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Abstract. A dynamical-systems model of plasma glucose concentration, and
its regulation by insulin and glucagon, is described, as pertains to types 1 and
2 diabetes. The hyperglycemic case is seen to be dependent only on insulin
concentration, while the hypoglycemic case requires consideration of both in-
sulin and glucagon concentrations. The role of healthy α cells in maintaining

proper levels of glucose and the hormones is also highlighted.

1. Introduction. Glucose is a sugar that provides energy to all the cells in the
body and consequently the regulation of its plasma levels is of the utmost impor-
tance. When glucose concentration in the bloodstream gets too high, the body
reacts by storing excess glucose in the liver and muscles as glycogen, a starch made
up of many glucose molecules. When blood glucose levels get too low, the liver
then converts glycogen back to glucose so that a relatively constant glucose con-
centration is maintained. To achieve this equilibrium, the body relies primarily on
two hormones, insulin and glucagon, which are produced in the β and α cells of
the pancreas, respectively. Insulin and glucagon have effects opposing one another:
when glucose levels are too high, the pancreas secretes insulin which lowers these
levels, and when glucose levels are too low, glucagon is secreted to raise them. In-
sulin is required by almost all cells in the body, but has the greatest influence on
liver cells, fat cells, and muscle cells. By targeting these cells, insulin causes liver
and muscle cells to convert glucose to glycogen and fat cells to store fat from fatty
acids in the body. Glucagon acts on the same cells as insulin, but has the opposite
affect. Glucagon stimulates the liver cells to break down stored glycogen and release
glucose into the bloodstream.

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.

Key words and phrases. Diabetes, Glucose, Insulin, Glucagon, Mathematical Modelling.

31



32 KENNETH W. SULSTON, WILLIAM P. IRELAND, JEFF C. PRAUGHT

Diabetes mellitus is a disorder characterized by abnormally high blood glucose
levels. Diabetes is characterized by two types: insulin-dependent diabetes (type 1)
and non-insulin-dependent diabetes (type 2). In type 1 diabetes, more than 90% of
the β cells in the pancreas are destroyed, thereby causing the pancreas to produce
little or no insulin. Type 1 diabetes is the rarer form and occurs in less than 10% of
all cases, while type 2 diabetes accounts for about 90% of all diabetic patients. In
type 2 diabetes, the pancreas continues to produce some insulin, sometimes even at
the same levels as people without diabetes. However, the body develops a resistance
to the insulin and the pancreas can not produce enough insulin to meet the body’s
requirements. As a result, glucose is not absorbed into muscle and fat cells at a
normal rate, and the liver does not function properly, causing glucose levels to be
too high.

Mathematical modelling of diabetes is not a new area of research, as there has
been an extensive amount of research done for more than 40 years. One of the
earliest models was introduced by Bolie [8]; this model was a system of differential
equations, with one variable for insulin and one for glucose. Although it was rel-
atively simple, this model provided the foundation on which many of the pioneers
of diabetes modelling, such as Cobelli and Ackerman, would base their work. Ack-
erman et al. ([1],[2],[3]) developed a model of the oral glucose tolerance test which
measures the ability of a patient to utilize a specific amount of glucose. Much of the
subsequent work that followed continued with the glucose-insulin model and varia-
tions of it. Bergman et al. [7] developed a model to study glucose disappearance and
how it affects insulin sensitivity. Their model predicted two linearly connected pools
in the pancreas; one pool for stored insulin and the other for promptly releasable
insulin. Cobelli et al. [13] developed a complex and comprehensive non-linear model
to study the short-term blood glucose regulation system. They include crucial pro-
cesses of glucose, insulin, and glucagon dynamics and their interrelationships. There
are limitations to comprehensive models like this one, which are intrinsic in nature,
such as variations in the parameters among different individuals and the difficulty
of finding data corresponding to all processes included in the model.

Salzsieder et al. [19] argued that in order to control long-term glycemic regulation,
it is necessary to estimate control parameters for each diabetic patient individually.
Their model of glucose and insulin used optimal control theory to find the best esti-
mate for these parameters. They considered physiological relevant processes such as
endogenous glucose production, insulin-dependent glucose utilization, and insulin
catabolism. Summers and Montani [22] presented a model of glucose homeostasis
based on the bihormonal regulation of glucose by glucagon and insulin. Sturis et al.
[21] developed a model to study oscillations in human insulin over two distinct time
periods, rapid (10 - 15 minutes) and ultradian (100 - 150 minutes). Their model
used two major feedback loops to describe the effects of insulin on both glucose pro-
duction and utilization. There have been numerous other models developed to study
different aspects of diabetes, including those of Andreassen et al. [5], Boroujerdi et

al. [10], and Cobelli et al. [12].
The focus of the model presented here is on the effect of glucagon, which has an

important, albeit secondary, role in the regulation of glucose. At normal to high
levels of plasma glucose, glucagon is secreted at a low rate, and its plasma con-
centration remains relatively constant. But when glucose levels are low, glucagon
secretion increases and its plasma concentration rises significantly. Glucose levels
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in diabetics are usually in the above-normal range, so that it is the former situa-
tion that ordinarily applies, although hypoglycemia is a serious acute complication,
with possible long-term effects on health. However, most models have been con-
cerned with hyperglycemic situations, and for this reason, have not incorporated
glucagon. Among those that did, Dobbins et al. [14] performed compartmental
modelling of glucagon in dogs, as part of a theoretical and experimental study ex-
amining glucagon metabolism and distribution, although the study was not specif-
ically aimed at diabetes. The main conclusion was that glucagon has a key role in
the acute regulation of glucose homeostasis, due to glucagon’s rapid equilibration
in plasma and its rapid activation of hepatic glucose production. From a modelling
perspective, this investigation settled the important question that glucagon kinetics
are best described using a model with a single pool for glucagon. Celeste et al. [11]
studied a (mostly) linear model involving glucagon, insulin, and glucose, which is
an extension of the simple Ackerman model so as to include glucagon, with one
pool for each substance. Insulin and glucagon were assumed to interact only with
glucose, and not with each other. The goals of the study were to show the roles
of both insulin and glucagon as co-regulators of glucose, and to simulate the oral
glucose tolerance test and insulin infusion test. The simulation of the oral glucose
tolerance test suggested that glucagon is not important at higher blood glucose
levels, while the simulation of the insulin infusion test showed that glucagon plays
a crucial role in recovery from hypoglycemia. They concluded by postulating that
glucose levels can be regulated by a weighted combination of insulin and glucagon.
Summers and co-workers ([22],[23]) also studied the bihormonal influence of insulin
and glucagon on glucose homeostasis, with the aim of developing a broad-based
model capable of examining various aspects of glucose metabolism. They adopted a
model of three differential equations, one for each of glucose, insulin and glucagon,
with the latter two interacting only with glucose, but not with each other, as was
also done in Celeste et al. [11]. The resulting model was deemed useful for both the-
oretical analyses and experimental and clinical simulations. Other hormones, such
as somatostatin and pancreatic polypeptide, play smaller roles in glucose dynamics,
and have received virtually no attention in the modelling literature.

In this paper, we develop a mathematical model of glucose dynamics which in-
cludes its interactions with both insulin and glucagon, and with an emphasis on
the low-glucose-concentration regime. Novel features not included in other models
are the direct influence of insulin and glucagon on each other, and the ingestion of
glucose via a meal.

2. Physiological Description of the Model. There are a number of physiolog-
ical factors that contribute to the concentrations of glucose, insulin, and glucagon
in plasma. We develop a dynamic model for their levels, by constructing a differen-
tial equation to describe the changes with respect to time t (in minutes) of each of
glucose G (in mg/dl), insulin I (in ng/dl), and glucagon E (in ng/dl). Parameter
values are selected to be appropriate for a typical 70 kg man, with an assumed
plasma volume of 35 dl.

The change in the plasma glucose level can be described phenomenologically by

dG/dt = (hepatic release/uptake)

−(uptake by brain and red blood cells)

−(uptake by peripherals)− (uptake by kidneys) + (ingestion). (2.1)
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The terms contributing to (2.1) are as follows. The hepatic uptake/release repre-
sents the central role played by the liver in controlling glucose levels. Glucose and
insulin serve to increase uptake of glucose by the liver, while glucagon stimulates
glucose’s release. Uptake by brain and red blood cells represents glucose usage by
these areas, and these processes are independent of insulin. Uptake by peripher-
als represents glucose storage by fat and muscle cells, with these processes being
insulin-dependent. Uptake by the kidneys is due to the fact that when glucose levels
get too high, excess amounts are passed out of the body in urine by the kidneys.
This process is obviously dependent on the concentration of glucose in the blood,
but not on that of insulin. Ingestion describes the amount of glucose obtained from
a particular meal, and varies depending on the type and amount of food consumed
by an individual.

The change in the insulin level can be represented by

dI/dt = (secretion)− (degradation) + (injection). (2.2)

The first term in (2.2) describes the secretion of insulin, which is known to be
stimulated by high levels of glucose and also, to a lesser extent, by glucagon. The
degradation term determines how long insulin remains in the blood stream before
it is cleared from the body. The injection term is for exogenous insulin externally
administered into the bloodstream.

The change in the glucagon level can similarly be described by

dE/dt = (secretion)− (degradation). (2.3)

The secretion of glucagon in (2.3) depends on both glucose and insulin levels. When
glucose is at normal (or higher) levels, the secretion rate is minimal, but when the
glucose level falls below a threshold value, glucagon secretion increases (so that the
higher glucagon level will spur hepatic release of glucose, thereby raising that level
towards the normal range). On the other hand, insulin suppresses the release of
glucagon, so that as the insulin concentration rises, the secretion rate of glucagon
decreases. The degradation term represents the clearance of glucagon from the
bloodstream.

3. Mathematical Construction of the Model. In this section, we reshape the
qualitative equations of the last section into differential equations, by modelling each
term by an appropriate mathematical form, which mimics the known physiological
function. Parameter values are selected, when possible, by performing a least-
squares fit of the chosen mathematical form to the corresponding experimental
data.

3.1. Glucose. Conversion of glucose into glycogen, or vice versa, by the liver is one
of the body’s primary methods of regulating glucose concentrations in the blood-
stream. High levels of either glucose or insulin serve to increase glucose uptake
by the liver, while glucagon stimulates glucose release. To model the dependence
of the hepatic release on the glucose concentration, a form that limits the amount
of glucose absorbed is needed, because there is a saturation effect at high glucose
levels. Thus an appropriate form is

k5 −
k8G

k9 +G
, (3.1)

where k5 represents the maximum release rate in the (hypothetical) absence of
glucose and k8 and k9 are the saturation parameters.
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The next fact to consider is that rising insulin inhibits the release of glucose
from the liver (via glycogen breakdown) up to a threshold point; beyond this point,
insulin causes the liver to actually absorb glucose through the synthesis of glycogen.
This effect can be modelled conveniently by multiplying k5 by a “damping” factor
to revise (3.1) to

k5k6

k6 + I
−

k8G

k9 +G
, (3.2)

where the new factor has a value close to 1 (0) at low (high) insulin concentrations.
Lastly, the stimulative effect of glucagon on hepatic release is thought to be lin-

ear (Dobbins et al., [14]). This is due to the fact that glucagon acts by interacting
with liver hepatocytes, causing them to secrete glucose [15], suggesting that glu-
cose production increases proportionally to the glucagon concentration. Thus the
glucagon effect is modelled as a linear relationship, so that the final form for the
hepatic uptake/release (the first term on the right-hand side of (2.1)) is

dGhep/dt =
k5k6

k6 + I
−

k8G

k9 +G
+ k7E. (3.3)

The values of the parameters appearing in (3.3) were determined by reference
to experiment. The value of k7 is calculated from the work of Dobbins et al. [14],
specifically a plot of the net hepatic glucose balance versus glucagon concentration
(their fig. 4). This yields a value of k7 = 0.4572 (mg/dl/min of G) per (ng/dl of
E). The other parameters (k5, k6, k8, k9) were estimated by doing a least-squares
fit to fig. 2 of Guyton et al. [16] of the right-hand side of (3.3) with E set equal to
the calculated glucagon fasting level of 8.2 ng/dl (see section 3.3).

The uptake of glucose by the brain and red blood cells is independent of insulin
(and glucagon) concentration, but not of glucose concentration. Although some
workers have suggested that the uptake rate should be constant, Andreassen et al.
[5] and Boroujerdi et al. [10] argue that it should more realistically be a function of
glucose concentration with a saturation limit. Following the latter perspective, the
form for this contribution to (2.1) is taken to be

dGbrain/dt = −
k4G

k3 +G
. (3.4)

Eq. (3.4) indicates that the uptake is effectively 0 at low glucose concentrations,
and approaches a limiting value of k4 at high concentrations.

The parameter values appearing in (3.4) were determined, using the data in fig.
4A of Andreassen et al. [5], to be k3 = 207.12654 mg/dl and k4 = 9.1119 mg/dl/min.

The uptake of glucose by the “peripherals” (primarily fat and muscle) is depen-
dent not only on glucose, but also on insulin. Following Andreassen et al. [5] this
insulin-dependent utilization is close to 0 when I = 0, and increases linearly with
increasing blood glucose levels, suggesting proportionality to both G and I. Thus
a suitable form is

dGper/dt = −(k1G+ k2)I. (3.5)

The values for the parameters in (3.5) were estimated using the data in fig. 5B
of Andreassen et al. [5] to be k1 = 1.0855 × 10−4 min−1 per (ng/dl of I) and
k2 = 9.7947× 10−3 (mg/dl/min of G) per (ng/dl of I).

The uptake rate by the kidneys is independent of insulin and glucagon, but not
glucose. When G is below the renal threshold level Gr, the uptake rate by the
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kidneys is 0. When G is greater that Gr, the rate of uptake increases linearly with
increasing G. Thus we have

dGkid/dt = −kr(G−Gr)u(G−Gr), (3.6)

where the parameter kr controls the rate of uptake, and u(G−Gr) is the Heaviside
step function.

The value of the renal threshold is well-established as Gr = 180 mg/dl [15].
To calculate kr, we use the fact quoted by Summers and Montani [22] that the
uptake by the kidneys increases 230 mg/min for every 180 mg/dl rise in glucose
concentration, based on a 70 kg person with an estimated plasma volume of 35 dl.
This results in a value of kr = 0.0365 min−1.

The exogenous glucose is represented by an input function that describes the
amount of glucose ingested and how it is processed in the body. Unlike many models
which assume glucose as being given intravenously, we use an approach that models
its absorption via a meal. We adopt here the model of Yates and Fletcher [25],
which treats this situation as a two-compartment process. The first compartment
models the stomach via a trapezoidal function, that describes the glucose flux as
the stomach empties into the small intestine, and which has the form

Gempt =























(Vmax/Tasc)t, t < Tasc

Vmax, Tasc < t < Tasc + Tmax

Vmax − (Vmax/Tdesc)(t− Tasc − Tmax), Tasc + Tmax < t
< Tasc + Tmax + Tdesc

0, otherwise
(3.7)

In (3.7), Vmax is the maximum rate of gastric emptying, and Tasc (Tdesc) is the
duration of the ascending (descending) branch of the gastric emptying curve. We
let Gtotal represent the total amount of glucose contained in a meal, which is thus
a control parameter that depends on the size of the meal and its glucose content.
Then

Tmax =
Gtotal − Vmax(Tasc + Tdesc)/2

Vmax

.

The second compartment in the Yates/Fletcher model describes how glucose is
processed in the gut, and is governed by the differential equation

dGgut/dt = Gempt −KgabsGgut. (3.8)

From here the exogenous glucose is determined, by virtue of its being proportional
to Ggut; namely

Gexg = KgabsGgut. (3.9)

Eq (3.8) describes the amount of glucose in the gut, namely Ggut, while (3.9) cal-
culates the rate of glucose input into the bloodstream via the gut wall. Kgabs is
the absorption rate constant of glucose from the gut. The set of equations (3.7) to
(3.9) can be solved symbolically (via Maple, for example) to give an explicit, albeit
lengthy, expression for Gexg(t).

The parameter Vmax is the maximum rate of gastric emptying, for which Yates
and Fletcher [25] give a value of 360 mg/min. The parameters Tasc and Tdesc vary
with the individual, and are here both assumed to have a value of 15 minutes. Gtotal

is a control parameter which can be varied to simulate different glucose contents of
a meal. The rate constant Kgabs is taken to be 1/60 min−1 [25].



HORMONAL EFFECTS ON GLUCOSE REGULATION 37

Inserting the results of eqs. (3.3) to (3.6), and (3.9) into (2.1) gives the final form
for the glucose equation to be

dG/dt =
k5k6

k6 + I
−

k8G

k9 +G
+ k7E −

k4G

k3 +G
− (k1G+ k2)I

−kr(G−Gr)u(G−Gr) +Gexg(t). (3.10)

3.2. Insulin. Insulin is secreted by the β cells in the pancreas. It is well-known
that both glucose and glucagon have stimulative effects on insulin release, and it
is thought that either can act in the absence of the other. Thus the secretion
term in (2.2) is modelled as having two terms, one for each of glucose and glucagon
dependence. The rate of insulin release is considered to increase proportionally with
the glucagon concentration in the blood, suggesting a simple linear relationship. On
the other hand, the glucose dependence is more complicated; the rate of release rises
with glucose concentration, but with a saturation effect. Consequently, an approach
equivalent to that of Sturis et al. [21] is adopted, whereby the dependence on glucose
is described by a hyperbolic tangent function. Thus the secretion term in (2.2) is
modelled by

dIsec/dt = (a1/2)[tanh(a2(G− a3)) + 1] + b1E, (3.11)

where a1 is the maximum secretion rate in the absence of glucagon.
The parameter b1 in (3.11) is estimated using the work of Kawai et al. [17], and

specifically their fig. 1 wherein they plot the dependence of insulin on glucagon.
Thus is obtained a value of b1 = 0.14545 (ng/dl/min of I) per (ng/dl of E). The
other parameters are taken from the work of Sturis et al. [21], considering that the
tanh term in (3.11) is equivalent to the exponential-type form used therein, yielding
a1 = 248.81 ng/dl/min, a2 = 0.01667 (mg/dl)−1, and a3 = 198 mg/dl.

The degradation rate for insulin is clinically known to be proportional to the
insulin concentration, so the second term in (2.2) has the form

dIdeg/dt = −b2I. (3.12)

A value of b2 is estimated from the work of Cobelli et al. [13], where their multi-pool
submodel for insulin is treated as one effective pool with a decay constant b2 = 0.206
min−1.

The injection term in (2.2), the so-called exogenous insulin, is modelled by an
input function that varies according to the type of insulin administered, the duration
of its effectiveness, the size of the dosage, and the time at which the dosage is given.
Here, the mathematical form for the exogenous insulin is taken from the work of
Basov et al. [6], which appears to be satisfactory for longer-acting insulin types
(such as NPH and Lente), but less so for shorter term types (such as Regular). The
Basov approach models a series of m insulin injections as

Iexg(t) =

m
∑

j=1

ij(t), (3.13)

with

ij(t) =

{

Bj sin[π(t− tj)/Tj ], tj ≤ t ≤ tj + Tj ,
0, otherwise,

(3.14)

where tj corresponds to the time at which dosage j is given, Tj is the duration of
its effectiveness, and Bj = (πI0)/(2Tj), with I0 being the actual size of the dosage.
Typical values of Tj are 24 hours for Lente and 20 hours for NPH. I0 and tj are
control parameters, whose chosen values are discussed in section 4.
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Substituting eqs. (3.11) to (3.13) into (2.2) produces the final form for the insulin
equation, viz.,

dI/dt = (a1/2)[tanh(a2(G− a3)) + 1] + b1E − b2I + Iexg(t). (3.15)

3.3. Glucagon. The degradation rate of glucagon in plasma is known from clinical
experiments to be proportional to the glucagon concentration, so that the second
term in (2.3) has the form

dEdeg/dt = −c3E. (3.16)

The value of the degradation constant is well-known to be c3 = 0.08 min−1 [13].
Glucagon is secreted in the α cells of the pancreas, with the secretion increasing

at low glucose levels but being suppressed by high insulin levels. At normal fasting
levels of glucose, there is a basal level of glucagon secretion, taken here to be a con-
stant c0. At higher glucose concentrations, additional secretion is suppressed, but
when the glucose concentration falls below a threshold level GE , glucagon secretion
should increase linearly with decreasing G. Thus an initial form for the secretion
term in (2.3) is

c0 + c1(GE −G)u(GE −G), (3.17)

with the Heaviside step function u serving to switch the secretion on or off at the
threshold value GE . When I = 0, the glucagon secretion rate is at its maximum,
and as I increases, the secretion rate should decrease. This fact suggests that (3.17)
should be modified to

dEsec/dt = c0 +
c1

c2 + I
(GE −G)u(GE −G). (3.18)

The fasting level of glucagon is known to be Ē = 8.2 ng/dl [9], from which c0
is determined from the relationship Ē = c0/c3 to be c0 = 0.656 ng/dl/min. The
threshold value of glucose below which glucagon secretion occurs is well-established
to be GE = 75 mg/dl [15]. The values of c1 and c2 were determined by fitting
to data extracted from fig. 1 of Bolli et al. [9], yielding c1 = 2.5441 (ng/dl/min of
E)(ng/dl of I) per (mg/dl of G) and c2 = −5.2523 ng/dl (of I).

Substituting (3.16) and (3.18) into (2.3) produces the final form of the glucagon
equation as

dE/dt = c0 +
c1

c2 + I
(GE −G)u(GE −G)− c3E. (3.19)

Note that when G > GE , the Heaviside function is switched off, setting the middle
term of (3.19) to 0, resulting in an equilibrium value of glucagon being achieved
when dE/dt = 0, i.e., at Ē = c0/c3.

3.4. Diabetes. The model of glucose utilization represented by equations (3.10),
(3.15), and (3.19) pertains to a healthy individual. To simulate the different forms
of diabetes requires modification of certain terms, which we discuss here.

Type 1 diabetes is characterized by the destruction of most of the β cells, with
the result that little insulin is produced. Although this effect could be modelled
in various ways, we do so in a simple manner whereby the insulin secretion terms
(3.11) are replaced by a single constant term b3 so that the insulin equation (3.15)
in the model is replaced by

dI/dt = b3 − b2I + Iexg(t). (3.20)

The value of b3 can be expected to vary with the severity of the individual’s con-
dition, but here we choose b3 = 3.914 ng/dl/min, corresponding to an equilibrium
level of insulin of 19 ng/dl. Type 1 diabetes is known to have complications, such
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as renal failure and liver disease, which occur over the long term; such factors are
not incorporated into the model.

In type 2 diabetes, the β cells continue to produce insulin, although at a reduced
level. Moreover, the body develops a resistance to insulin thus reducing its effec-
tiveness. The former effect can be modelled by multiplying the insulin secretion
terms (3.11) by a reduction factor 0 ≤ InsRed ≤ 1. The value of InsRed would
vary with the individual, so here we choose an intermediate value of InsRed = 0.5.
The latter effect can be modelled by multiplying usage-related occurrences of I(t)
by an effectiveness factor. Specifically we change the peripheral uptake (3.5) to

dGper/dt = −(k1G+ k2)I(InsEff), (3.21)

and the hepatic uptake/release (3.3) to

dGhep/dt =
k5k6

k6 + I(InsEff2)
−

k8G

k9 +G
+ k7E, (3.22)

where the effectiveness factors are such that 0 ≤ InsEff, InsEff2 ≤ 1. The actual
values of the factors will depend upon the individual, and here we take them to be
InsEff = InsEff2 = 0.2.

The final situation that we simulate is that of damage to the α cells (which secrete
glucagon), which is believed to be of possible importance in many diabetic cases.
This is due to the fact that the sensitivity of the α cells to glucose is apparently
diminished over time, so that more glucose is needed in order for suppression of
glucagon secretion to occur, resulting in an increase in the value of GE . For our
purposes here, we take that revised value to be GE = 125 mg/dl. In addition, the α
cells may be desensitized to insulin, which may be modelled by multiplying I(t) in
(3.19) by an effectiveness factor InsEff3 so that the glucagon equation becomes

dE/dt = c0 +
c1

c2 + I(InsEff3)
(GE −G)u(GE −G)− c3E. (3.23)

We take InsEff3 = 0.2.

4. Results and Discussion. In this section, we look at some representative re-
sults for the model, for both healthy and diabetic individuals. The starting point
is the set of equations (3.10), (3.15) and (3.19) for a healthy individual, with pa-
rameter values as indicated in sections 3.1-3.3. These equations form a dynamical

system, which can be solved numerically for arbitrary initial conditions. It can be
shown that the system has just one equilibrium (i.e., steady-state solution), oc-
curring at Ḡ = 93.6, Ī = 41.6, Ē = 8.2. The equilibrium can be shown to be
stable, which indicates physiologically that, at least for modest deviations from the
steady-state values, the system returns itself to equilibrium, as would be expected
in a healthy individual; i.e., when the plasma concentration of one or more of the
substances deviates from equilibrium, the system readjusts itself so as to drive the
concentrations back to equilibrium. This behaviour is illustrated in Figure 1, where
neither food nor insulin is given, while the initial values are taken to be G0 = 60,
I0 = Ī, E0 = Ē (i.e., glucose initially below equilibrium, insulin and glucagon at
equilibrium). The graphs show that the glucose level very quickly (within 15 min-
utes) returns to the equilibrium level, due to a combination of a short-term drop in
the insulin level (by about 25%) and a rise in the glucagon level (of about 20%).
This behaviour is expected because of the known effect of glucagon to raise glucose
levels and of insulin to lower them. When the calculation was repeated, but with
insulin and glucagon levels held constant at their equilibrium values, it took about
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Figure 1. G(t), I(t), and E(t)×10 for a healthy individual, given
no food (Gtotal = 0) and no insulin (Itotal = 0).

2-3 times longer for the glucose level to return to equilibrium. However, with just
glucagon kept constant, the equilibration process is only modestly slower than when
glucagon is allowed to vary. This is indicative of the fact (Unger [24], Kruger et al.
[18]) that insulin is the primary regulator of the bloodstream’s glucose levels, with
glucagon acting in a secondary role as one (but not the only) counterbalance to
insulin’s actions. The role of glucagon becomes more pronounced when the glucose
level falls even further below the secretion threshold of GE = 75 mg/dl, than the
G0 = 60 mg/dl of Figure 1. The distinction between holding glucagon constant,
versus letting it vary, becomes greater with lower glucose levels. The importance of
glucagon in correcting such situations of hypoglycemia is thus emphasized.

The situation that is normal for healthy individuals is ingestion of a meal, but
with no administration of exogenous insulin. This case is illustrated in Figure 2,
for a meal with a content of Gtotal = 200000 mg of glucose, and with all levels
initially at their equilibrium values. As might be anticipated, the glucose level rises
to a maximum of over 125 mg/dl and remains elevated over a period of several
hours, before dropping back to equilibrium level. Correspondingly, the insulin level
rises over the same time period, acting to bring the glucose levels down. The
glucagon level (not shown) remains constant at Ē = 8.2 ng/dl because the glucose
concentration always remains above the threshold value GE = 75 mg/dl, below
which additional glucagon secretion commences (c.f. (3.17)). This circumstance
would be the usual one for hyperglycemia wherein glucose levels are high resulting
in glucagon levels remaining constant. The modellistic implication is that glucagon
as a dynamic variable can be removed from the model, in such cases. Such is not

the case for hypoglycemia, where glucagon levels may change significantly.
We turn now to type 1 diabetes, with the model modifications outlined in section

3.4. Figure 3 illustrates a typical situation where a meal with Gtotal = 200000 mg
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Figure 2. G(t) and I(t) for a healthy individual, with ingestion
of a meal (Gtotal = 200000) but no insulin (Itotal = 0). E(t) =
constant is not shown.

glucose content is taken (at t = 0) followed an hour later by an administration of
27778 ng/dl Lente insulin, corresponding to 1

3
U per kg bodyweight. (The standard

clinical unit for measurement of insulin is 1 U which corresponds to 1/24 mg of
insulin.) The initial values are taken to be the new equilibrium levels of equations
(3.10), (3.19), and (3.20), namely Ḡ = 120, Ī = 19, and Ē = 8.2. As expected,
the meal causes the modelled glucose level to rise quickly to almost 200 mg/dl.
The insulin injection an hour later immediately raises the plasma insulin level I(t),
which the model responds with a steep decline in G(t). In this case, the insulin
serves to decrease the glucose to a very low level (eventually around 50 mg/dl),
thus causing the glucagon secretion to increase dramatically at t = 600 in order to
drive G(t) back up to equilibrium. Thus the model predicts that glucagon plays a
crucial role in correcting this hypoglycemic situation. Qualitatively similar results
are obtained for other meal sizes and insulin doses and types. For example, a larger
meal with higher glucose content (Gtotal) would cause more glucose to be in the
body, and the predicted duration of any glucagon secretion would be considerably
decreased. Figure 3 can be compared with Figure 2 (for a healthy person), where it
can be noted that the return to equilibrium takes approximately twice as long for a
diabetic as for a healthy person, and with noticeably more variation in the function
values, especially G(t).

Type 2 diabetes differs from type 1 because more significant amounts of insulin
are produced, but the insulin’s effectiveness is reduced, thus leading to the model
implications discussed in section 3.4. Figure 4 displays a typical scenario wherein
a meal with glucose content Gtotal = 200000 mg is ingested at t = 0, but no in-
sulin is administered (because type 2 diabetics usually do not take insulin). After
the meal, the plasma glucose level G(t) increases rapidly to over 190 mg/dl and
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Figure 3. G(t), I(t), and E(t) × 10 for a type 1 diabetic, given
both food (Gtotal = 200000) and insulin (Itotal = 27778).
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Figure 4. G(t) and I(t) for a type 2 diabetic, given food (Gtotal =
200000) but no insulin (Itotal = 0). E(t) = constant is not shown.

remains high over the course of several hours. As a consequence, the plasma insulin
level I(t) rises to very high levels (albeit more slowly than the rise in G(t)), and
eventually lowers G(t) to its equilibrium level (around 140 mg/dl) after about 10
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hours. Comparison with Figure 2 shows that the equilibration process here takes
about the same length of time as in a healthy person, but that the glucose levels go
much higher. Due to the reduced effectiveness of the insulin, I(t) has its maximum
value at over 250 ng/dl, much higher than in the corresponding situation for healthy
subjects (Figure 2, where I(t) has a maximum of about 125 ng/dl), or even for type
1 diabetics (Figure 3, where the maximum of I(t) is about 160 ng/dl). Nonetheless,
the individual’s natural insulin is sufficient to control hyperglycemia (although at
elevated equilibrium levels of glucose), without resorting to administration of ex-
ogenous insulin. The glucagon level (not shown in figure) remains constant at the
equilibrium value Ē = 8.2 ng/dl, because the glucose levels always remain above
GE = 75 mg/dl. Below this level, additional glucagon secretion occurs. The rel-
evance of glucagon to type 2 diabetes can be seen by examining a hypoglycemic
situation (induced by a period of fasting, for instance). This situation is shown in
Figure 5, where the initial plasma glucose concentration is taken to be G0 = 60
mg/dl. This is below GE , and leads to a sharp rise in the glucagon level, and a
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Figure 5. G(t), I(t), and E(t) × 10 for a type 2 diabetic, given
no food (Gtotal = 0) and no insulin (Itotal = 0).

corresponding drop in the insulin level, thus producing the desired increase in the
glucose level to its equilibrium level, over a reasonably short time period of about
30 minutes. Figure 5 shows a strong qualitative resemblance to the corresponding
situation for a healthy person (Figure 1), differing primarily in that the return to
equilibrium in the diabetic case takes about 1.5-2 times as long as it does in the
healthy case. The equilibria for the two cases are obviously different, most impor-
tantly in that the equilibrium for the diabetic case has a significantly elevated level
of glucose compared to that for a healthy person. The well-known counterbalanc-
ing effects of the two hormones (Unger [24], Kruger et al. [18]) are again illustrated
(in both Figures 1 and 5), where glucagon acts to help correct the hypoglycemic
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situation, but the rise in glucose levels is restricted by the counter-effect of insulin,
which acts to prevent hyperglycemia.

The importance of healthy α cells, with their complicated dependence on glucose
and insulin concentrations determining the glucagon secretion rate, is demonstrated
by looking at the consequences of the improper functioning of damaged α cells. This
situation is shown in Figure 6, using the model modifications discussed in section
3.4, and with initial glucose concentration being very low, G0 = 60 mg/dl. As
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Figure 6. G(t), I(t), and E(t)×10 for an individual with damaged
α cells, given no food (Gtotal = 0) and no insulin (Itotal = 0).

expected, the model predicts that a glucagon concentration increase occurs, and in
fact this increase happens quickly and sharply. Because of the reduced sensitivity
to glucose (higher GE), glucagon secretion continues even when glucose levels are
in the range 75-125 mg/dl. As a result, the glucose concentration increases as high
as 180 mg/dl, before dropping to a new, elevated equilibrium value of about 120
mg/dl. The equilibrium values of insulin and glucose are now elevated to several
times their values in the healthy case (c.f. Figure 1), and once again the return to
equilibrium takes about twice as long as in a healthy person. Figure 6 emphasizes
the role of the α cells, and their production of glucagon, in the regulation of plasma
glucose concentration. Damage to the α cells, often believed to be a long-term effect
of diabetes, has a significant impact on the glucose levels. There is experimental
support for these theoretical results. Shah et al. [20] showed that in type 2 diabetics,
a lack of suppression of glucagon is a contributory factor to hyperglycemia after a
meal. Ahren and Larsson [4] reached a similar, and perhaps stronger, conclusion
that impaired glucose tolerance is indeed associated with reduced suppression of
glucagon secretion, which is insulin-induced and possibly caused by α cell resistance
to insulin. In both cases, they emphasized that treatment of diabetes would be aided
by the development of agents to inhibit glucagon secretion or counteract glucagon
action.
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In summary, the model developed in this paper demonstrates the strong depen-
dence of plasma glucose levels on the concentrations of the key hormones, insulin
and glucagon. In the hyperglycemic situation that is most important to diabetics,
the glucagon concentration stays constant and can be removed from consideration,
as is done by most models. For the hypoglycemic case, which is a serious acute
complication, consideration of the role of glucagon is vital to an accurate calcula-
tion of the glucose level. The oft-ignored α cells are shown to play an essential role
in glucose regulation, and their malfunction can have a significant effect by raising
glucose levels.
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