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Abstract. We discuss model equations for the description of horizontally
propagating waves in the interior of a density stratified ocean in a rotating

reference frame (e.g a rotating planet). Using linear theory we outline the
complications the inclusion of rotation introduces. These complications pre-

clude the strict application of equations in the classical Korteweg-de Vries

(KdV) hierarchy. In place of the well-studied KdV-type equations, the so-
called Ostrovsky equation is often employed to describe waves in the presence

of rotation. However, this equation lacks the mathematical structure of the

KdV equation, and in particular is not fully integrable. We present numerical
integrations, based on spectral methods, of the Ostrovsky equation which show

that solitary wave-like solutions decay slowly by radiating energy to a tail of

dispersive waves. We discuss the shortcomings of the Ostrovsky equation and
propose an alternative model equation that captures the linear, dispersive wave

behaviour exactly.

1. Introduction. Experience tells us that most traveling waves do not retain their
form as they propagate. For example, shoaling waves coming up onto the beach
steepen and break. The wave steepening occurs due to the dependence of the
wave propagation speed on the wave amplitude, and in particular, the fact that
the taller parts of the waveform travel faster. A less dramatic, though equally
universal, property of finite amplitude waves is the observation that waves with
different wavelengths travel with different speeds. For example, throwing a rock
into a still pond generates a disturbance with the shape of an expanding ring.
Careful observation of the individual wave crests in the expanding ring reveals that
these waves do not move with the same speed as the ring and hence disappear by
either running out in front, or falling behind the ring. This phenomenon is referred
to as dispersion.

The interior of large lakes and oceans is commonly observed to be density strat-
ified, with lighter fluid found near the surface and heavier fluid found closer to the
bottom. This density stratification provides a waveguide for a variety of waves. In
nature, these waves are finite amplitude and hence exhibit wave steepening and wave
dispersion. In this article we will consider the mathematical descriptions of inter-
nal waves that propagate horizontally, sometimes referred to as vertically trapped
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waves. The surface manifestations of these waves are commonly observed from
aircraft, satellites and the space shuttle and it is believed that such waves are im-
portant in the global budget of meridional heat transport by the oceans, in plankton
and pollutant dynamics, as well as ocean acoustics, among other applications.

A full description of internal waves requires the consideration of an initial, bound-
ary value problem for the Navier-Stokes equations with a moving boundary at the
ocean’s surface ([8]). Not only is a closed form solution of this problem not avail-
able, the very well-posedness of the problem has not been established. Indeed the
solution of the well-posedness problem carries the million dollar Clay prize. From
a more applied point of view, even the most powerful computers cannot handle the
full range of space and time scales that must be resolved to successfully approxi-
mate the “real” ocean numerically. The situation, however, is not as hopeless as
the preceding discussion makes it seem, as over a hundred years’ worth of approx-
imations, model equations and conceptual simplifications can be brought to bear
on the problem, thereby providing us with a considerable level of understanding of
internal waves in the ocean. In the following we will ignore the role of fluid viscosity
and hence consider the Euler, as opposed to Navier-Stokes, equations. We will also
make use of well-verified numerical solver for the Euler equations ([9]), and treat
these numerical solutions as the gold standard by which to evaluate our simplified
theories.

In this article we reconsider classical descriptions of weakly nonlinear long waves
based on the Korteweg de Vries (henceforth KdV) equation. This equation allows for
a balance between steepening due to nonlinearity and spreading due to dispersion, a
balance that finds its expression in the existence of solitary wave solutions (nonlinear
solutions which do not change form as they propagate). In fact, it is possible
to analytically solve the Cauchy problem for the nonlinear KdV equation via a
sequence of linear problems ([3]). The solution of the Cauchy problem reveals that,
even though they are nonlinear, solitary wave solutions retain their identity during
collisions. This particle-like behaviour has led to the term “soliton” in analogy
with terms like “neutron” and “electron” in physics. The above described solution
method, generally known as “the method of inverse scattering”, stands as one of
the truly great achievements of 20th century applied mathematics and has spawned
a vast and diverse literature (see [1] for a relatively recent monograph).

The application of the KdV equation to internal waves dates back to Benney,
who in 1966 employed an asymptotic expansion in amplitude and aspect ratio (the
ratio between wavelength to water depth) to reduce the equations of fluid mechanics
to a Sturm Liouville problem for the vertical structure and the KdV equation for
the horiozntal and temporal structure ([2]). Benney’s approach has been extended
to account for a wider variety of physical phenomena ([5]). While the literature
is voluminous, it is fair to say that KdV type theories (often referred to as model
equations) have provided an important qualitative method in understanding the
life cycle of internal waves, from their generation, through propagation through to
dissipation and breakdown. However quantitative comparisons with experimental
data, observations and numerical simulations have unambiguously revealed that the
KdV equation cannot account for the precise shape and propagation speed of finite
amplitude waves.

In this article, we focus on the description of internal waves in a rotating frame of
reference. Including the effects of rotation precludes exact solitary wave solutions,
modifies the form of the governing equation (often called the Ostrovsky equation,
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[4]), and presents problems when constructing numerical approximation schemes
([7]). We present a phenomenological governing equation that improves the repre-
sentation of wave dispersion in a rotating frame of reference, construct a spectral
discretization scheme based on the Fast Fourier Transform (FFT), and discuss nu-
merical integrations for both standard soliton fissioning problems and comparisons
with integrations of the full Euler equations.

2. Background Material. The results we discuss deal with approximate descrip-
tions of fluid motions. While the details of how these approximations are derived
are beyond this article, we will begin with a qualitative description of the approx-
imation process in order to provide the reader with a broad perspective on the
material that follows.

The mathematical description of the motion of a fluid is given a system of non-
linear partial differential equations that express the conservation laws of classical
physics (the conservation of mass, linear momentum and energy) as they apply to
a flowing continuum. When the viscosity (stickiness) of a fluid is neglected, as is
commonly done in the description of motions in the atmosphere and the ocean, the
so–called Euler equations for an incompressible, rotating fluid are first–order and
read

ρ0[
∂~u

∂t
+ ~u · ~∇~u+ 2~Ω× ~u] = −~∇p− ρgk̂ (1)

~∇ · ~u = 0 (2)
∂ρ

∂t
+ ~u · ~∇ρ = 0. (3)

Here ~u is the fluid velocity, ρ the density, ρ0 the constant ‘reference’ density, p
the fluid pressure, ~Ω the constant rotation vector of the Earth, and k̂ the unit
vector in the vertical direction. Note that we have made the so–called Boussinesq
approximation which neglects density changes except in the buoyancy term ρgk̂,
though this detail is unimportant for the development below. The Euler equations
suffer from two mathematical difficulties. The first is the presence of quadratic
nonlinearities associated with the ~u · ~∇ portion of the equations. The second is
the lack of an evolution equation for pressure (though the system is formally closed
since we have five equations for the five unknowns).

It is often observed that the density has a vertically varying profile that is largely
independent of time with small amplitude perturbations superimposed upon this
basic state, so that

ρ = ρ0(ρ̄(z) + ρ′).

Such fluids are referred to as stratified, and for static stability (i.e. if we set ~u = ~0)
we require that density decreases in the vertical direction, or that dρ̄/dz < 0 (we
are implicitly assuming that ρ̄(z) is differentiable). The stratification in the fluid
serves as a wave guide, and a parameter employed in the description of such waves
is proportional to the rate of change of density with height and is often called the
buoyancy or Brunt–Vaisala frequency squared, and written as

N2(z) = −g 1
ρ0

dρ̄(z)
dz

.

While stratified fluids can exhibit waves that propagate in any direction we will only
consider so–called vertically trapped waves that propagate horizontally. If we now
consider two dimensional flow, for example if we align the x–axis with the direction
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of wave propagation, ignore changes in the across–wave direction and take the z
axis to point upward, then the divergence–free condition ~∇ · ~u = 0 guarantees the
existence of a stream function ψ so that ~u = (u,w) = (ψz,−ψx), where subscripts
denote partial derivatives. The Euler equations can then be reduced to an evolution
equation for the streamfunction ψ and the so–called buoyancy b = −gρ′. The
reduction involves a curl of the momentum equations (1) and thus eliminates the
pressure variable from consideration.

Approximate theories next assume a separation of variables in which

ψ(x, z, t) = A(x, t)φ(z)

and seek an ordinary differential eigenvalue problem for the so–called vertical struc-
ture function φ(z) and a partial differential equation for the horizontal structure
function A(x, t). A particularly simple case is obtained if we concentrate on long
waves, or waves in the limit of small wave number, k → 0. Linear theory assumes
the nonlinear terms can be dropped and, after some algebra, one finds that in this
case A(x, t) satisfies the linear wave equation Att = c2Axx where c is determined
from the eigenvalue problem for the vertical structure function (details are discussed
in the following section).

Linearization formally assumes that waves are of infinitesimal amplitude. Actual
waves, of course, have a finite amplitude, and finite amplitude waves are observed
to be modified in two ways. First, the waves can steepen due to the amplitude
dependence of the propagation speed. Second, waves of different wavelengths prop-
agate with different speeds, or the waves are dispersive. While nonlinear steepening
cannot be represented in linear theories, dispersion can (a rather odd property of
classical field theories like fluid mechanics and electricity and magnetism). However
the governing equation, while still a sort of linear wave equation, is no longer hy-
perbolic. Indeed, the vast majority of waves observed in the physical world are not
the tidy hyperbolic waves studied in virtually every introductory course on partial
differential equations.

Internal wave theories, following Benney’s pioneering 1966 article, generally begin
with linear long-waves (the wave number, k is taken to tend to zero, as mentioned
above) and seek corrections to the linear wave equation for A(x, t) which is generally
assumed to be uni-directional (most often for rightward propagating waves). This
is done via an asymptotic expansion of ψ(x, z, t) in two small parameters, one
measuring the wave amplitude (often called the nonlinearity parameter and labeled
ε) and a different parameter measuring the mismatch between the long horizontal
and short vertical scales (often called the dispersion parameter and labeled µ). The
expansion yields,

ψ(x, z, t) = A(x, t)φ(z) + εψ(1,0) + µψ(0,1) + ...

and when both first order corrections are considered, the well known Korteweg de
Vries equation for A(x, t), discussed in detail below, results.

Benney’s article did not consider rotation (the 2~Ω×~u term in the Euler equations
was dropped) and in this case the linear long-waves propagate faster than any other
linear waves. As we will show below, rotation invalidates this finding, as far as
the propagation of energy is concerned. Thus in the rotation–modified case the
asymptotic procedure must be modified. This is done by the introduction of a third
small parameter measuring the strength of rotation effects (Benney’s assumption
amounts to a restriction on time scales less than 12 hours or so on Earth). The
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resulting asymptotic expansion requires a great deal more algebra, but we should
be clear at the outset that it cannot truly make up for the fact that the long waves
no longer travel faster than other linear waves. It is one of the purposes of this
article to show that the weakly nonlinear description of internal waves modified by
rotation can be improved by considering the complete linear dispersion relation a
posteiori for the linear part of the weakly nonlinear equations derived by asymptotic
theories.

3. Dispersion and Linear Theory. Before we consider weakly nonlinear, or
KdV-type, theories, it is worthwhile to reconsider purely linear theories. In the
original Benney 1966 formulation, linear internal waves have a vertical structure
governed by the following Sturm Liouville eigenvalue problem (subscripts denote
partial derivatives)

φzz +
(
N2(z)
c(k)2

− k2

)
φ = 0

φ(0) = φ(H) = 0. (4)

Here H is the total water depth, z is the vertical coordinate (so that z = 0 is
the ocean bottom and z = H is the ocean surface, under the so–called rigid lid
approximation [8]), k is the wave number, c(k) is the speed with which individual
crests move (or phase speed equal to the frequency divided by the wave number),
and N2(z) is the square of the so-called buoyancy frequency ([8]) and depends on
the variation of density with depth at a particular location. A widely applicable,
though by no means unique, form of N2(z) is

N2(z) = N2
0 sech2(

z − z0
d

) (5)

which corresponds to a rapid change in density near z = z0 and little change out-
side of this so-called “pycnocline” region. When d is small, this stratification is
an excellent approximation for experimental realizations in which a layer of light
fluid overlies a layer of heavy fluid with molecular diffusion smearing out the inter-
face. Analytical studies generally adopt the more restrictive assumption of constant
N2(z) = N2

0 . In this latter case the eigenfunctions are given by

φ(z) = sin
(nπz
H

)
(6)

for any n = 1, 2, 3, ... with corresponding phase speeds (the speed with which wave
crests move)

c(k) =
N0H√

n2π2 + (kH)2
. (7)

It is clear from (7) that longer waves (k → 0) travel faster and that waves with larger
n travel more slowly. From (6) we can see that the eigenfunction has n − 1 zeroes
in the interior of the fluid. Considering only the longwave limit, k = 0 it is further
possible to show that the largest eigenvalue corresponds to waves for which the lines
of constant density are displaced either upwards or downwards at all points in the
interior of the domain. Such waves are called mode-1 waves in the internal wave
literature and are the only waves we will discuss for the remainder of this article.
While the present results formally hold for any mode, it is generally observed that a
vast majority of the energy in the internal wave field (in a lake or coastal ocean) is
found in the first mode. The description of higher modes also requires consideration
of interactions between modes, which, while interesting, is far too large of a topic
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to be tackled in this article. Note that, using classical Sturm Liouville theory, it is
possible to show that the above results are general for arbitrary N2(z) as long as
N2(z) ≥ 0 at all z ([12]).

Once the phase speed is found as a function of k, linear theory consists of writing
an initial condition as a “sum” of Fourier components, either via Fourier Transforms
or Fourier series. Subsequently the evolution of each Fourier constituent is carried
out independently and the solution at some later time t can be reconstructed ei-
ther by summation, or the inverse Fourier transform. The former is easy, though
inefficient, to implement numerically and yields

A(x, t) =
a0

2
+

N∑
n=1

an exp (ikn[x− c(kn)t])

where the initial condition has the Fourier expansion

A(x, 0) =
a0

2
+

N∑
n=1

an exp (iknx).

More efficient numerical algorithms are no more complicated conceptually, but em-
ploy the the Fast Fourier Transform algorithm (or FFT) to carry out the Fourier
reconstruction efficiently. Such method are referred to as spectral methods (though
not all references to spectral methods involve the FFT, [11])).

For internal waves in a rotating frame of reference the eigenvalue problem is
somewhat different in that instead of solving for the phase speed, the frequency is
determined from the eigenvalue problem

f2φzz − k2N2(z)φ = ω(k)2[φzz − k2φ]
φ(0) = φ(H) = 0. (8)

It is useful to rewrite the above using linear differential operators as

Aφ = λBφ

where λ = ω2,
Aφ = f2φzz − k2N2(z)φ

and
Bφ = φzz − k2φ.

In practice, φ is conisdered at a finite number of grid points and the derivatives
are replaced by either a finite difference or pseudo-spectral approximation, thereby
yielding a generalized eigenvalue problem for matrices

Aφ = λBφ

amenable to standard solution algorithms (using Matlab or its freeware counterpart,
Octave, for example). On Earth, the magnitude of the Coriolis parameter |f | ranges
from 0 at the equator to ±1.46× 10−4 s−1 at the poles (positive in the north). Of
course, rotating tables in the laboratory can have much larger values of f . In
the simulations we discuss we have chosen three different values of f that yield
qualitatively different behaviour. All are too high compared to values measured on
Earth. The results should thus be interpreted as being qualitative, as opposed to a
model of any particular geographic location.
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Again, it is useful to consider N2(z) = N2
0 as a simple (if somewhat unrealistic)

case in which (8) has an analytical solution. Direct substitution confirms that the
mode-1 solution is again given by the eigenfunction

φ(z) = sin (
πz

H
)

and the dispersion relation

ω(k)2 =
f2 + k2 H2N2

0
π2

1 + k2 H2

π2

. (9)

From (9) we can see that for long waves (k → 0) the frequency tends to f while
for short waves (k →∞) the frequency tends to N0. The fact that the frequency is
bounded in the longwave limit implies that the phase speed grows without bound
as k → 0. For a given parameter set it is possible to show that the group speed

cg(k) =
dω(k)
dk

is bounded for all k and has a single maximum. This is in stark contrast to the
non-rotating case for which the long waves have the largest value of both phase
and group speed. Thus, if we create an initial disturbance in a nonrotating frame
of reference and measure the waves that arrive at a measuring site some distance
away, the long waves will arrive first. In a rotating frame of reference the length of
the waves that arrive first has to be determined on a case by case basis.

As mentioned above, the most common experimentally realized density stratifi-
cation is that of a layer of light fluid overlying a layer of heavier fluid, separated
by a thin interface. For the remainder of this article we consider this stratification
in water 100 m deep with N0 = 0.14 s−1, z0 = 20m and d = 5 m. By solving the
eigenvalue problem (8) we find frequency, phase speed and group speed given by
the curves in figure 1 for various values of f . It is clear that they are in qualitative
agreement with the discussion above for the constant N2 case.

In figure 2 we present a solution of the linear problem based on the dispersion
relations shown in figure 1 using 5000 terms in the Fourier series. We consider
output from a well-resolved numerical simulation of the Euler equations as an ini-
tial condition, find a Fourier decomposition of the initial condition, advance each
component forward in time according to the dispersion relation, and finally rebuild
the waveform at the later time (14, 000 s, or 3.9 hours is used for the figure). Pan-
els 2a and 2b show the initial conditions used for the simulations shown in panels 2c
and 2d, respectively. Panels 2c and 2d show the output from both the fully non-
linear simulation (dashed line) and the linear model (solid line). It is clear that
when rotation is weak (and indeed for all values of f relevant to the Earth) the
linear model fails to successfully predict the evolution of the wave disturbance. In
particular, the errors are largest in the leading, large amplitude structure, thereby
suggesting that nonlinearity is importnat. For stronger rotation, shown in figure 2b,
the linear theory is extremely good for the leading wave packet with some errors in
the phase of the waves found in the trailing tail. The linear theory does break down
for times longer than those shown (t� 4 hours) even for the higher rotation case.

4. Weakly Nonlinear Theory.
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4.1. KdV Model. The above results demonstrate that our simple linear model
is not sufficient to represent the behavior of internal gravity waves in cases of low
to moderate rotation. We thus turn our attention to weakly nonlinear models.
We begin with the well studied KdV equation for rightward propagating longwaves
(subscripts denote partial derivatives with respect to x and t),

At = −clwAx + 2r10clwAAx + r01Axxx (10)

where clw,r10, and r01 are physical parameters, measuring the linear long wave
speed, the strength of nonlinearity and the strength of dispersion, respectively.
The two parameters r10 and r01 are derived from the first order corrections to
the vertical structure equation by invoking the Fredholm Alternative. Detailed
discussions can be found in the literature ([2] and [10]). For a given stratification
all three parameters are determined uniquely from the eigenvalue problem (4) with
k = 0 ([10]), or in other words from

φzz +
N2(z)
c2lw

φ = 0

φ(0) = φ(H) = 0. (11)

For rightward propagating waves clw > 0 and it is a simple matter to show that
r01 < 0 while r10 may be of either sign. This means we could redefine r∗01 =
−r01 and have r∗01 be strictly positive. We do not do so, following the general
approach adopted in the internal wave literature. The theory of the KdV equation,
as discussed in standard texts is presented in what is known as standard form ([3])

Bt − 6BBx +Bxxx = 0.

This form can be obtained from (10) by simple coordinate transformations. For the
present discussion the physical form is more appropriate. Making use of the Fourier
transform

F [A(x, t)] =
∫ ∞

−∞
exp (−ikx)A(x, t)dx

so that
F [Ax] = ikF [A]

the KdV equation may be rewritten in Fourier space as

Āt = −ik(clw + r01k
2)Ā+ r10clwĀ2 (12)

where the overbar denotes a Fourier transformed function and in the final term the
transform is taken after squaring A. Notice that if the nonlinear term is ignored
(12) tells us that the model of the phase speed as a function of wave number that
is employed in the KdV equation is

cp(k) = clw + r01k
2 (13)

and hence (since r01 < 0) that shorter waves travel slower. While this is a desirable
property, notice that when

k >

√
clw
|r01|

(14)

we have cp(k) < 0 and hence the KdV equation makes the contradictory prediction
that short waves assumed to be rightward propagating, in fact travel to the left.
This shortcoming of the KdV theory is due to the fact that the theory is a long
wave theory, and hence only formally valid as k → 0.
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The spectral form (12) is of great advantage in designing and implementing
numerical methods for the KdV equation. All that is required is a stable time-
stepping method and a way to carry out the Fourier transform ([11]). In practice
the FFT will be used. In the case of an explicit Euler scheme the time–stepping
proceeds in the following way: we compute A(x, t)2, take its Fourier transform, take
the Fourier transform of A(x, t), step forward in Fourier space according to (12),
and finally inverse Fourier transform back to physical space. For all the simulations
reported below the somewhat more complicated, though equally standard, fourth-
order Adams-Bashfroth scheme ([6]) has been implemented. A difficulty that arises
in applying this algorithm is the relative numerical sensitivity of the KdV equation.
To avoid using an impractically small time-step to maintain numerical stability, one
can apply an integrating factor

I=e−(clwik+r01ik3)t

to the equation obtained after taking the Fourier Transform. The resulting equation
can then be solved in terms of a new variable Ã = IĀ with the dispersive terms
now solved for exactly ([11]).

In figure 3 we show an example of an initial Gaussian perturbation fissioning
into a rank-ordered train of solitary waves (or solitons). As can be confirmed by
standard KdV theory, the largest amplitude solitary waves are thinnest and travel
fastest. For longer times the wave train would continue to spread out, with the
tallest waves running farther and farther ahead of the shorter waves.

4.2. Models with Rotation. The KdV model takes us a step in the right di-
rection by introducing a nonlinear term, thereby allowing for a balance between
dispersion and nonlinearity that makes solitary waves possible. While this is a con-
siderable improvement over linear theory, for internal waves in a rotating frame of
reference the dispersion behaviour contained in the KdV equation is qualitatively
incorrect. A successful model equation needs to reflect the fact that frequency
remains bounded for long waves, and hence that the phase speed grows without
bound as k → 0. Such a theory has been formally derived by several authors, again
via an asymptotic expansion, but now in three small parameters. In the literature
the resulting equation is generally referred to as the Ostrovsky equation ([4]), and
employing the same notation as for the KdV equation reads

Axt = −clwAxx + 2r10clw(AAx)x + r01Axxxx + γA, (15)

where γ is a constant measuring the strength of rotation effects.
It is a simple matter to confirm that when the nonlinear term is neglected, the

Ostrovsky equation yields the dispersion relation

ω(k) = clwk + r01k
3 + γ

1
k

(16)

so that not only do we have that the phase velocity grows without bound for long
waves, but that ω(k) does as well. The latter is in stark contrast to the correct
limiting behaviour: ω → f as k → 0. In figure 4a and 4b we show the phase and
group velocity, respectively, as a function of k for the linearized KdV, linearized
Ostrovsky and true linear cases. For all three models we employ the single pycn-
ocline stratification (5), and we set f = 0.00071. It is clear that while both the
KdV and Ostrovsky equations predict incorrect dispersion behaviour for both long
and short waves, all three models are in good agreement for the middle third of the
domain shown. This range corresponds to waves with length scales between 700 and
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1600 m. Furthermore, figure 4 shows that the Ostrovsky model gives qualitatively
correct behaviour in the long wave limit.

The asymptotic theory that yields the Ostrovsky equation provides a certain
amount of freedom in the exact value of γ (it is related to the typical length scale
in the direction transverse to the direction of propagation, something that is rea-
sonably clear in an experimental tank, but not the coastal ocean), unlike the other
coefficients which are fixed precisely by the physical situation. For the present sim-
ulations γ was selected so as to yield the best overall match between the solutions
of the Ostrovsky equation and numerical integrations of the full Euler equations.
These simulations will be discussed in detail below.

In figure 5 we repeat figure 4 for a larger rotation rate. It is clear that the while
the Ostrovsky equation yields an approximation of the correct dispersion behaviour
with roughly the same qualitative behaviour as in the lower rotation case, the match
of the three theories for waves with intermediate length scales is not nearly as good
as in the lower rotation case.

The Ostrovsky equation, while qualitatively similar to the KdV in appearance,
does not share the mathematical structure of the KdV that allows the latter to be
solved semi-analytically. This means that while we do expect solitary-like waves
that decay only very slowly, we do not expect true solitary waves for the Ostrovsky
equation. The smaller the value of the rotation parameter γ, the closer the evolution
should be to that predicted by the KdV theory.

The Ostrovsky equation is solved by a FFT-based spectral method with fourth
order Adams-Bashforth time stepping. As is commonly done in the literature ([7]),
we first integrate to get

At = −clwAx + 2r10clwAAx + r01Axxx + γ

∫ ∞

x

A(s, t)ds

and then discretize a Fourier-transformed version of this equation in time using an
Adams-Bashforth method. Care must be taken near the end-points of the finite
integration domain to ensure that spurious oscillations that develop there do not
propagate into the interior of the computational domain and corrupt the phenomena
of interest.

In figure 6 we initialize the Ostrovsky equation with an exact KdV solitary wave.
In figure 6a γ = 6.1× 10−8 (corresponding to the case f = 0.00071 s−1) and we see
that after 1.5 hours the solitary-like wave has propagated nearly 12 kilometers with
the only visible change being the development of a very broad, small amplitude tail.
In contrast, for the higher rotation rate of f = 0.003 s−1 (γ = 1.83 × 10−6) the
leading solitary wave decays considerably, while a trailing solitary-like wave grows
in amplitude. The leading solitary-like wave will slowly decay while the trailing
wave grows. The trailing wave will gradually overtake the disappearing leading
wave. At this point in time another trailing wave will begin to form and the process
is repeated. This process is visible in figure 7 in which we show the wave profiles as
a surface plot with the space variable running along the page and the time variable
running into the page. The two overtaking waves are trailed by a tail of long
dispersive waves with a wavelength of roughly 4 kilometers.

In figure 8 we reconsider the case of the simulation shown in figure 2c for which
linear theory failed to accurately approximate the fully nonlinear simulation re-
sults. The initial condition is shown in panel 8a and the solution of the Ostrovsky
model 1400s later is compared to the fully nonlinear simulation in panels 8b and 8c.
Panel 8c shows the dispersive wave tail in detail for the same time as panel (b). It
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is clear that while the Ostrovsky equation is reasonably accurate in predicting the
amplitude of the leading overtaking solitary-like waves and the various waves that
make up dispersive wave tail, the Ostrovsky model makes an error in the phase of
both the leading overtaking solitary-like waves and the dispersive wave tail. Never-
theless, in contrast to the linear model the qualitative aspects of the evolution are
well represented.

When the rotation is further reduced to f = 0.00071 s−1 the leading wave is
essentially a slowly decaying solitary wave. In figure 9 the predictions of the Ostro-
vsky model are shown in the same manner as figure 8. From panel 9b we can see
that the main error is in the propagation speed of the leading solitary-like wave.
Furthermore, from panel 9c we can see that the description of the dispersive wave
tail again exhibits a small phase error.

5. Fully Dispersive Model. While the predictions of the Ostrovsky model dis-
cussed in the previous subsection were reasonably accurate, as far as they success-
fully model the damping by wave radiation of an initial solitary wave, two issues
remain outstanding. The first is the choice of the constant γ and the second is
the singularity of the frequency ω(k) at k = 0. Both issues can be addressed by
considering a model that employs the exact linear dispersion relation (referred to
as the “fully dispersive model” in the following and “F D model” in the figure leg-
ends). Note that this does not mean that we incorporate all dispersion into this
model, since in the asymptotic expansion discussed in section 2 beginning with
terms of order εµ we would find terms that are both nonlinear and dispersive. Nor
is this modification rigorously derived. Nevertheless, we will find it to yield greatly
improved results when compared with the Ostrovsky equation.

In Fourier space we write

Āt = −clin(k)ikĀ+ r10clwikĀ2 (17)

where clin(k) is the phase speed obtained by solving the eigenvalue problem (8) for
various k. This means we consider the dispersive behaviour to be exactly given
by the linear theory with nonlinearity represented by a quadratically nonlinear
correction term. In practice the numerical code for the solution of (17) can contain
a solver for (8) or the dispersion relation can be fitted using standard curve-fitting
techniques, and the resulting analytical expression for clin(k) used in (17).

In figure 10 we reconsider the evolution of a KdV solitary wave for f = 0.0071
(panel 10a) and f = 0.003 (panel 10b). It can be seen that the low rotation case
leads to a slow decay, mainly due to the generation of a long trailing shelf. By
comparing with figure 6a it can be seen that the fully dispersive model predicts a
longer, and slightly larger shelf than the Ostrovsky model. The evolution of the
higher rotation case, shown in panel 10b, has a similar qualitative character to
figure 10b, but the decay of the leading wave is slower than in the Ostrovsky model.

In figures 11 and 12 we compare the predictions of the fully dispersive model with
the fully nonlinear simulations. It can be seen that the leading wave still propagates
slower than in the fully nonlinear simulations. However, the errors in the dispersive
tail are significantly reduced. Indeed, it is fair to conclude that the fully dispersive
model, which is transparent in its (albeit phenomenological) derivation, performs
better than the more complicated Ostrovsky theory.

6. Conclusions. We have considered several reduced models for describing the
propagation of internal gravity waves on a rotating planet. The primary effect of
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rotation is to preclude the existence of exact solitary wave solutions, and hence
preclude the application of completely integrable equations like the KdV equation.
Indeed when the rotation is strong enough linear theory does a rather good job
of describing the wave propagation, since the majority of the energy in an initial
disturbance does not propagate and any resulting waves are extremely small in am-
plitude. For rotation rates typical of Earth, however, linear theory fails almost en-
tirely. The wave dynamics involves slowly decaying (often called radiation-damped)
solitary-like waves trailed by sizable, and complex tails of dispersive waves.

We have demonstrated that the most commonly discussed weakly nonlinear as-
ymptotic theory (based on the KdV equation, which balances nonlinearity and
dispersion), that of the so–called Ostrovsky equation, gives qualitatively reasonable
results for the wave dynamics, but is plagued by a singularity of the frequency in the
long wave limit. This singularity finds its expression in the amplitude and phase of
the dispersive wave tail, and more importantly, leads to difficulties in constructing
numerical approximations. In contrast, we have argued that a phenomenological
weakly nonlinear evolution equation that incorporates the dispersion properties of
linear waves exactly (to the limit of numerical precision) provides results superior
to the Ostrovsky equation both in terms of numerical stability and wave dynamics.

The results of this article complement those in ([10]) for modeling undular bores
without rotation using various weakly nonlinear theories (including one theory in
which the full linear dispersion is used). It may be possible to extend the phe-
nomenological evolution equation proposed above to include nonlinear terms that
more accurately model the variation of solitary wave propagation speeds with wave
amplitude. Future work could also consider the wave generation process, compar-
ing a forced ‘exact’ equation to the more classical forced KdV equation. This is a
promising direction since the fully dispersive theory could allow for a more com-
pletely exploration of phase space with the full Euler equations subsequently used
to examine particularly noteworthy phenomena.
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internal gravity waves on a rotating planet. Note in particular that
the group speed has a well defined maximum for k > 0.
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Figure 7. A surface plot showing the decay of the leading solitary-
like wave due to rotation for the Ostrovsky model. Note the growth
of a secondary wave that will eventually overtake the first. Space
runs along the page and time runs into the page. f = 0.0030 s−1

or medium rotation.
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