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Abstract. The depth of a term is an inductively defined measure
of its complexity. For any natural number k ≥ 1, an identity s ≈ t
is said to be k-normal, with respect to the depth measurement, if
either s = t or both s and t have depth at least k. A variety V of
algebras is said to be k-normal if all the identities satisfied by V
are k-normal. For any variety V of algebras, the k-normalization
of V is the variety defined by all the k-normal identities satisfied
in V . This is the smallest k-normal variety to contain V .
A semigroup is an algebra with one binary operation which satisfies
the associative law. Let Sem be the variety of all semigroups and
let Nk(Sem) be the k-normalization of Sem. The variety Nk(Sem)
is the equational class of algebras that satisfy all k-normal conse-
quences of associativity. In this paper we produce a finite equa-
tional basis for Nk(Sem), for k ≥ 3.
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1. Introduction. The goal of this paper is to produce a finite equa-
tional basis for the varieties Nk(Sem), where Sem is the variety of all
semigroups and Nk is the k-normalization operator, for k ≥ 3. In this
section we provide a brief introduction to the study of universal algebra,
defining algebras, varieties, identities, and bases. In Section 2 we define
k-normal identities and varieties, and introduce the k-normalization op-
erator Nk. Section 3 presents our main theorem, the basis for Nk(Sem)
for k ≥ 3. This theorem is proved by induction on k, with some pre-
liminary lemmas and the base case in Section 4 and the remainder of
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the proof in Section 5. A final appendix gives fuller details of all the
calculations needed for the base case.
Universal algebra is the study of algebras and identities. An algebra is
a set of objects with one or more operations defined on the set. The
type of the algebra is a list of the arities of the operations being used.
For example, a group can be regarded as an algebra of type (2), with a
single binary operation. An identity of an algebra is an equation of two
expressions which holds for all elements of the algebra. For example, a
commutative group satisfies f(x1, x2) ≈ f(x2, x1), for every x1 and x2

in the group, where the symbol f denotes the binary operation of the
group. Expressions such as f(x1, x2) and f(x2, x1) are called terms in
the language of the type.
More formally, we let τ = (ni)i∈I be any type of algebras, with an
operation symbol fi of arity ni for each i ∈ I. For each n ≥ 1, we
define the n-ary terms of type τ by the following inductive definition:

1. Each variable x1, x2, . . . , xn is an n-ary term.
2. If t1, . . . , tni

are n-ary terms and fi is an ni-ary operation symbol,
then fi(t1, . . . , tni

) is an n-ary term.

Any n-ary term for some n ≥ 1 is then called a term. Any term t can be
represented by a tree diagram, with the root labelled by the outermost
operation symbol of t, each branch of the tree labelled by an operation
symbol and each leaf of the tree labelled by a variable. For example,
Figure 1 shows the term t = f(g(x1, f(x2, x3)), x4), where f and g are
binary operation symbols.
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Figure 1: Tree Diagram for Term t = f(g(x1, f(x2, x3)), x4)

An identity of type τ is an expression of the form s ≈ t where s and
t are terms of the type. An algebra A is said to satisfy an identity
s ≈ t if s and t give equal results no matter what elements of A are
substituted for the variables x1, x2, . . . in the terms. We can use the
relationship of satisfaction (of an identity by an algebra) to go back and
forth between collections of algebras and identities. For any class K of
algebras of type τ and any set Σ of identities of type τ , we can consider
the collection of all algebras which satisfy all the identities in Σ, called
the models of Σ; and similarly the collection of all identities satisfied
by all the algebras in K. This defines a pair of operators called Mod



16 C. MASSÉ, H. WANG AND S.L. WISMATH

and Id: for any classes Σ and K, Mod Σ is the class of all algebras A
of type τ which satisfy all the identities in Σ, and Id K is the set of all
identities s ≈ t of type τ which are satisfied by all algebras in K.
These operators Id and Mod satisfy certain nice properties which make
them into what is called a Galois correspondence. In particular, the
composition operators Mod Id and Id Mod are closure operators, on
the sets of all algebras of type τ and all identities of type τ respectively.
Much can then be said about the closed sets on either side of this
correspondence. The closed collections of algebras, that is classes K
for which Mod IdK = K, are called equational classes or varieties.
On the other side of the Galois correspondence, the closed sets of iden-
tities are called equational theories. An equational theory then is a set
Σ of identities for which Id ModΣ = Σ, meaning that any identity sat-
isfied by all the algebras which satisfy all the identities in Σ must itself
be an identity in Σ. This is equivalent to closure of the set Σ under
five basic rules of deduction for equational logic:

1. (Reflexive rule): For any term p, we can deduce the identity p ≈ p.
2. (Symmetry rule): From any identity p ≈ q we can deduce q ≈ p.
3. (Transitive rule): From identities p ≈ q and q ≈ r, we can deduce

p ≈ r.
4. (Compatibility rule): If fi is an ni-ary operation symbol of type

τ , and we have identities s1 ≈ t1, s2 ≈ t2, . . . , sni
≈ tni

, then we
can deduce fi(s1, s2, . . . , sni

) ≈ fi(t1, t2, . . . , tni
).

5. (Substitution rule): Let xj be a variable which occurs in an iden-
tity p ≈ q, and let t be any term. Let p and q be the terms formed
from p and q respectively by replacing every occurrence of variable
xj in them by t. Then we can deduce p ≈ q from p ≈ q.

An identity s ≈ t is said to be a consequence of a set Σ of identities
if s ≈ t is either in Σ itself or can be deduced from Σ by some finite
sequence of steps based on the five rules of deduction. A set Σ is closed
if any consequence of identities in Σ is in Σ. It follows from properties
of the Galois correspondence that for any variety V , the set IdV is
closed.
Finally, let us define a basis of a variety. Let V be a variety of some
type τ . A set Σ of identities of type τ is called an equational basis or
simply a basis for V if Id ModΣ = IdV ; this simply means that every
identity holding in V can be deduced from the identities in Σ using the
five rules of deduction. We can always use IdV itself as a basis for V ,
since certainly every identity in IdV can be deduced from IdV . But
this is an infinite set of identities, and usually a smaller, perhaps finite,
basis can be found.
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2. Complexity and k-Normality. We can use the complexity of
terms to measure the complexity of identities and in turn the com-
plexity of algebras and varieties. The most commonly used measure of
complexity of terms is the depth of a term. For any term t, the depth
of t is the length of the longest path from the root to a leaf in the tree
diagram for t. The term t shown in Figure 1, for example, has depth
3. Formally, for each term t of type τ , we denote by d(t) the depth of
t, defined inductively by
(i) d(t) = 0, if t is a variable xj for some j ≥ 1;
(ii) d(t) = 1 + max{d(tj) : 1 ≤ j ≤ ni}, if t is a composite term t =
fi(t1, . . . , tni

).
The depth function is an example of a valuation function on the set of
all terms of type τ (see [2]).
Let k ≥ 0 be any natural number. An identity s ≈ t of type τ is
called k-normal (with respect to the depth valuation) if either s and
t are equal, or d(t), d(s) ≥ k. We denote by Nk(τ) the set of all k-
normal identities of type τ . It was proved in [2] that the set Nk(τ) is
closed under the usual five rules of deduction for identities and so is an
equational theory.
For a variety V of type τ , we let Id V denote the set of all identities of V .
The set Idk V = Nk(τ) ∩ Id V of all k-normal identities satisfied by V
is also an equational theory. Then Mod Idk V is a variety, called the k-
normalization of V . In the special case that Nk(V ) = V , we say that V
is a k-normal variety; this occurs when every identity of V is a k-normal
identity. Otherwise, V is a proper subvariety of Nk(V ), and Nk(V ) is
the least k-normal variety to contain V . This is a generalization of the
well-known property of normality of identities and varieties (see [3],
[4]), which coincides with our k-normality for k = 1.
The variety Nk(V ) is defined equationally, by means of the k-normal
identities of V . An algebraic characterization of the algebras in Nk(V )
was given by Denecke and Wismath in [1], using the concept of a k-
choice algebra. They showed that any algebra in Nk(V ) is a homo-
morphic image of a k-choice algebra constructed from an algebra in
V .
In this paper we return to the equational approach, to study identi-
ties that are k-normal consequences of associativity. A semigroup is
an algebra of type (2), that is having one binary operation symbol,
which satisfies the associative law. We use Sem for the variety of all
semigroups, and note that Sem = ModΣ for the one-element set Σ
consisting of the associative identity. Since both sides of the associa-
tive identity have depth 2, and the same is true for all consequences
of associativity, the variety Sem is both 1-normal and 2-normal, and
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N1(Sem) = N2(Sem) = Sem, with Σ as a basis. For k ≥ 3 however,
the k-normalization varieties Nk(Sem) no longer satisfy associativity,
but only its k-normal consequences. The goal of this paper is to pro-
duce a finite set of identities which is an equational basis of Nk(Sem),
for k ≥ 3.

3. The Basis Theorem. In this section we introduce some notation
and terminology needed to state our main theorem. First, the vari-
ety Sem is a type (2) variety, having one binary operation symbol f .
We shall follow the usual convention regarding terms of this type, by
which we often omit the symbol f from terms and tree diagrams, and
denote the operation by juxtaposition instead. For instance, we can
write the associative identity f(f(x1, x2), x3) ≈ f(x1, f(x2, x3)) simply
as (x1x2)x3 ≈ x1(x2x3). In an associative setting we could also omit the
brackets in terms, but in non-associative varieties such as Nk(Sem) for
k ≥ 3 the brackets are necessary to indicate the grouping of variables
in a term.
In general, for any binary term t, we call the sequence xi1xi2 . . . xip of
the variables occurring in t, in the order in which they occur in t from
left to right, the underlying word of t. This word can be obtained by
writing the term t with the operation represented by juxtaposition, and
with all brackets omitted from t. A key fact about semigroup identities
is that an identity s ≈ t is a consequence of associativity if and only if
the underlying words obtained from s and t are equal.
To produce our basis for Nk(Sem) we shall make use of a certain kind
of terms of type (2).

Definition 3.1. Let k ≥ 1. We shall refer to any term t whose under-
lying word is x1x2 · · ·xk+1 as a skeleton term of depth k. Such terms
have exactly k occurrences of the operation symbol f and exactly one
occurrence of each of the variables x1, . . . , xk+1, in that order from left
to right, and no other variables. We shall denote by Γk the set of all
the skeleton terms of depth k.

For k = 1, there is only one skeleton term, the term x1x2; for k = 2
there are two skeleton terms, x1(x2x3) and (x1x2)x3. We shall make
frequent use of the four skeleton terms for k = 3, labelled as t1, t2, t3
and t4 and shown in Figure 2. It is easy to show by induction on k that
for k ≥ 1, there are 2k−1 skeleton terms.
Our basis for Nk(Sem) will essentially consist of identities which say
that any two skeleton terms of depth k should be equivalent to each
other. We can make the basis smaller by picking one skeleton term and
ensuring that any other term is equivalent to it. The one skeleton we
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choose to focus on will be called the ladder term of depth k. It is a
special case of a general shape called a ladder shape.
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Figure 2: Skeleton Terms for k = 3

Definition 3.2. A ladder term is any term which has the form
f(xi1 , f(xi2 , f(xi3 , . . . , f(xij , xij+1

)) · · · ), for some variables xi1 , . . . , xij+1
.

We denote by lk the particular ladder term

lk = lk(x1, . . . , xk+1) = f(x1, f(x2, f(x3, . . . , f(xk, xk+1)) . . .),

shown in Figure 3 below.
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Figure 3: The ladder term lk
Let t be a term with underlying word xi1 · · ·xip . We call the term
l(t) = f(xi1 , f(xi2 , f(xi3 , . . . , f(xij , xij+1

)) · · · ) the ladder of t. Clearly
t ≈ l(t) is a consequence of associativity.

Theorem 3.3 (The Basis Theorem). For k ≥ 3, the set Σk = {lk ≈
w | w ∈ Γk} forms a finite basis for the identities of Nk(Sem).
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It is clear that by using the deduction rules of transitivity and symmetry
we can deduce from Σk any identity v ≈ w where v and w are skeleton
terms of depth k. We shall henceforth assume that all such identities
are in our basis Σk.

4. Preliminary Lemmas and the Base Case. We shall prove the
Basis Theorem by induction on k, for k ≥ 3. In this section we verify
that the basis works for the base case of the induction, the case k = 3;
but first we prove some preliminary results. The first lemma shows
that if we have a ladder term juxtaposed with another term, we can
“merge” the second term into the ladder shape.

Lemma 4.1 (The Merging Lemma). Let n ≥ 2. Let s1 be a ladder
term

s1 = y1(· · · (yn(yn+1(· · · (yjyj+1) · · · )
for some variables y1, . . . , yj+1 and some depth j ≥ n. Let s2 be any
term, and let s = s1s2. Then we can use the identities in Σn+1 to
deduce s ≈ t, where t = y1(y2(· · · yj(yj+1, s2) · · · ). (See Figure 4 for
illustration.)
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Figure 4: Merging s2 into the ladder s1

Proof: We consider first the skeleton term

p = (x1(x2(· · · (xnxn+1) · · · )xn+2,

of depth n+1. We can regard our term s as an instance of this skeleton,
if we replace xi by yi for 1 ≤ i ≤ n and xn+2 by the term s2 and xn+1

by the term b1 = yn+1(yn+2(· · · (yjyj+1)) · · · ). In terms of the rules of
deduction, we consider the identity from Σn+1 which equates the skele-
ton term p with the ladder skeleton term ln+1. Using the substitution
rule to replace variables by terms, as just described, we see that we can
deduce s ≈ s′, where s′ is the term y1(y2(· · · (yn(b1s2) · · · ). If j = n+1,
we have s′ = t, and our proof is complete. Otherwise, we continue this
process as follows. We can write s′ = y1w for some term w of depth at
least n+1, and we can view this new term w as an instance of a skeleton
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term of depth n + 1. Then we can use the substitution rule again, on
the basis identity which equates that skeleton with the ladder skeleton
term, to deduce s′ ≈ s′′ = y1(y2(y3(· · · (yn(yn+1(b2s2) · · · ). Continuing
in this way j − (n + 1) times, moving up the tree diagram for the term
one place each time, we reach the term t. Then by transitivity we can
deduce s ≈ t.

Corollary 4.2 (Merging Ladders Corollary). Let n ≥ 2. Let s = s1s2

where s1 is a ladder with depth ≥ n and s2 is any ladder term. Then
s ≈ l(s) can be deduced from Σn+1.

Now we can prove the base case in the inductive proof of our main
theorem.

Lemma 4.3 (Basis for N3(Sem)). The set Σ3 is a basis for N3(Sem).

Proof: To show that Σ3 is a basis for N3(Sem), we need to show that
any 3-normal identity which holds in Sem can be deduced from Σ3.
Let s ≈ t be any such identity. Then since s ≈ t holds in Sem we
must have l(s) = l(t). So it will suffice to prove that for any term s
of depth ≥ 3, we can deduce the identity s ≈ l(s) from Σ3. We prove
this claim by induction on the depth n of the term s. Let us recall that
Σ3 consists of all the identities ti ≈ tj for 1 ≤ i, j ≤ 4, using the four
depth 3 skeletons from Figure 2.
For the base case of our induction on n, we need to show that for any
of the 21 terms s of depth exactly 3, we can deduce s ≈ l(s). Since
most of the deductions are quite similar in nature, we illustrate here
with one example, and leave the details of the remaining 20 cases for
the Appendix. Let s = ((x1x2)(x3x4))x5 be the term shown in Figure 5
below. We apply the substitution rule of deduction to the basis identity
t2 ≈ t1, to deduce s ≈ x1(x2(x3x4)x5). Then we use the compatibility
rule on the two identities x1 ≈ x1 and x2((x3x4)x5) ≈ x2(x3(x4x5)),
the latter of which is an instance of t3 ≈ t1, to deduce x1(x2(x3x4)x5)
≈ l(s). Now we have s ≈ l(s) by transitivity. The two steps in this
deduction are shown in Figure 5, where we indicate in brackets each
time which basis identity we are using.
Now for the inductive step, we assume for s ≈ l(s) can be deduced from
Σ3 for any s of depth n ≥ 3, and we consider terms of depth n+1. If s
is a term of depth n + 1, we can write s = s1s2 for some terms s1 and
s2, at least one of which must have depth at least n. We consider two
cases, depending on whether s1 or s2 has depth at least n.
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Figure 5: Deduction of s ≈ l(s)

CASE 1: d(s2) = n ≥ 3:
Then by assumption, s2 ≈ l(s2) can be deduced from Σ3. There are
four subcases to consider, depending upon the depth of the other term
s1.
a) If d(s1) = 0, then s1 is a variable, and in this case s = s1s2 ≈
s1l(s2) = l(s).
b) If d(s1) = 1, then s1 = y1y2 for some variables y1 and y2. Since by
assumption s2 ≈ l(s2), we have s ≈ (y1y2)l(s2) by the compatibility rule
of deduction. We can write l(s2) = w1(w2(· · · (wjwj+1) · · · ) for some
variables w1, . . . wj+1 with j ≥ n. Let b = w3(w4(· · · (wjwj+1) · · · ).
Thus we have s ≈ s′ where s′ = s1(w1(w2b)). Now we perform a series
of three substitutions on identities from Σ3, to transform s′ into l(s),
as illustrated in Figure 6 below. First consider the identity t1 ≈ t4.
By the substitution of s1 for x1, w1 for x2, w2 for x3 and b for x4, we
get s′ ≈ s′′ where s′′ is the term (y1y2)((w1w2)b). Next we use the
identity t2 ≈ t1, and the substitution of y1 for x1, y2 for x2, w1w2

for x3 and b for x4, to get s′′ ≈ s′′′, where s′′′ = y1(y2((w1w2)b)).
Finally, we use t3 ≈ t1, and substitute y2 for x1, w1 for x2, w2 for
x3 and b for x4, to deduce y2((w1w2)b)) ≈ y2(w1(w2b)). Using the
compatibility rule to left-multiply both sides of this last identity by y1,
we get s′′′ ≈ y1(y2(w1(w2b))) = l(s). Overall, by transitivity we have
deduced s ≈ l(s).
c) If d(s1) = 2, then there are 3 subcases to consider for the shape of
s1.
i) If s1 = (y1y2)y3 for some variables y1, y2 and y3, then we consider
the identity t2 ≈ t1 from Σ3. Using s2 ≈ l(s2) by induction, and
the substitution of yi for xi for 1 ≤ i ≤ 3 and l(s2) for x4, we get
s ≈ y1(y2(y3l(s2))) = l(s).
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Figure 6: Deduction of s ≈ l(s) in Case 1b)

ii) If s1 = (y1y2)(y3y4) for some variables y1, . . . , y4, then we consider
first the identity t2 ≈ t1. Making the substitution of y1 for x1, y2 for
x2, y3y4 for x3 and s2 for x4, we deduce s ≈ s′ = y1(y2((y3y4)s2)). Next
we substitute into t3 ≈ t1, using y2 for x1, y3 for x2, y4 for x3 and s2

for x4. This yields the identity y2((y3y4)s2) ≈ y2(y3(y4(s2))). Using the
compatibility rule to introduce y1 on the left side of each term in this
last identity, we get y1(y2((y3y4)s2)) ≈ y1(y2(y3(y4(s2))). The left hand
side of this identity is s′; on the right hand side we have a ladder shape
with s2 in the last position on the ladder. Since by induction we have
s2 ≈ l(s2), we get s ≈ y1(y2(y3(y4(l(s2)))) = l(s).
iii) If s1 = y1(y2y3) for some variables y1, y2 and y3, we use the identity
t4 ≈ t1. Substitution of yi for xi, for 1 ≤ i ≤ 3, and s2 for x4, gives
s ≈ y1(y2(y3(s2))). Using the compatibility rule on the assumption that
s2 ≈ l(s2) then gives s ≈ l(s).
d) If d(s1) = n ≥ 3, then by the induction assumption we can deduce
both s1 ≈ l(s1) and s2 ≈ l(s2). Then we get s = s1s2 ≈ l(s1)l(s2).
By the Merging Ladders Corollary above, with n = 2, we can deduce
l(s1)l(s2) ≈ l(s) from Σ3, giving us s ≈ l(s).
CASE 2: d(s1) = n ≥ 3:
Then by assumption, s1 ≈ l(s1) can be deduced from Σ3. If s2 is also
a ladder, then we can deduce s = s1s2 ≈ l(s) from Σ3, by the Merging
Ladders Corollary 4.2. This happens if s2 is a variable or a depth 1
term of the form y1y2 for some variables y1 and y2. If s2 has depth 3
or more, then by induction we can ladder it to get s2 ≈ l(s2), and then
use Corollary 4.2 again to get s = s1s2 ≈ l(s1)s2 ≈ l(s1)l(s2) ≈ l(s1s2)
= l(s). This leaves only the subcase that s2 is a term of depth 2.
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There are three possible shapes for a term of depth 2. If s2 = y1(y2y3)
for variables y1, y2, y3, then s2 is a ladder, and we can use the Merging
Ladders Corollary 4.2 to deduce s = s1s2 ≈ l(s1)l(s2) ≈ l(s1s2) = l(s).
If s2 = (y1y2)y3 for variables y1, y2, y3, then we use the identity t3 ≈ t1.
By the substitution of s1 for x1, y1 for x2, y2 for x3 and y3 for x4, we
deduce s = s1((y1y2)y3) ≈ s1(y1(y2y3)). Then we use the induction
hypothesis that s1 ≈ l(s1) to deduce s1(y1(y2y3)) ≈ l(s1)(y1(y2y3)) =
l(s). By transitivity then we have s ≈ l(s). Finally, if s2 = (y1y2)(y3y4)
for some variables yj, we substitute s1 for x1, y1 for x2, y2 for x3 and
y3y4 for x4 into the identity t3 ≈ t1. This yields the identity s ≈
s1(y1(y2(y3y4))). Then using the assumption to make s1 ≈ l(s1) and
the Merging Ladders Corollary 4.2 again, we get s ≈ l(s).

5. Proof of the Basis Theorem. To finish the proof of our Basis
Theorem, we need one additional property about the sets Σk of identi-
ties. These sets have a sort of “nested” property, in the following sense.
If s is a skeleton term of depth k, for some k ≥ 2, then (possibly af-
ter some relabelling of variables) the two terms xs and sx are skeleton
terms of depth k + 1, for any variable x. Thus if ti and tj are skeleton
terms of depth k, with ti ≈ tj in Σk, we have the identities x ti ≈ x tj
and ti x ≈ tj x in Σk+1.
Now we are ready to prove our main Basis Theorem, Theorem 3.3. We
want to prove that for any k ≥ 3, any identity s ≈ t which holds in
Nk(Sem), that is, holds in Sem and has both d(s) and d(t) at least k,
can be deduced from the set Σk. Since an identity s ≈ t holds in Sem
if and only if l(s) = l(t), it is sufficient to prove that for any k ≥ 3 and
any term s of depth ≥ k, we can deduce s ≈ l(s) from Σk. We proceed
by (strong) induction on k. The base case, k = 3, holds by Lemma 4.3.
Inductively, we assume that for any term t of depth j we can deduce
t ≈ l(t) from Σj, for 3 ≤ j ≤ k. Using this we show how we can deduce
s ≈ l(s) for any term s of depth ≥ k + 1 using Σk+1.
Let s be any term of depth ≥ k + 1. This means that we can write s =
s1s2 for some terms s1 and s2, at least one of which must have depth
at least k.
CASE 1: d(s1) ≥ k:
By the inductive assumption, we can deduce s1 ≈ l(s1) from Σk. Then
we can use the nested property described above to deduce s = s1s2

≈ l(s1)s2 from Σk+1: each time an identity ti ≈ tj was used in the
deduction of s1 ≈ l(s1) from Σ3, we now use use ti x ≈ tj x from Σk+1.
Let us write l(s1) = x1(x2(· · ·xp) · · · ). Then by Lemma 4.1, with n = k,
we can use Σk+1 to deduce s ≈ x1(· · · (xn−1(xps2) · · · ).
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This last term has a ladder shape if s2 has a ladder shape, in particular
if s2 is a variable or has depth 1. If d(s2) = 2, then we can deduce xps2

≈ l(xps2) using only identities of the form ti ≈ tj from Σ3. We can
then deduce w = x1(x2(· · · (xps2) · · · )) ≈ l(w), using the nested version
x1(x2(· · · (xp−1ti · · · ))) ≈ x1(x2(· · · (xp−1tj · · · ))) in Σk+1.
Similarly, if d(s2) ≥ 3 we can deduce s2 ≈ l(s2) using some identities
ti ≈ tj from Σ3, and so deduce s ≈ l(s) by the corresponding nested
identities x1(· · · (xnti) · · · ) ≈ x1(· · · (xntj) · · · ) in Σk+1.

CASE 2: d(s2) ≥ k:
By the inductive assumption, we can deduce s2 ≈ l(s2) from Σk, and
again by using the corresponding nested versions of any identities used
in this deduction, we are able to deduce s ≈ s1l(s2) from Σk+1. Then
if s1 is a variable only, we have a ladder and s ≈ l(s). So we suppose
that d(s1) ≥ 1. We can write l(s2) as y1(y2(· · · (yn−1yn) · · · ) for some
variables y1, . . . , yn. Then we can use one of the skeleton identities from
Σk+1 to deduce s ≈ s′1s

′
2 = (· · · (s1y1)y2) · · · )yk−1)(yk(· · · (yn−1yn) · · · ).

Since d(s′1) ≥ k, we can now apply Case 1, to conclude that we can
deduce s ≈ l(s) as required.

APPENDIX: THE 21 BASE CASES FOR LEMMA 4.3
Here we show the details of the deduction of s ≈ l(s) from Σ3, for each
of the 21 possible terms s of depth 3. In each case we use substitution
and compatibility on one or more of the basis identities from Σ3. We
indicate by the symbol −− any place where we are substituting a larger
term for a single variable in a skeleton term; and we use ◦ to indicate a
portion of a tree which we intend to regard as a skeleton term of depth
3 in order to then use compatibility. The terms s are grouped according
to whether they use 4, 5, 6, 7 or 8 variables.

Terms with Four Variables: These are the four skeleton terms, and each
ti ≈ tj is already in Σ3.

Terms with Five variables:

@
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@@� @

x1 x2 x3 x4 x5

−− ≈
(t3 ≈ t1)

@�
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�
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x3

x4 x5
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Terms with Six Variables :
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Terms with Seven Variables :
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Terms with Eight Variables :
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