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PUSHING THE LIMIT: HOW FAR CAN WE GO?
(GENERALIZED LIMITS AND LIMIT EXTREMA IN TOPOLOGY)
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Abstract. The traditional epsilon-delta definition of a limit is for functions

in metric spaces. This paper defines limits for relations in topological spaces,
and agrees with the usual definition in the original cases. The advantage is
that less information is needed and more interesting cases are covered, as the

functional dependence on a “variable” is unnecessary for evaluating the limits
of many expressions (for example, the limit of a Riemann sum as the norm
of its partition approaches zero: the relation between the norm and the sum

is not functional, yet the limit is naturally defined). The general definition is
in some ways simpler, providing enlightening perspectives on traditional uses
of limits, and a context for the generalization of limit extrema (limsup and

liminf) in unordered spaces via a concept of “limit closure.”

0. Introduction. Section 1 of this paper installs a generalized theory of limits, not
only for the purposes of Section 2, but also to clear up a great deal of complications
(and hand-waving) in introductory analysis and calculus. After limits and limit
methods are introduced in first-year calculus, there may be a tendency in more
advanced courses to only reintroduce the definition, and not the methods. For this
reason, some of the methods may go unproven or poorly generalized.

As well, the epsilon-delta definition of a limit is very method-oriented, in the
sense that it is stated so as to be suggestive of a standard pattern for proofs (i.e.,
pick an epsilon, and find a delta). This is unfortunate, because generalization can
lead to a much simpler understanding (although the usual methods for dealing with
limits remain useful).

That is why Section 1 of this paper can be beneficial to any undergraduate
student interested in a clearer understanding of analysis. Indeed, these ideas were
originally compiled purely to enhance my own understanding. Even the context
created here is helpful in considereing other concepts which this paper does not.
There is often a temptation (and a good reason) to write expressions and make
claims like

lim
x2→0

sin(x) = 0, lim
(x,y)→0

x=2y

(y

x

)
=

1
2
, or lim

x→∞
f

(
1
x

)
= lim

x→0+
f(x).
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Rather than giving modified definitions and justifications for each of these ideas, it
turns out that we can employ a unified treatment for all of them. As well, limits at
infinity no longer require a seperate definition. Again, all of this is explored in the
first section.

Section 2 is aimed at generalizing results about limit extrema in R. Those un-
familiar with lim sup and lim inf should recall the ubiquitous “squeeze” theorem.
The “limit supremum” of a function at a point c can be defined as the limit of the
supremum of the function as we restrict our attention (i.e., the domain) to an open
interval closer and closer to c. The “limit infimum” is the analogous infimum.

Intuitively, if lim sup
x→c

f(x) = lim inf
x→c

f(x) = L, then f(x) is “squeezed between”

its extrema, and lim
x→c

f(x) is forced to “exist” at L. Conversely, if lim
x→c

f(x) = L,

then the extrema of f as x → c are “pulled inward” and thus lim sup
x→c

f(x) =

lim inf
x→c

f(x) = L.
Unfortunately, the definitions of lim sup and lim inf rely on the ordering of the

range R (as we take suprema and infima), and are thus meaningless in unordered
spaces (like Rn, for example). However, since our intuitive grasp of the above
mentioned results does not seem to depend on the ordering of the reals, (only on
“squeezing” and “pulling”), it seems feasible that these results could have more
general analogues, and in fact they do.

This concludes the introduction. Before proceeding to Section 1, for convenience,
we will adopt the following conventions, listed here in bullet form for ease of refer-
ence from other parts of the paper:

• X and Y will always denote (topological) spaces.
• A, B, will always be subsets of X .
• f is a function, and R is a relation.
• R = R ∪ {−∞,∞} denotes the “extended reals.”
• For a set T , R[T ] := {u | ∃ t;T, (t, u);R} (and likewise for f [T ]).
• For a point ρ, we will sometimes use ρ and {ρ} interchangeably, e.g. by

writing R[ρ] instead of R[{ρ}]. In this way, R[ ] can be viewed partially as a
multi-valued (i.e. set-valued) function (from X to the power set of Y).

• Neighborhood will always mean open neighborhood.
• For a point, ρ, and a space S (not necessarily containing ρ, but at least

contained in some unspecified larger space T 3 ρ), the expression Nρ;S will be
a variable ranging over the set of all (open) neighbourhoods of ρ intersected
with S. So, a clause like ∀Nρ;S is read “for all neighbourhoods of ρ in S”
or “for all S-neighbourhoods of ρ”. Note that for S ⊆ T , by definition,
Nρ;S = Nρ;T ∩ S. Also, if the space S is clear from context, we may write
simply Nρ.

• A raised index will be used to indicate a particular neigbhourhood of ρ (usually
selected for some purpose), e.g. N1

ρ .

1. Generalized Limits. To begin, we must first acknowledge that when consid-
ering a limit of a function (or a relation, as we shall see later) defined on some
domain, X , the point at which the limit is taken, c, should be “approachable” in
the sense that there should be points arbitrarily close to c for which the function
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(or relation) is defined. It would not make much sense (in the real case) to consider
the limit of log x as x approaches −3.

Consequently, for a space S and a relation R, the set of points approachable by
R through S is defined as

ApSR := (S ∩ Dmn R)′

= {c : ∀Nc;S , Dmn R ∩Nc;S \ c 6= ∅}
= {c : ∀Nc;S , R[Nc;S \ c] 6= ∅}

The points, c, are taken from S or an ambient space T ⊇ S, which may go
unmentioned (for c ∈ ApSR, it is required only that Nc;S be appropriately defined).

We now proceed to the definition of the limit. To give set-theoretic precision
to their “existence”, limits are defined as set-valued operators. For topological
spaces X and Y, a relation R, R[X ] ⊆ Y (the relation takes X into Y) and a point
c ∈ ApXR, all these assumptions are made implicitly to write

Y
X lim

x→c
R[x] := {L ∈ Y | ∀NL;Y ∃ Nc;X : R[Nc;X \ c] ⊆ NL;Y}

which is read “the limit through X to Y of R[x] as x approaches c”. When the
variable x is unnecessary, we write Y

X lim
c

R, and when X and Y are implicit, simply

lim
c

R is sufficient.1

The assumption that c ∈ ApXR warrants special attention. If the definition
were made without this assumption, it might be that R[N1

c;X \ c] = ∅ for some
N1

c;X , in which case every point in Y would be in the limit, since for each L ∈ Y,
and any NL;Y , R[N1

c;X \ c] ⊆ NL, so L is in the limit. This is an uninteresting and
troublesome case to consider, so it is ruled out here at the outset (it would be rather
annoying to always have to say “unless the limit is all of Y”). This also explains
the choice of definition for ApXR instead of simply using Dmn R.

In the case where X and Y are metric spaces (such as Rn), the above definition
corresponds with traditional limits in the sense that

∀NL ∃ NL : f [Nc \ c] ⊆ NL

⇐⇒ ∀ε > 0 ∃ δ > 0 : f [Bδ(c) \ c] ⊆ Bε(L)
⇐⇒ ∀ε > 0 ∃ δ > 0 : 0 < |x− c| < δ ⇒ |f(x)− L| < ε

where Br(ρ) denotes the open ball of radius r about ρ. Thus the generalized
limit will be a singleton set {L}, when the limit “exists”, and ∅ when the limit
“does not exist”. In fact, the prized uniqueness of limits (when they “exist”) is in
general contingent only on Y being Hausdorff.2 Intuitively, we cannot “force” the
values of R (as a multi-valued function) to be in two places at once:

Theorem (1.1). For Y Hausdorff, | lim
c

R| ≤ 1.

Proof: Suppose L,K ∈ lim
c

R, L 6= K. Take N1
L, N2

K such that

N1
L ∩N2

K = ∅.

1In this article, all limits are Y
X (that is, from X to Y) unless otherwise indicated, and all

points and neighbourhoods are in the appropriate spaces when no confusion results.
2A space is called Hausdorff iff ∀x 6= y, ∃Nx, Ny : Nx ∩Ny = ∅.
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We have

∃N1
c : R[N1

c \ c] ⊆ N1
L and ∃N2

c : R[N2
c \ c] ⊆ N2

K .

But from general set theory, R[S ∩ T ] ⊆ R[S] ∩R[T ], hence

R[(N1
c ∩N2

c ) \ c] ⊆ R[N1
c \ c] ∩ [N2

c \ c] = ∅,
contradicting that c ∈ ApXR. The result follows. �

Following the common algebraic convention of using an element and its singleton
interchangeably, we may write lim

c
= L instead of {L} when no confusion results.

Thus all traditional uses of limits can be seen as instances of the generalization.
Having these definitions firmly in place, we are never far from home when writing

expressions like

lim
x2→0

sin(x) = 0

since {(x2, sinx)|x ∈ R} is a relation (though not a function), or

lim
(x,y)→0

x=2y

(
x

y

)
= 2

since x = 2y defines a subset X ⊆ R2, and furthermore we have the relation
R = {

(
(x, y), x

y

)
: 0 6= x, y ∈ R} with 0 ∈ ApXR (these notations will not be used

as conventions in this article, except in some recurring examples).
As well, R is topologically identical (homeomorphic) to the interval [−1, 1] via

the map x 7→ x

1− x2
, −1 7→ −∞, 1 7→ ∞. Thus, limits at ±∞ require no seperate

treatment, since ±∞ have neighbourhoods just as “finite” reals do (specifically, a
N∞ is an open set containing some ray (a,∞], and a N−∞ is an open set containing
some ray [−∞, a)).

The following formally justifies a “change of variables” in a limit.

Theorem (1.2). If h : X1 → X2 is a homeomorphism, then

Y
X1

lim
x→c

R[x] = Y
X2

lim
x→h(c)

R[h−1(x)], i.e.,

Y
X1

lim
c

R = Y
X2

lim
h(c)

R ◦ h−1.

Proof: Suppose L ∈ Y
X1

lim
c

R. For any NL we have some Nc and hence

h[Nc] = Nh(c) such that

R ◦ h−1[Nh(c)] = R ◦ h−1[h[Nc]] = R[Nc] ⊆ NL,

so L ∈ Y
X2

lim
h(c)

R ◦ h−1, and by symmetry the result follows. �

Hence, by the above, a claim like lim
x→∞

f

(
1
x

)
= lim

x→0+
f(x) is justified, since h :

[0,∞] → [0,∞] by x 7→ 1
x , 0 7→ ∞, ∞ 7→ 0, is a homeomorphism.

The next result gives a corollary which generalizes the technique of showing when
limits do not exist by showing conflicting subspace limits:
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Theorem (1.3). If A ⊆ B, then Y
A
lim

c
R ⊇ Y

B
lim

c
R (in particular, when B = X ,

Y
A
lim

c
R ⊇ lim

c
R).

Proof: Suppose L ∈ Y
B
lim

c
R. For any NL, we have some Nc which gives

R[A∩Nc \ c] ⊆ R[B ∩Nc \ c] ⊆ NL. Thus L ∈ Y
A
lim

c
R, hence the result.

�

Corollary (1.4). If A,B ⊆ X and Y
A
lim

c
R ∩ Y

B
lim

c
R = ∅, then lim

c
R = ∅.

Proof: We have Y
A
lim

c
R ⊇ lim

c
R ⊆ Y

B
lim

c
R, hence

lim
c

R ⊆ ( Y
A
lim

c
R ) ∩ ( Y

B
lim

c
R ) = ∅,

so lim
c

R = ∅. �

For instance, since
lim

(x,y)→0
x=2y

x

y
= 2 6= 1 = lim

(x,y)→0
x=y

x

y
,

we conclude that lim
(x,y)→0

x

y
= ∅, which is an accurate and consise way of writing

“the limit does not exist”.

2. Limit Closure — Generalizing Limit Extrema. Although lim sup and
lim inf are usually defined for functions from R to R, these operators work equally
well on relations, with the appropriate definition. We choose one that makes few
assumptions:

For c ∈ ApXR, and Y = R,

lim sup
c

R := inf
Nc

(sup(R[Nc \ c])),

and similarly for lim inf.
We record as a theorem the following result, a minor modification of the usual

result for functions:

Theorem (2.1). lim sup
c

R = lim inf
c

R = L ⇐⇒ lim
c

R = L.

Intuitively, the limit extrema “squeeze” the values of R to a single point. To
reproduce this phenomenon, we define the “limit closure through X to Y of R[x] as
x → c” as follows (note the capital L):

Y
X Lim

x→c
R[x] :=

⋂
Nc;X

R[Nc;X \ c],

favouring the notations Y
X Lim

c
R and Lim

c
R when possible. (Here, all limit closures

will be Y
X unless otherwise specified).
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By relating limit closures to limit extrema, this theorem affirms the motivation
for the chosen definition:

Theorem (2.2). For Y = R, lim sup
c

R = maxLim
c

R, and likewise

lim inf
c

R = minLim
c

R.

Proof: Since Lim
c

R is the intersection of a collection of closed sets, no

finite number of which are disjoint, we have Lim
c

R 6= ∅ (this result will

be demonstrated in more detail and generality in Theorem 2.6). Now,
since Lim

c
R is closed, the results are straightforward:

max Lim
c

R = lim sup
c

R = sup
⋂
Nc

R[Nc \ c]

= inf
Nc

(supR[Nc \ c]) = inf
Nc

(supR[Nc \ c]) = lim sup
c

R

and similarly for the second result. �

Hence, reconsidering Theorem 2.1, we have the equivalent

Corollary (2.3). For Y = R, lim
c

R = {L} ⇐⇒ Lim
c

R = {L}.

We will now endeavor to examine the relationship between limits and limit clo-
sures in a general topological setting, beginning with the following useful

Lemma (2.4). Lim
c

R = {L ∈ Y : ∀Nc∀NL, NL ∩R[Nc \ c] 6= ∅}.

Proof:

L ∈ Lim
c

R ⇐⇒ L ∈
⋂
Nc

R[Nc \ c]

⇐⇒ ∀Nc, L ∈ R[Nc \ c]
⇐⇒ ∀Nc∀NL, NL ∩R[Nc \ c] 6= ∅,

hence the result. �

Intuitively, a limit lim
c

R returns values that the relation “gets close to” and
“stays close to” as x → c, whereas from the Lemma it is now clear that the limit
closure, Lim

c
R, returns values that the relation “gets close to” but need not “stay

close to”. For example, as x → 0, the function f : R \ {0} → R defined by
f(x) = (1− x2) sin(x−1) can be said to “get close to 1” abitrarily often, but never
“stays close to 1”, and in fact Lim

c
f = [−1, 1] in this case. Since “getting and

staying close to c” is a stronger property than only “getting close to c,” it is now
unsurprising that we have in general:

Theorem (2.5). For any space Y, lim
c

R ⊆ Lim
c

R.

Proof: Suppose L ∈ lim
c

R. For each NL, choose N1
c so that

R[N1
c \ c] ⊆ NL,

and hence ∀NL we have

R[Nc \ c] ⊇ R[Nc ∩N1
c \ c] ⊆ R[N1

c \ c] ⊆ NL,
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thus NL ∩R[Nc \ c] 6= ∅ (note R[Nc ∩N1
c \ c] 6= ∅ since c ∈ ApXR) so

L ∈ Lim
c

R by Lemma 2.4, and the result follows. �

In Section 1, the condition that Y is Hausdorff was shown to place an upper
bound on the size of lim

c
R. There is, analogously, a condition that offers a lower

bound on the size of Lim
c

R:

Theorem (2.6). For Y compact, |Lim
c

R| ≥ 1.

Proof: Suppose Lim
c

R = ∅. Then, taking complements (indicated by

raised ∼’s to avoid confusion with c) of the sets R[Nc \ c], we find that

⋃
Nc

R[Nc \ c]
∼

=

(⋂
Nc

R[Nc \ c]

)∼
= (Lim

c
R)∼ = ∅∼ = Y

gives an open cover of Y, and so we may choose a finite subcover
given by a finite number of Nc’s, say N1

c , N2
c , . . . , Nn

c . That is,

n⋃
k=1

R[Nk
c \ c]

∼
= Y, ∴

n⋂
k=1

R[Nk
c \ c] = ∅.

But
n⋂

k=1

Nk
c is a neighbourhood of c, so, recalling that c ∈ ApXR, we

now have

∅ =
n⋂

k=1

R[Nk
c \ c] ⊇

n⋂
k=1

R[Nk
c \ c] ⊇ R

[
n⋂

k=1

Nk
c \ c

]
6= ∅,

a contradiction, and the result follows. �

To illustrate the necessity of the condition that Y be compact, consider f : R → R
by x 7→ 1

x , 0 7→ 0. Then it is not hard to see that Lim
x→0

f(x) = ∅.
For Y compact, it is naturally interesting to consider the minimal case where

Lim
c

R = {L}. Since lim
c

R ⊆ Lim
c

R in general, either lim
c

R = ∅ or lim
c

R = {L}. It
turns out that the second case is the only possibility. Intuitively, since the values
of R never “get close” to anything but L, they are forced to “stay close” to L:

Theorem (2.7). For Y compact, Lim
c

R = {L} ⇒ lim
c

R = {L}.

Proof: Consider an arbitrary NL. (NL)∼ is closed and therefore com-
pact. Now, for any K ∈ Y with K 6= L, we have K /∈ Lim

c
R, which by

Lemma 2.4, translates as

∀K 6= L ∃NK
c ∃NK , NK ∩R[NK

c \ c] = ∅, i.e. R[NK
c \ c] ⊆ (NK)∼.

We now have the open covering (NL)∼ ⊆
⋃

K /∈NL

NK , which then has

a finite subcovering given by some K1,K2, . . . ,Kn, i.e.

(NL)∼ ⊆
n⋃

i=1

NKi
, and thus NL ⊇

n⋂
i=1

(NKi
)∼.
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Next, taking Nc =
n⋂

i=1

NKi
c , we have

R[Nc \ c] = R

[
n⋂

i=1

NKi
c \ c

]
⊆

n⋂
i=1

R
[
NKi

c \ c
]
⊆

n⋂
i=1

(NKi
)∼ ⊆ NL.

Thus, for each NL there is an appropriate Nc given by the above
construction and it follows that L ∈ lim

c
R. But lim

c
R ⊆ Lim

c
R = {L},

so we must have lim
c

R = {L}. �

The implication lim
c

R = {L} =⇒ Lim
c

R = {L}, along with its converse, form

Corollary 2.3 when Y = R. Now that the compactness of Y has been shown sufficient
for the forward implication, we seek conditions under which the converse holds. In
this case, the proof turns out to be much less involved:

Theorem (2.8). For Y Hausdorff, lim
c

R 6= ∅ =⇒ Lim
c

R ⊆ lim
c

R, i.e., by the
uniqueness of limits in Hausdorff spaces and the fact that lim

c
R ⊆ Lim

c
R,

lim
c

R = {L} =⇒ Lim
c

R = {L}

Proof: Suppose K /∈ lim
c

R = {L}, i.e. K 6= L. Take N1
K ∩N1

L = ∅ by

the Hausdorff property. Take N1
c : R[N1

c \ c] ⊆ N1
L. Then, clearly

R[N1
c \ c] ∩N1

k = ∅
hence by Lemma 2.4, we have K /∈ Lim

c
R, and then it follows that

Lim
c

R ⊆ lim
c

R (i.e. Lim
c

R = {L}). �

Now, for the case where Y is both compact and Hausdorff, we have both directions
of implication, and so Theorem 2.1, in the equivalent form of Corollary 2.3, can be
generalized for any compact Hausdorff space, Y. The results are summarized in the
convenient collection below.

Theorem (2.9). Properties of limits in a compact Hausdorff space, Y:
a) lim

c
R = {L} ⇐⇒ Lim

c
R = {L},

b) | lim
c

R| ≤ 1 and |Lim
c

R| ≥ 1,

c) | lim
c

R| = 1 ⇐⇒ |Lim
c

R| = 1 ⇐⇒ Lim
c

R = lim
c

R.

Proof:
a) Follows from Theorems 2.7 and 2.8.
b) Restatement of Theorems 1.1 and 2.6.
c) First,

| lim
c

R| = 1 ⇐⇒ lim
c

R = {L} (L chosen)

⇐⇒ Lim
c

R = {L}

⇐⇒ |Lim
c

R| = 1,

and so, also, any of these implies lim
c

R = Lim
c

R. Second, when

Lim
c

R = lim
c

R, by (b) we must have |Lim
c

R| = | lim
c

R| = 1, com-
pleting the proof. �
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3. Concluding Remarks. Since Corollary 2.3 is equivalent to Theorem 2.1, the
final results of Section 2 (in particular, Theorem 2.9a) can be seen as a generalization
of the usual results about limit extrema. As for generalizing lim sup

c
R and lim inf

c
R

themselves, they together form the boundary of Lim
c

R in the real case, and so

bd(Lim
c

R) is an appropriate contender.
It is worth noting that in the case where Y is a compact Hausdorff space, all

information about the values of the lim operator can be deduced from those of the
Lim operator, whereas the reverse is not true: the limit closure includes information
about the function which the usual limit does not. This is an interesting advantage
of the limit closure concept from a theoretical standpoint, which of course echoes
the advantages of working with limit extrema in the real-valued case.

Furthermore, even when Y = R, the limit extrema of two functions f and g may
coincide at a point while the limit closures at the point are different. For example,
consider f(x) = sin(x−1) and g(x) = [sin(x−1)] (where [·] is the nearest integer
operator): Lim

0
f = [−1, 1] but Lim

0
g = {−1, 0, 1}. Hence the limit closure of a

function at a point is even more descriptive than the limit extrema at the point.
Returning to the broader setting of Section 1, now that we have a topological

meaning for the statement “R approaches L at c,” from a logical standpoint it would
be convenient to define what it means for a “variable,” x, to approach a constant,
c. Notice that, hitherto, the expression “x → c” has not been given meaning as a
stand-alone statement. If it were, then transitive reasoning like “x → c, therefore
f(x) → L, therefore g(f(x)) → M” might be a valid and natural pattern of thought.
To a limited extent, a “variable” in this way can be thought of as a sequence, and
the concepts of “nets” and “filters” are somewhat more effective in developing this
idea. The reader is referred to [1] and [2], however I suspect that a more general
(and more elegant) approach is possible.
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