12] Cytel Software Corporation, www.cytel.com.
[13] K. R. Wilder, Kendall’s Tau as a Test of Trend for Correlated Observations, Honour Thesis,

Acadia University, 2008.
[14] M. J. Lindstrom and D. M. Bates, Nonlinear Mixed Effects Models for Repeated Measures

Data, Biometrics, 46 (1990), 673–687.
[15] J. E. Mosimann and G. Campbell, Applications in Biology: Simple Growth Models. Chapter

11 in Lognormal Distributions: Theory and Applications, E.L. Crow and K. Shimizu (editors),
pp 287-302, Marcel Dekker, 1988.

[16] P. C. Van Deusen, A Model-Based Approach to Tree Ring Analysis, Biometrics, 45 (1989),
763–779.

[17] Y. C. Huang, Analysis of the Growth of the Blanding’s Turtle, Honour Thesis, Acadia Uni-
versity, 2007.

[18] A. C. Harvey and G. D. A. Philips, Maximum Likelihood Estimation of Regression Models
with Autoregressive-Moving Average Distributions, Biometrics, 66 (1979), 49-58.

Received ; revised .
E-mail address: ying.zhang@acadiau.ca (email of the corresponding author, Ying Zhang)


